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Abstract
The clinical and economic importance of fasciolosis has been recognised for centuries, yet

diagnostic tests available for cattle are far from perfect. Test evaluation has mainly been

carried out using gold standard approaches or under experimental settings, the limitations

of which are well known. In this study, a Bayesian no gold standard approach was used to

estimate the diagnostic sensitivity and specificity of five tests for fasciolosis in cattle. These

included detailed liver necropsy including gall bladder egg count, faecal egg counting, a

commercially available copro-antigen ELISA, an in-house serum excretory/secretory anti-

body ELISA and routine abattoir liver inspection. In total 619 cattle slaughtered at one of

Scotland’s biggest abattoirs were sampled, during three sampling periods spanning sum-

mer 2013, winter 2014 and autumn 2014. Test sensitivities and specificities were estimated

using an extension of the Hui Walter no gold standard model, where estimates were allowed

to vary between seasons if tests were a priori believed to perform differently for any reason.

The results of this analysis provide novel information on the performance of these tests in a

naturally infected cattle population and at different times of the year where different levels of

acute or chronic infection are expected. Accurate estimates of sensitivity and specificity will

allow for routine abattoir liver inspection to be used as a tool for monitoring the epidemiology

of F. hepatica as well as evaluating herd health planning. Furthermore, the results provide

evidence to suggest that the copro-antigen ELISA does not cross-react with Calicophoron
daubneyi rumen fluke parasites, while the serum antibody ELISA does.
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Introduction
Fasciolosis, first reported in 1379, has been recognised as a clinically and economically impor-
tant disease for centuries [1]. The infection caused by trematode parasites of the genus Fasciola
can infect many mammals including sheep, cattle, goats, deer and humans [2]. In cattle, fascio-
losis mainly manifests in its chronic form, which can lead to weight loss, anaemia and hypopro-
teinaemia. Clinical signs are often mild and may present as loss of productivity, while in severe
cases sub-mandibular oedema may be seen. Unlike sheep, cattle liver pathology includes bile
duct calcification and gallbladder enlargement [2, 3]. Globally, the infection is estimated to cost
the livestock industry €2.5 billion per year [4], while losses due to liver fluke have been esti-
mated to range between €1100-2000 million per year in the European Union [5].

In the UK and other temperate regions, F. hepatica is the most common aetiological agent
of fasciolosis [2]. F. hepatica has a complicated multi-host, highly climate dependent life cycle
which takes typically between 18 and 30 weeks to be completed. The mud snail, Galba trunca-
tula is the most common intermediate host of F. hepatica in Europe [3, 6]. Temperature and
moisture levels play an important role in the parasite’s life cycle and it is generally accepted
that average daily temperatures of more than 10°C and high moisture levels are required for
both the egg development and the reproduction of the parasite within the snail [7]. This results
in seasonal increases of the incidence of infection, which vary between years depending heavily
on climatic conditions.

The incidence of fasciolosis in the UK has been reported to have increased during the last
decade and more importantly its distribution has changed. In the past, fasciolosis was most
commonly seen in the wetter western regions of the country, while it is now evident that the
disease has become endemic in the previously drier eastern regions [8, 9]. Reasons for the
changing epidemiology of F. hepatica are thought to include climate change, increasing animal
movements and development of triclabendazole resistance [10]. Unpredictable weather condi-
tions and resistance to anthelmintic treatment make control strategies less straightforward to
plan. This increases the need for appropriate use of diagnostic tests, which along with improved
knowledge and consideration of their limitations, can enhance implementation of more effec-
tive management strategies.

The development of tests for the correct diagnosis of the infection has been going on for
years, yet no test developed so far has been shown to have adequately high sensitivity and spec-
ificity in the field setting. Research on performance of available diagnostic tests in cattle and
especially the copro-antigen ELISA is far from complete. The faecal egg count test, is com-
monly used in practice but can only detect patent infections. The serum antibody ELISA has
the limitation of providing information on exposure rather than current infection but can
detect exposure even at pre-patent stages of infection [11]. On the other hand the copro-anti-
gen ELISA, which detects F. hepatica excretory-secretory antigens in faeces, is reported to
detect early stages of infection without the limitation of giving positive results due to past expo-
sure [12, 13]. This test has been evaluated by different research groups with varying results in
sheep, but little has been reported on its performance in cattle [14].

Furthermore, inspection of livers of cattle slaughtered in abattoirs across Europe for signs of
liver fluke is mandatory according to Regulation (EC) No 854/2004. In a previous study in
Switzerland, Rapsch et al. (2006) [15] estimated the sensitivity of abattoir liver inspection to be
63.2%. Such estimates are expected to vary between countries, hence it is important to be able
to obtain estimates specific to each country. Lastly, detailed liver necropsy techniques including
gall bladder egg counts are available for research purposes, but impractical and expensive for
routine use. These are expected to be extremely sensitive, even though there is still a window of
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error in case of very early stage infections. Moreover they can provide information on the
severity of infection according to the degree of damage, as well as the fluke burden.

In this study we have used the above diagnostic tests on samples taken from Scotbeef, one of
Scotland’s largest red meat abattoirs, receiving animals from all around Scotland, northern
England and Northern Ireland in an attempt to improve our knowledge on the performance of
these diagnostic tests in the UK setting. More precisely this analysis aims to estimate: i) the per-
formance of meat inspection as a tool for diagnosis of F. hepatica infection; and ii) the perfor-
mance of liver necropsy, serum antibody ELISA, the copro-antigen ELISA and faecal egg count
diagnostic tests.

Materials and Methods

Abattoir Based Sampling
Samples were collected from Scotbeef Limited, Scotland’s largest red meat abattoir during
three sampling periods. Sampling period A (June-July 2013) will be referred to as “summer
2013”. Sampling period B (January-beginning of March 2014) will be referred to as “winter
2014”. Lastly, sampling period C, which took place between the end of August 2014 and Octo-
ber 2014 will be referred to as “autumn 2014”. Each period consisted of six sampling days, one
per week and 32-36 animals were sampled each time. The day and number of animals sampled
each day were constrained by logistics. We used systematic sampling, collecting samples from
one cattle in every 10 slaughtered to allow time for processing and represent animals slaugh-
tered during the whole day. Animals to be sampled were clearly labeled at the time of bleeding
and labels were maintained at all sampling stages to ensure that the correct samples were
taken. Samples included blood, faecal samples as well as whole livers and gall bladders from
each animal. Whole livers and gall bladders were stored at 4°C and were analysed within 72
and 96 hours respectively. Blood samples were stored at 4°C for 24 hours before sera were
obtained and stored at -20°C. 2g of faeces were stored at -20°C, while the rest was stored at 4°C
for egg counting which took place within a week post sampling.

Diagnostics Tests
Necropsy. a) Liver dissection Livers were laid out on a tray and incisions parallel to and

approximately 1 cm apart from the meat inspector’s incisions were made. Grades from 0 to 3
(no, mild, moderate, severe) were given in terms of signs of fibrosis; 0—no signs of fibrosis, 1—
mild focal fibrosis, 2—severe local fibrosis or mild generalised fibrosis, 3—severe local fibrosis
with calcified biled ducts or severe generalised fibrosis. Fibrosis scores were assigned before
slicing the liver further in order to mimic what a meat inspector would be able to see on the
offal line in the abattoir. The liver was cut into 1-2 cm slices thick and each slice was squeezed
in order to collect flukes present. The slices were then placed in a bucket containing hot water
for approximately 30 minutes. Water contents were then poured through 200μm sieves and
inspected to retrieve flukes. Each slice was squeezed so that fluke exited the bile ducts, rinsed
with water flowing in the bucket and discarded. Water remaining in the bucket was poured
through 200μm sieves and inspected to retrieve remaining flukes. Flukes were then counted
and stored in formalin. The total number of flukes was based on the number of whole flukes
plus the number of anterior or posterior fluke parts depending on which one was greater
[16, 17].

b) Gall bladder egg count Gall bladder contents were sieved through a series of 250 and
150μm sieves and collected in a measuring flask. The content was allowed to sediment for 3
minutes, excess liquid was removed and the remaining liquid was agitated and poured into a
narrow bottomed glass. Water was added to the flask and poured into the glass to ensure no
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eggs remained in the flask. This process was repeated and liquid was poured in a 15ml falcon
tube and allowed to sediment for 3 minutes. The sediment was collected in a petri dish, one
drop of 0.5% methylene blue was added and all the eggs on the plate were counted using a ste-
reoscopic dissecting microscope [13].

An animal was classified as positive for liver necropsy when 1 or more parasites were found
in the liver and/or 1 or more eggs were found in the gall bladder.

Faecal egg count (FEC) The faecal sample was mixed using a spatula and 5g were weighed
out in a measuring cylinder. Water was added up to the 40ml mark and contents were mixed
using a stirring rod. Contents were sieved through a coffee strainer and collected in a 250ml
beaker for removal of coarse faecal material. The contents were then sieved through a 150μm
sieve, collected into a narrow bottomed glass and allowed to sediment for 3 minutes. Excess liq-
uid was syringed off and sediment was transferred into a 15ml falcon tube and allowed to sedi-
ment for 3 minutes. Excess liquid was syringed off and the sediment was transferred onto a
petri dish. One drop of 0.5% methylene blue was added and all the eggs on the plate were
counted using a stereoscopic dissecting microscope [18]. A sample was classified as positive
when 1 or more eggs were found in the sample.

Copro antigen ELISA (cELISA) Faecal samples were tested for the presence of excretory-
secretory antigens using the commercially available Fasciola hepatica antigen ELISA kit (Bio-X
Diagnostics, Belgium). The test was performed following the manufacturer’s instructions [12]
and results were expressed as the sample optical density (OD) as a percentage of the mean posi-
tive control OD.

Percent positive ¼ Sample OD
Mean positive control OD

� 100

Samples were classified as positive or negative according to the cut-offs provided by the manu-
facturer for each batch.

Serum antibody ELISA (sELISA) Serum samples were analysed using the excretory/secre-
tory (ES) antibody ELISA developed by the Liverpool School of Tropical Medicine [11]. The
procedure described by Salimi-Bejestani et al (2005) [11] was performed with the following
modifications:

• 1:8000 monoclonal mouse anti-bovine IgG conjugate (AbD Serotec, Bio-Rad Laboratories
Inc, Hertfordshire, UK) was used.

• A new positive control was used so the equation used for calculating the results was slightly
varied to obtain comparable results to previous controls. The percent positive (PP) value was
obtained by the quotient of the mean sample OD (based on two duplicates) divided by the
mean positive control OD (four duplicates), which was then multiplied by 111 instead of 100
to account for the new positive control as suggested by the test developers at Liverpool (Prof.
D. Williams, 2014, pers.comm., 1 Dec).

Percent positive ¼ Mean test sample OD
Mean positive control OD

� 111

Samples were classified as positive if they had a PP greater or equal to 10.
Liver inspection by the Meat Hygiene Service (MHS) The final test included in this analy-

sis is liver inspection carried out at the abattoir by the Meat Hygiene Service. According to the
manual for official controls, liver inspection requirements include visual inspection, palpation
and incision of the gastric surface of the liver [19]. Livers with signs of liver fluke related
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pathology then have to be condemned. At Scotbeef, since 2012, MHS decision regarding liver
condemnation is recorded as ‘Active’, ‘Historic’ or ‘No fluke’. ‘Active’ is roughly defined as liv-
ers in which parasites were seen, while ‘Historic’ describes livers with liver fluke related pathol-
ogy but no signs of current infection. Both ‘Active’ and ‘Historic’ livers have to be condemned.
This is unlike most UK abattoirs and for the purposes of this analysis we will be using the stan-
dardised classification, considering ‘Active’ and ‘Historic’ livers as positive and ‘No fluke’ livers
as negative.

Forestomach inspection for presence of rumen fluke During the second and third sam-
pling seasons of the study (autumn and winter 2014) forestomachs of sampled animals were
inspected for the presence of rumen fluke parasites. This procedure was carried out as part of a
separate study [20], but results will be used here to assess the copro-antigen and the serum-
antibody ELISAs for cross-reactivity with rumen fluke.

Statistical Analysis
A. The No Gold Standard (NGS) estimation of diagnostic test performance NGS, intro-
duced by Hui &Walter [21], is a latent class approach to the evaluation of diagnostic tests
when a “gold standard” is not available. The Bayesian version incorporates prior knowledge by
specifying prior distributions for test properties and prevalence. If no prior information is
available, vague, uniform priors are set. Probabilities of all the possible combinations of test
outcomes conditional on the unknown disease status are specified using the sensitivity (Se) and
specificity (Sp) of each test and the prevalence (p) of each sub-population, in this case periods
“summer 2013”, “winter 2014” and “autumn 2014” [15, 22]. Animals can be positive or nega-
tive for each of the five tests included in this analysis so there are 25 (i.e. 32) possible combina-
tions of test results. Hence, for each sub-population the counts of animals (Oi) of each
combination of test results, in this case 32 (S) combinations for the five tests (T), follow a mul-
tinomial distribution [23, 24]:

OijSej; Spj; pi � MultinomialðPri; niÞ for i ¼ 1; 2; . . . ; S and j ¼ 1; 2; . . . ;T

where Pri is the probability of observing the ith combination of test results.
Examples of how to specify two such probabilities are shown below:

1. Probability of obtaining a positive result in all five tests
Pr(T1+, T2+, T3+, T4+, T5+) = Se1Se2Se3Se4Se5pi + (1 − Sp1)(1 − Sp2)(1 − Sp3)(1 − Sp4)(1
− Sp5)(1 − pi)

2. Probability of obtaining a positive result in the first four tests and a negative result in the
fifth test
Pr(T1+, T2+, T3+, T4+, T5−) = Se1Se2Se3Se4(1 − Se5)pi + (1 − Sp1)(1 − Sp2)(1 − Sp3)(1 − Sp4)
Sp5(1 − pi)

The ratio of acute versus chronic infection is expected to be different, according to the
known lifecycle of the parasite, between the three different times of the year which may affect
the sensitivities and/or specificities of certain tests. Therefore, different estimates for the sensi-
tivities of FEC, the copro-antigen and the serum antibody ELISA tests were obtained for each
season as well as the specificity of the serum antibody ELISA. This was done for two reasons.
Firstly, as shown by Toft et al (2005) [23], if estimates vary between sub-populations the com-
bined estimate will be biased towards the estimate supported by most data i.e the one from the
sub-population with the highest prevalence. Secondly, this can provide information on which
tests are more appropriate at different times of the year.
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Model Assumptions.

1. Tests are conditionally independent. In other words, the misclassification errors of each test
are unrelated conditional on the true disease status of the animal. For example, the probabil-
ity of a truly diseased animal testing positive in test 2 (sensitivity), is not altered by the result
of test 1 [25, 26]. There are various models for accounting for conditional dependence. In
this case we have used the model suggested by Vacek (1985) as described below [23, 25].
Ten models including covariance terms (γSe and γSp) for one combination of two tests at a
time were specified in order to inspect the effect of adjusting for covariance for each test
combination on the sensitivity and specificity estimates of all tests. For example:

a. Probability of obtaining a positive result in all five tests accounting for covariance
between tests 1 and 2
Pr(T1+, T2+, T3+, T4+, T5+) = (Se1Se2+γSe)Se3Se4Se5pi + ((1 − Sp1)(1 − Sp2)+γSp)(1
− Sp3)(1 − Sp4)(1 − Sp5)(1 − pi)

b. Probability of obtaining a negative result in the first test and a positive result in all other
tests accounting for covariance between tests 1 and 2
Pr(T1−, T2+, T3+, T4+, T5+) = ((1 − Se1)Se2 − γSe)Se3Se4Se5pi + (Sp1(1 − Sp2) − γSp)(1
− Sp3)(1 − Sp4)(1 − Sp5)(1 − pi)

c. Probability of obtaining a negative result in the first two tests and a positive result in all
other tests accounting for covariance between tests 1 and 2
Pr(T1+, T2+, T3+, T4+, T5+) = ((1 − Se1)(1 − Se2) + γSe)Se3Se4Se5pi + (Sp1Sp2+γSp)(1
− Sp3)(1 − Sp4)(1 − Sp5)(1 − pi)

2. Test sensitivities and specificities are constant between populations.

3. Prevalences vary between populations
The original Hui &Walter model contained two tests and two populations. Assumptions 3
and 4 were there to ensure that there are enough degrees of freedom to ensure the model’s
identifiability. As liver fluke infection levels vary throughout the year and between years, we
were able to assume that the prevalence will vary between the three sampling seasons. Addi-
tionally, according to Toft et al (2005) when three or more tests are compared one popula-
tion is enough [23] to have sufficient degrees of freedom. As this model is an adaptation of
the original model, with three sub populations and five tests, we ensure that we have enough
degrees of freedom to be able to allow the stated sensitivities and specificities to vary
between sub-populations and to include covariance terms for one combination of tests at a
time.

MCMC diagnosticsMarkov chain Monte Carlo (MCMC) chain convergence was assessed
by visual inspection of the three sample chains using trace and Gelman-Rubin diagnostic plots
for each variable in the model [27]. A correlation matrix of each chain was plotted to check for
high correlation between variables.

Priors As a Bayesian framework is used in this analysis, prior distributions were specified
for the prevalence of each sub-population, sensitivities and specificities of each test. Vague, uni-
form priors with an interval between 0 and 1 were used for the prevalence of each sub-popula-
tion.

p � dbetað1; 1Þ

Similarly for the sensitivities and most of the specificities of evaluated tests, a wide distribution
with an interval between 0 and 1 was used to reflect the fact that there is scarce knowledge on
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the performance of most of these tests in a real life scenario.

Se � dbetað2; 1Þ
Sp � dbetað2; 1Þ

Liver necropsy was the only test where the prior distribution given for the specificity was highly
informative. As mentioned before an animal was classified as positive for liver necropsy when
either at least one fluke was found in the liver and/or when at least one egg was seen in the bile
sample. It is therefore very unlikely that an animal can be wrongly classified as positive as liver
flukes are easily identifiable and no other eggs similar to Fasiola hepatica eggs are expected to
be seen in the bile. In a previous study by Rapsch et al (2006) [15] a similar test was assigned a
specificity of 1 for the reasons explained. In order to account for the possibility of egg seques-
tration in the gall bladder for up to three weeks post treatment [28] we chose the following
prior distribution instead.

Spliver necropsy � dbetað9; 1Þ

The analysis was repeated using priors dbeta(1,1) for the Se and Sp of all tests to assess the
effect of priors.

Priors for the covariance variables, γSe and γSp, were uniform distributions using the follow-
ing maximum and minimum limits [22, 29].

ðSe1 � 1Þð1� Se2Þ � gSe � minðSe1; Se2Þ � Se1Se2

ðSp1 � 1Þð1� Sp2Þ � gSp � minðSp1; Sp2Þ � Sp1Sp2

Model implementation The model was implemented in JAGS [30], a software which uses
MCMC simulations to construct posterior distributions for the analysis of Bayesian hierarchi-
cal models. JAGS was run within R (Version 3.0.3) [31] using the rjags package [32]. The first
20,000 iterations were discarded as burn-in and the following 20,000 iterations were used to
construct the posterior distributions. The model specification is included in “S1 R script”. R
Package coda [27] was used to carry out MCMC diagnostics and package corrplot [33] was
used to visualize the correlation matrix between variables. The results were plotted using
ggplot2 [34]. A map showing the distribution of sampled animals was plotted using ggmap [35]
and the map tiles were sourced from Stamen Design (using data by OpenStreetMap), which
are freely available under CC BY 3.0 license.

Positive and Negative Predictive Values Sensitivity and specificity estimates report diag-
nostic test validity however positive (PPV) and negative predictive values (NPV) are the appro-
priate measure for interpreting tests in a specific population. They are the probability that a
test positive or negative animal is truly positive or negative respectively. This is more easily
interpreted by both farmers and vets, but its value depends on the true prevalence of the disease
in the population [36]. Based on the Bayes formula [37], presented below, one can estimate the
predictive values using estimates for sensitivity (Se), specificitiy (Sp) and the true population
prevalence (p) [38].

PPV ¼ Se � p
ðSe � pÞ þ ð1� SpÞ � ð1� pÞ

NPV ¼ Sp � ð1� pÞ
ðSp � ð1� pÞÞ þ ð1� SeÞ � p

PPVs and NPVs of the MHS liver inspection and FECs were calculated using the Se and Sp
estimated by the NGS model over a range of possible prevalences to demonstrate this.
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Results

Descriptive statistics
In total, 619 cattle were sampled, 207 during summer 2013, 204 during winter 2014 and 208
during autumn 2014. Cattle age ranged from 369 to 1121 days old (Fig 1) and cattle of a variety
of breeds were sampled as shown in Fig 2. As Fig 3 shows, cattle sampled came from Scotland,
northern England and Northern Ireland i.e the geographical distribution of the general popula-
tion of cattle slaughtered at the abattoir was well represented. Samples from every cattle were
tested with the five tests mentioned.

Diagnostic test results
Table 1 shows the binary results of each test per sampling period. Fig 4 shows the distribution
of parasite burden per fibrosis score as recorded during liver necropsy. Among livers where
flukes were found, parasite burden ranged from 1 to 86 parasites, with a mean of 8.5 and a
median of 4. As previously described a fibrosis score was assigned based on a presentation of
the liver mimicking the one presented to the MHS. The colour of the points shows the decision
taken by the MHS during liver inspection at the abattoir. Higher fibrosis scores appear to have
higher parasite burden, but it is also important to note that livers with no signs of fibrosis, that
were also not rejected at the abattoir were found to have parasites. Furthermore, many livers
which were classified as “Historic” by the MHS (green) were found to have parasites. Lastly, liv-
ers classified as “Active” by the MHS (red) appear to be spread evenly among fibrosis scores 1
to 3, while there were a few livers with a fibrosis score 0 which were classified as “Active”. This
might mean that what was presented at the liver necropsy was not always the same as what was
seen by the MHS.

Estimates of diagnostic test sensitivity and specificity
Fig 5 is a plot of mean estimates and 95% Bayesian Credible Interval (BCI) for each model
parameter. The precise mean estimates and 95% BCIs for each variable are shown in Table 2. F.
hepatica infection prevalence during summer 2013, winter 2014 and autumn 2014 sampling
periods was estimated to be 0.38, 0.31 and 0.23 respectively. Liver necropsy was, as expected, a
near perfect test with a sensitivity estimate of 0.99 and a specificity of 0.98. Liver inspection by
the abattoir Meat Hygiene Service had a sensitivity estimate of 0.68 and a specificity of 0.88.
The sensitivity estimates of the copro-antigen ELISA were allowed to vary between seasons,
but were estimated as 0.77 for all three sampling seasons. cELISA was estimated to have a very
high specificity of 0.99. The Faecal Egg Count sensitivity values varied greatly between sam-
pling seasons and were estimated as 0.81, 0.77 and 0.58 respectively. The test was shown to be
highly specific, 0.99. Lastly, both the sensitivity and the specificity of the serum antibody
ELISA were allowed to vary between seasons. Sensitivity estimates varied between seasons with
the mean sensitivity estimate being much higher during the winter sampling, 0.94, compared
to 0.72 and 0.80 during the summer and autumn sampling periods respectively. Similarly the
mean specificity estimate during the autumn sampling of 0.76 was comparatively lower than
summer and winter estimates which were 0.87 and 0.89 respectively. The exact data used for
this model can be found in “S1 Table”.

Model checking
Supporting information contain figures to demonstrate the results of checking for conditional
dependence, the effect of priors and correlation between model variables, respectively. As
shown in “S1 Fig”, there are no major differences in estimates when accounting for covariance
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Fig 1. Distribution of cattle age per period. The age of cattle sampled ranged from 369 to 1121, with a mean of 720 days old.

doi:10.1371/journal.pone.0161621.g001
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Fig 2. Distribution of cattle breed per period.Cattle sampled were of a range of different breeds found in the UK. 175 cattle were Aberdeen Angus cross,
118 were Limousin cross, 73 were Charolais cross, 48 were Aberdeen Angus, 37 were Simmental, 33 Holstein Friesian, 26 Limousin, 18 British Blue cross,
12 Charolais and 85 were of other less common breeds.

doi:10.1371/journal.pone.0161621.g002
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for the different combinations of tests and the model with no covariance terms. It was therefore
justifiable to use a final model with no covariance terms. Furthermore, “S2 Fig”, show a com-
parison of prior and posterior distribution which reveals that results are mainly informed by
the data. This is further supported by “S3 Fig”, which presents a comparison between the
results presented in the paper and the results of the same model run using non-informative pri-
ors for the sensitivities and specificities of all tests, where results do not appear to be altered.
Lastly, “S4 Fig” presents the cross correlation plots between the parameters included in the
model showing that there is no obvious strong correlation between any combination of
parameters.

Predictive Values of diagnostic tests
Fig 6 show the positive and negative predictive values of the MHS liver inspection and Feacal
egg counts respectively, over a range of prevalences. Estimates for FEC sensitivity was allowed
to vary over the 3 sampling seasons hence 3 plots are presented. Prevalence estimates of the 3
sampling periods are shown by dotted lines. It is important to note how predictive values
change according to the population prevalence. Additionally, when the PPV values of the two
tests are compared at low prevalence levels it is clear that PPV of FEC is higher and varies less
than the PPV of MHS due to a much higher specificity estimate for FEC.

Discussion
The main aims of this study was the evaluation of the performance of tests available for the diag-
nosis of F. hepatica. The no gold standard approach introduced by Hui &Walter [21] was used
within a Bayesian framework in order to compare the binary results of the five diagnostic tests.

Estimates of sensitivity and specificity for liver necropsy were 0.99 (95% BCI 0.96-1.00) and
0.98 (95% BCI 0.96-0.99) respectively. Liver necropsy is not readily used for disease diagnosis
by veterinarians as it is a very time consuming procedure and it can only be carried out post
mortem. Its role in this study was to provide a measure of infection and fibrosis levels to better
describe the sample. Additionally, as a test previously used as a gold standard in assessments of
F. hepatica diagnostic tests [39] it was expected to provide near perfect results and therefore be

Fig 3. Geographical distribution of cattle sampled. Samples used in this study were taken from Scotbeef, one of Scotland’s largest red
meat abattoirs, receiving animals from all around Scotland, northern England and Northern Ireland. Figure shows the distribution of cattle
sampled i.e the geographical distribution of the general population of cattle slaughtered at the abattoir was well represented. The map was
plotted using R package ggmap [35] using tiles sourced from Stamen Design (using data by OpenStreetMap).

doi:10.1371/journal.pone.0161621.g003

Table 1. Proportions of test positives for each test and number of animals sampled.

summer 2013 winter 2014 autumn 2014 Overall

Number sampled 207 204 208 619

MHS inspection 0.32 0.29 0.25 0.29

Necropsy 0.39 0.33 0.23 0.32

cELISA 0.29 0.25 0.18 0.24

FEC 0.31 0.25 0.13 0.23

sELISA 0.35 0.36 0.37 0.36

doi:10.1371/journal.pone.0161621.t001

Fasciola hepaticaDiagnostic Test Evaluation in Cattle in the UK

PLOSONE | DOI:10.1371/journal.pone.0161621 August 26, 2016 12 / 22



Fig 4. Distribution of parasite counts by fibrosis score andMHS classification. Figure shows the distribution of parasite burden per fibrosis score as
recorded during liver necropsy. Among livers where flukes were found, parasite burden ranged from 1 to 86 parasites, with a mean of 8.5 and a median of 4.
A fibrosis score was assigned based on a presentation of the liver mimicking the one presented to the MHS. The colour of the points shows the decision
taken by the MHS during liver inspection at the abattoir.

doi:10.1371/journal.pone.0161621.g004
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Fig 5. Mean posterior estimates and 95%BCIs. Estimates of the prevalence (pi), sensitivity (Se) and specificity (Sp) for each period (summer 2013 (A),
winter 2014 (B), autumn 2014 (C)).

doi:10.1371/journal.pone.0161621.g005
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highly informative. A gold standard analysis was not chosen due to the possibility of gall blad-
der egg sequestration in animals where infections has been successfully treated causing false
positive results and very early infections being difficult to detect due to the small size of flukes
causing false negative results. The results of this study show that liver necropsy has a near per-
fect sensitivity and a very high specificity and must have contributed greatly in the evaluation
of the rest of the tests by our model.

Table 2. Mean estimates and 95%BCIs of the prevalence and test sensitivity and specificity per period.

Estimate (Season) Mean 2.5% BCI 97.5% BCI Estimate (Season) Mean 2.5% BCI 97.5% BCI

Prevalences

Summer 2013 (A) 0.38 0.31 0.45

Winter 2014 (B) 0.31 0.25 0.38

Autumn 2014 (C) 0.23 0.17 0.29

Sensitivities Specificities

MHS inspection 0.68 0.61 0.75 MHS inspection 0.88 0.85 0.91

Necropsy 0.99 0.96 1 Necropsy 0.98 0.96 0.99

cELISA (A) 0.77 0.67 0.86 cELISA 0.99 0.98 1

cELISA (B) 0.77 0.67 0.87

cELISA (C) 0.77 0.64 0.88

FEC (A) 0.81 0.72 0.9 FEC 0.99 0.98 1

FEC (B) 0.77 0.66 0.86

FEC (C) 0.58 0.43 0.72

sELISA (A) 0.72 0.62 0.82 sELISA (A) 0.87 0.8 0.92

sELISA (B) 0.94 0.86 0.98 sELISA (B) 0.89 0.84 0.94

sELISA (C) 0.8 0.69 0.91 sELISA (C) 0.76 0.69 0.82

doi:10.1371/journal.pone.0161621.t002

Fig 6. Predictive values of a) FEC and b) MHS over a range of prevalences. Prevalence estimates for each sampling period are shown by dotted lines.

doi:10.1371/journal.pone.0161621.g006
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Liver inspection is routinely carried out at the abattoir according to Regulation (EC) No
854/2004. The only previously reported estimate of its sensitivity in a European setting identi-
fied by the author was from a study in Switzerland by Rapsch et al. (2006) [15] which was
63.2%. In the current study the sensitivity estimate of liver inspection appeared to be lower
than all other diagnostic tests, except that of FEC during Autumn 2014. Similarly, specificity
appeared to be similar to the serum antibody ELISA, but lower than all other tests. More pre-
cisely the sensitivity was estimated to be 0.68 (95% BCI 0.61-0.75) and the specificity 0.88 (95%
BCI 0.85-0.91). Estimates for meat inspection are expected to vary between countries and
potentially between abattoirs. It is therefore relevant to report estimates for liver inspection
from one of the biggest abattoirs in Scotland as this can provide a way to more accurately esti-
mate the prevalence of F. hepatica infection in the UK accounting for imperfectness of this
technique. Additionally, liver inspection can provide a useful and practical tool for evaluation
of the effectiveness of health planning programmes used on farms. In this setting it is possibly
more intuitive to use positive and negative predictive values, which can readily be estimated
based on population prevalence as shown in the results section.

Mezo et al. (2004) presented a new copro-antigen ELISA which was reported to have a sen-
sitivity of 100% in detecting cattle with fluke burden of two or more parasites and be highly
specific with no cross reactivity with parasites includingMoniezia, Dicrocoelium, Echinococcus
and Paramphistomum cervi [12, 14]. This ELISA is commercially available by Bio-X Diagnos-
tics in Belgium. The protocol used in the commercial test is a considerable modification of the
original, and its performance in the field setting has been poorly assessed, especially in cattle.

In this study sensitivity estimates of the copro-antigen ELISA were allowed to vary between
seasons, but were in fact very similar. They were estimated to be 0.77 (95% BCI 0.67-0.86), 0.77
(95% BCI 0.67-0.87), 0.77 (95% BCI 0.64-0.88) during summer 2013, winter 2014 and autumn
2014 sampling periods respectively. These estimates were considerably lower compared to
Charlier et al. (2008) [39] who reported a sensitivity of 94%. This might be because liver nec-
ropsy without detection of eggs in the gall bladder was used as the gold standard, potentially
missing a proportion of infected animals and therefore overestimating the sensitivity. Addi-
tionally, a lower cut-off than the one recommended in the protocol was used which might
increase the sensitivity. Our estimate was similar to that of Palmer et al (2014) [40] who esti-
mated the sensitivity to be 0.80 when the cut-off recommended by the manufacturer was used.
When using a lower cut-off Palmer et al (2014) estimated the sensitivity to be 87%.

The specificitiy of copro-antigen ELISA was estimated to be 0.99 (95% BCI 0.98-1.00). This
is comparable to Palmer et al (2014) who estimated the specificity to be 1 using the manufac-
turer’s cut off and>99% using their own cut off [40]. On the contrary, Charlier et al (2008)
estimated the specificity to be 93%. This might be a result of their cut-off adaptation. As the cut
off adjustment used by Palmer et al. (manufacturer’s cut off multiplied by 0.67) provided
greater improvement in the test performance, the model was rerun using the modified cut-off
for the cELISA. Sensitivity was estimated as 0.80 (95% BCI 0.71-0.89), 0.85 (95% BCI 0.75-
0.93), 0.87 (95% BCI 0.76-0.95) during summer 2013, winter 2014 and autumn 2014 sampling
periods respectively. The specificity remained 0.99 (95% BCI 0.98-1.00) confirming that this
cut-off modification can improve test sensitivity without compromising specificity. Estimates
regarding the other four tests were not altered (results not shown).

Gordon et al. (2013) [41] identified rumen fluke from a range of cattle and sheep samples
across the UK to be Calicophoron daubneyi instead of P. cervi which was previously thought to
be the species found in the UK. Even though lack of cross-reactivity with P. cervi has already
been reported [42], this emphasises that it is important to also check for cross-reactivity of
cELISA with C. daubneyi. In our study, during the second and third sampling seasons 53 cattle
with negative liver necropsy results were found to have at least one fluke in the rumen. None of
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those samples had a positive copro-antigen result (using both manufacturer’s and adjusted cut-
off). Rumen flukes collected have not been speciated, but based on the findings of Gordon et al.
(2013) it is reasonable to assume that a great proportion of those were C. daubneyi. This sug-
gests that cELISA does not cross react with this parasite in cattle, which agrees with the results
of a similar comparison with cELISA in sheep [41]. This is becoming increasingly important in
the UK as levels of rumen fluke infection appear to be rising and will further complicate fascio-
losis control.

Diagnosis of F. hepatica infection by detection of eggs in faecal samples has been around for
decades and various protocols exist. The main drawbacks, of this otherwise easy to learn
method, are that by definition it can only diagnose patent infections and that it is time consum-
ing and therefore costly or undercharged. It is generally accepted that the specificity of faecal
egg counting is almost perfect. In the UK this might be compromised by the increasing levels
of rumen fluke infection as the eggs are of similar shape [41], even though the trained eye
should be able to discriminate between the two kinds of eggs as they are of different colour. As
vets and technicians become more aware of the increasing chance of finding rumen fluke eggs
in faeces this problem is expected to be reduced. On the other hand, the sensitivity of the test
has been reported to vary from well below 50% to moderate values and depends on various fac-
tors mainly based on the protocol used, for example volume of faeces [15, 39] and levels of
infection in the population [43]. In the current context FEC sensitivity was estimated to be 0.81
(95% BCI 0.72-0.90), 0.77 (95% BCI 0.66-0.86) and 0.58 (95% BCI 0.43-0.72) during summer
2013, winter 2014 and autumn 2014 respectively. As expected the specificity was close to per-
fect and comparable to the copro-antigen ELISA (0.99, 95%, BCI 0.98-1.00). The sensitivity of
FEC was shown to be comparable to cELISA during the first two sampling seasons, while it
dropped significantly during autumn 2014. This shows that FEC still remains a very useful test
during periods where infection is expected to be mainly chronic, and even superior to antibody
ELISA tests as it has a higher specificity. As shown here it is important to remember that when
recent infections are expected, for instance at the start of a new liver fluke season, this test per-
forms a lot worse than other tests due to its inability to detect pre-patent infections.

The last test evaluated in this study was the excretory/secretory antibody ELISA developed
by the Liverpool School of Tropical Medicine [11]. This is the only test included that is devel-
oped to also detect past exposure to the parasite. Therefore, both the sensitivity and the speci-
ficity were allowed to vary between seasons. Sensitivity appeared to be much higher during the
winter sampling, 0.94 (95% BCI 0.86-0.98) when compared to 0.72 (95% BCI 0.62-0.82) and
0.80 (95% BCI 0.69-0.91) during the summer and autumn sampling periods respectively. It
was particularly interesting to see whether the false positive rates differed as well. Indeed, speci-
ficity during the autumn sampling was estimated to be 0.76 (95% BCI 0.69-0.82), which was
comparatively lower than summer and winter estimates of 0.87 (95% BCI 0.80-0.92) and 0.89
(95% BCI 0.84-0.94) respectively. Serum antibody ELISA tests for the diagnosis of F. hepatica
have been around for decades and have various reported sensitivities and specificities ranging
from 91.7% to 100% and 94.6% to 100% respectively [44]. The ELISA used in this study is not
commercially available and was first presented by Salimi-Bejestani et al. in 2005 with a sensitiv-
ity of 98% and a specificity of 96%. For their test evaluation they used FEC positive cattle, while
their negative samples came from zero-grazed cattle of no known previous exposure to the par-
asite. Our sensitivity estimates are much lower and this is thought to be because the test was
evaluated using an abattoir random sample of a range of levels of infection, including ones not
detectable by FEC. Similarly, our specificity estimates are lower than previously reported. This
is believed to be a result of the inability of antibody ELISAs to distinguish between current and
previous exposure as it is highly possible that our sample included animals that were previously
infected with the parasite, but who have received treatment, unlike the sample used in the
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initial evaluation. It is therefore possible that our estimates reflect a more realistic evaluation of
this test in the field.

Another issue with serum antibody ELISA tests in general is cross-reactivity with other
trematodes [11]. The current ELISA showed no cross-reaction with D. viviparus, N. helvetianus
and O. ostertagi, while cross-reaction with rumen flukes has not been reported [11]. Out of the
53 cattle with rumen flukes identified in the rumen and a negative liver necropsy result, 18 had
positive sELISA results. While we cannot know whether those were animals with previous
exposure to F. hepatica this may be an indication of cross-reactivity which can be further sup-
ported by Ibarra et al (1998) who reported cross-reactivity of an ES antigen ELISA first
described by Arriaga de Morilla et al in 1989 with Paramphistomum spp. [45].

In our study most animals had a low fluke burden with a mean and median of 8.5 and 4
respectively. Firbrosis scores appeared to be related to burden, but it is important to note that
our results explain the limitations of liver inspection by the MHS reflected in its imperfect sen-
sitivity and specificity estimates. Presence of parasites in the liver did not always correspond to
obvious fibrosis signs at inspection. Additionally, it is unclear whether “active” or “historic” is a
useful classification as many of the livers classified as historic were found to harbour at least
one fluke.

Even though knowing whether the infection is absent or present in an animal is highly
important, one could argue that the level of infection present could also be important in the
control of fasciolosis especially in cattle. As fasciolosis is a chronic disease in cattle causing
mostly sub-clinical disease, it might be meaningful to farmers to know what the intensity of
infection is and how that translates to production losses. This information might therefore be
used to decide what treatment strategy if any they might decide to use [43]. Such an investiga-
tion was beyond the scope of this paper, but it is one definitely worth pursuing to investigate
the use of available diagnostic tests in quantifying infection or level of production loss attrib-
uted to the infection for a more cost effective control of F. hepatica infection in cattle.

The present study has several strengths and limitations. We have used systematically chosen
samples from naturally infected animals slaughtered at one of Scotland’s biggest abattoirs,
therefore obtaining a sample more representative of the field situation than if experimentally
infected animals where used [46]. Whilst we were not able to use simple random sampling due
to logistics, we believe that this sampling method enabled us to represent animals arriving at
the abattoir during the whole day. Five different tests were used in order to enable us to run a
no gold standard analysis, avoiding the limitations of using an imperfect test as a gold standard.
This approach certainly does not come without biases. In order to determine whether our pro-
posed model could reclaim tests parameters using the sample size available, test results were
simulated for three sub-populations of animals, representing the three sampling periods, under
a range of plausible diagnostic test sensitivities and specificities. The model was run using this
data and was able to recover pre-determined estimates of diagnostic test sensitivities/specifici-
ties and prevalence with reasonable precision for each sampling period. Furthermore, we
checked for conditional dependence between tests and carried out appropriate MCMC diag-
nostics. Moreover, this is the first study to provide information on the appropriateness of avail-
able diagnostic tests during three different seasons, even though a first attempt at this was
carried out by Charlier et al 2008 [39] using two sampling seasons, a much smaller dataset and
a gold standard analysis.

Limitations of this study include the fact that we have not been able to account for differ-
ences in meat inspection results depending on which meat inspector carried out the inspection,
as well as the fact that seasonal differences were described only during one year. If results of
tests are dependent on the liver fluke life cycle, which in turn is heavily dependent on climatic
factors, the appropriateness of diagnostic tests in each season might need to be tested over
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more years to confirm the differences or similarities described here. Additionally, we have
assessed the assumption of conditional independence using pairwise dependency models. It is
important to bear in mind that it is possible that more complicated dependencies might exist,
which we were unable to account for. Nevertheless, due to the fact that the tests compared are
looking for five different signals; flukes, fluke damage, eggs, faecal antigens and serum antibod-
ies, it is unlikely that there are biologically likely common proxies of disease that might result
in important covariance structures. This is supported by the absence of any considerable
change in estimates using the 10 possible covariance pairs.

Overall, our study has provided a valuable insight in the performance of tests available for
the diagnosis of F. hepatica infections in a population of cattle believed to be representative of
the field situation. Knowing its limitations and being able to adjust for them, abattoir liver
inspection, can be a valuable tool in monitoring and understanding the changing epidemiology
of F. hepatica as well as evaluating farm health plans. Faecal egg counting has been shown to
still be a valuable tool in the diagnosis of current F. hepatica infections, but one has to bear in
mind that it is a weak test during periods where recent infections are expected. The copro-anti-
gen ELISA is a comparable test that can be used throughout the year, with evidence to suggest
that there is no cross-reaction with the increasingly prevalent rumen fluke parasite. This study
also provided further evaluation of an in house ES antigen ELISA showing that while being a
valuable test, its sensitivity and specificity estimates are lower in the field setting that previously
reported. Liver fluke control is becoming increasing challenging in the UK, hence the qualita-
tive and quantitative evaluation of available diagnostic tests, as well as development of better
ones is an area where ongoing investigation is required.

Supporting Information
S1 R Script. Model specification. This script contains the code used for comparison of 5 diag-
nostic tests during 3 sampling periods. This model is an adaptation of the Hui &Walter [21]
approach for the evaluation of diagnostic tests when a “gold standard” is not available.
(R)

S1 Table. Data used in Bayesian no gold standard model. Table shows the data used in the
Bayesian no gold standard model. For each period there were 32 possible combinations of test
results and the number of animals for each combination is shown here. A negative test result is
shown by 0 and a positive test result is shown by 1.
(PDF)

S1 Fig. Conditional Dependence. Figure shows the mean estimates of sensitivity and specific-
ity of each test as estimated by the 10 different models accounting for covariance of one combi-
nation of two tests at a time. For example S1S2 is the model including covariance terms for
tests 1 and 2 i.e. MHS liver inspection and liver necropsy and so on. The last estimate (NoCov)
as well as the horizontal line on each plot shows the mean as estimated by the model with no
covariance terms. Plots such as Se4 containing 3 lines show Se or Sp estimates that were
allowed to vary between season. Based on this figure we concluded that even though estimates
vary slightly above or below the lines, there are no major differences in estimates when
accounting for covariance for the different combinations of tests and the model with no covari-
ance terms. It was therefore justifiable to use a final model with no covariance terms.
(PDF)

S2 Fig. Effect of priors. A comparison between prior and posterior distributions of model
parameters is shown in these two figures. The top figure shows the mean and 95% Bayesian
credibility intervals of each model parameter. Bayesian credibility intervals of posterior
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distributions are much narrower than the priors showing that results are heavily informed by
the data. As described in the methodology the only informative prior was the one for the speci-
ficity of the liver necropsy, Sp2. This figure shows that even though the prior distribution is
more informative the result is also informed by the data. Similarly the bottom figure shows the
density plots of prior and posterior distributions and how prior distributions (except Sp2) are
vague and posterior distributions are highly data driven being much narrower than the prior
distributions.
(PDF)

S3 Fig. Comparison of results of original model and model using non-informative priors.
Figure shows the results of the original model and of a model using non-informative priors for
comparison. The analysis was repeated using priors dbeta(1,1) for the Se and Sp of all tests to
assess the effect of priors. There is no obvious alterations of results.
(PDF)

S4 Fig. Correlation between model parameters. Figure shows the cross correlations between
the parameters included in the model in each of the 3 MCMC chains. There is no obvious
strong correlation between any combination of parameters.
(PDF)
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