
RESEARCH ARTICLE

Recent Update on Radiation Dose
Assessment for the State-of-the-Art Coronary
Computed Tomography Angiography
Protocols
Sock Keow Tan1, Chai Hong Yeong1, Kwan Hoong Ng1*, Yang Faridah Abdul Aziz1,
Zhonghua Sun2

1 Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur,
Malaysia, 2 Department of Medical Radiation Sciences, Curtin University, Perth, WA 6845, Australia

* ngkh@ummc.edu.my

Abstract

Objectives

This study aimed to measure the absorbed doses in selected organs for prospectively

ECG-triggered coronary computed tomography angiography (CCTA) using five different

generations CT scanners in a female adult anthropomorphic phantom and to estimate the

effective dose (HE).

Materials and Methods

Prospectively ECG-triggered CCTA was performed using five commercially available CT

scanners: 64-detector-row single source CT (SSCT), 2 × 32-detector-row-dual source CT

(DSCT), 2 × 64-detector-row DSCT and 320-detector-row SSCT scanners. Absorbed

doses were measured in 34 organs using pre-calibrated optically stimulated luminescence

dosimeters (OSLDs) placed inside a standard female adult anthropomorphic phantom. HE

was calculated from the measured organ doses and compared to the HE derived from the

air kerma-length product (PKL) using the conversion coefficient of 0.014 mSv�mGy-1�cm-1 for

the chest region.

Results

Both breasts and lungs received the highest radiation dose during CCTA examination. The

highest HE was received from 2 × 32-detector-row DSCT scanner (6.06 ± 0.72 mSv), fol-

lowed by 64-detector-row SSCT (5.60 ± 0.68 and 5.02 ± 0.73 mSv), 2 × 64-detector-row

DSCT (1.88 ± 0.25 mSv) and 320-detector-row SSCT (1.34 ± 0.48 mSv) scanners. HE cal-

culated from the measured organ doses were about 38 to 53% higher than the HE derived

from the PKL-to-HE conversion factor.
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Conclusion

The radiation doses received from a prospectively ECG-triggered CCTA are relatively small

and are depending on the scanner technology and imaging protocols. HE as low as 1.34

and 1.88 mSv can be achieved in prospectively ECG-triggered CCTA using 320-detector-

row SSCT and 2 × 64-detector-row DSCT scanners.

Introduction
According to the latest update published by the American Heart Association [1], cardiovascu-
lar disease (CVD) is the leading global cause of death, accounting for 17.3 million deaths per
year. It is the first killer of the population in the United States, taking more lives than all forms
of cancer combined. While invasive coronary angiography remains as the gold standard for the
diagnosis of coronary artery diseases (CAD), its associated costs and morbidity including a
1.7% rate of major complications have led to the development of non-invasive imaging modali-
ties [2]. Coronary computed tomography angiography (CCTA) is a well-established imaging
technique that has high per-patient sensitivity (99%), positive predictive value (92%) and nega-
tive predictive value (95%) for obstructive CAD [3].

CCTA was first approved by the U.S. Food and Drug Administration (FDA) in 2004 using
64-slice CT. The 64-slice per gantry rotation can be achieved using either 64-detector-row, or
32-detector-row with a strategy to double the slice number by alternating the focal spot of the
X-ray source [4]. The technology has then rapidly evolved from 64-slice to 128-, 256-, 320- and
the recent 640-slice CT to achieve better spatial resolution, temporal resolution, larger volume
coverage and lower radiation dose to the patients. As motion artifact (due to rapid heart beat)
is one of the most significant challenges in CCTA, temporal resolution of less than 100 ms is
usually desirable. Temporal resolution of a single X-ray tube corresponds to approximately
half of the gantry rotation time (typically 330 ms). Further improvement of temporal resolution
has been achieved in 128- and 256-detector-row CT scanners, with gantry rotation time ranged
between 270 and 280 ms. With the introduction of dual-source CT (DSCT), temporal resolu-
tion can be further improved from 165 to 83 ms. High diagnostic accuracy (93%), sensitivity
(94%) and negative predictive value (97%) have been reported in CCTA using 2 × 64-detector-
row DSCT scanner [5]. Being another latest scanner version for CCTA, the 320-detector-row
SSCT provides the largest z-coverage per gantry rotation (160 mm), sufficiently covering the
whole heart at one rotation. This configuration allows 3-dimensional volumetric heart imaging
to be carried out within diastole of one R-R interval [6]. In addition, 4-dimensional CT or volu-
metric cine imaging is possible if the X-ray beam is turned on for a longer period to capture the
heart over one or more cardiac cycles [7]. Other proposed methods to overcome motion-
induced image degradation include an opening of the padding (adding surrounding X-ray
beam time to the mid-diastolic window with retrospective gating), multi-segmental reconstruc-
tion and motion correction algorithm [8–10]. Padding with retrospective gating and multi-seg-
mental reconstruction are associated with substantial increase of patient dose. Fuchs et al. [8]
have reported image quality improvement and interpretability of prospectively ECG-triggered
CCTA with motion correction algorithm at average heart rate of 69 ± 9 beats per minute
(bpm).

While conventional angiography may expose the patient with radiation dose in the range of
3 to 9 mSv, effective dose (HE) as high as 12 to 21 mSv have been reported in CCTA using
64-detector-row CT scanners [11, 12]. With the later generation CT scanners (higher than
64-detector-row), HE as low as 0.4 to 1.2 mSv can be achieved for an average sized patient in
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prospectively ECG-triggered CCTA [13–16]. Although several clinical studies have been con-
ducted to assess radiation dose during prospective ECG-triggered CCTA, the data mainly rely
on the air kerma-length product (PKL) reported in the CT console [17, 18]. It is indeed impor-
tant to assess the radiation dose imparted to the specific organs that are being exposed, such as
breasts, lungs, heart, liver, stomach, etc. However, to the best of our knowledge, research in this
area is scare, and this is the main reason for us to conduct this study to fill this gap in the cur-
rent literature.

This study therefore aimed to assess the radiation dose received from prospectively ECG-
triggered CCTA using different generations of CT scanners through direct measurement of
organ doses in a standard female adult anthropomorphic phantom. We hypothesized that
there exists wide variation between radiation dose associated with CCTA acquired with differ-
ent generation of scanners.

Materials and Methods

Study Design
This study was designed to measure organ doses received from a prospectively ECG-triggered
CCTA examination using a standard female adult anthropomorphic phantom and optically
stimulated luminescence dosimeters (OSLDs). Dose measurement was carried out using five
CT scanners of different generations located at five different centers. The recommended CCTA
imaging protocols were used according to the manufacturers’ guidelines.

Anthropomorphic Phantom and OSLDs. A female adult anthropomorphic phantom
(702-G, CIRS Inc., Norfolk, Virginia, USA) assembled with multiple holes for the placement of
the OSLDs (NanoDot, Landauer Inc., Glenwood, IL) was used. The phantom represented a
female adult of 160 cm height and 55 kg weight. The phantom is made of tissue-equivalent
materials that simulate average soft tissues, average bone tissues, cartilage, spinal cord and
disks, lung, brain and sinus, where the linear attenuation coefficient of the materials are within
3% of the actual tissues for photon energies ranged 40 to 150 keV [19]. The phantom is sec-
tioned into 38 contiguous slabs of 25 mm thickness. Each section contains several 14 mm-
diameter holes and plugs for OSLDs placement across 19 organs (Fig 1A). The phantom has a

Fig 1. (a) Axial view of the phantom’s sectional slab showing the lungs, spine, heart and sternum. The OSLDs are loaded into
the tissue-equivalent plugs within the organs. (b) Front and side views of OSLD’s holder.

doi:10.1371/journal.pone.0161543.g001
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pair of detachable breasts with base diameter 10.8 cm and height 4.3 cm. The ratio of glandular:
adipose tissues is 50: 50. Specific holes and plugs are located in the breasts at 1 cm below the
skin surface for OSLD placement.

The OSLD is made of aluminum oxide doped with carbon (Al2O3:C). It is in disk-shaped of
5 mm diameter and 0.2 mm thickness, wrapped in a light-tight 10 × 10 × 2 mm3 black plastic
carrier with a density of 1.03 g.cm-³ (Fig 1B). The OSLDs used in this study were calibrated for
X-ray energy of 120 kVp. A calibrated OSLD reader system (MicroStar InLight reader, Land-
auer, Glenwood, Illinois, USA) was used to acquire the energy released by each OSLD and sub-
sequently converted it to absorbed dose (mGy) based on the calibration curve.

CT Scanners and Imaging Protocols. The five different generations CT scanners used in
this study include 64-detector-row single source CT (SSCT) system (Optima CT 660, GE
Healthcare, USA), 64-detector-row SSCT system (Ingenuity 128, Philips Healthcare, USA),
2 × 32-detector-row dual source CT (DSCT) system (Somatom Definition Dual Source, Sie-
mens Healthcare, Germany), 2 × 64-detector-row DSCT system (Somatom Definition Flash,
Siemens Healthcare, Germany) and 320-detector-row SSCT system (Aquilion ONE, Toshiba
Medical System, Japan). The prospectively ECG-triggered CCTA imaging protocols recom-
mended by the respective CT manufacturers were used. The protocols include Snapshot Pulse
Acquisition (Optima CT 660, GE Healthcare, USA)–thereafter referred as “protocol A”, Step
and Shoot Cardiac Acquisition (Ingenuity 128, Philips Healthcare, USA)–thereafter referred as
“protocol B”, Adaptive Cardio Sequence Acquisition (Somatom Definition Dual Source, Sie-
mens Healthcare, Germany)–thereafter referred as “protocol C”, Flash Spiral Acquisition
(Somatom Definition Flash, Siemens Healthcare, Germany)–thereafter referred as “protocol

Fig 2. a) Positioning of phantom according to the clinical CCTA settings; b) SPR image of phantom with the scan range planned for
CCTA (white box).

doi:10.1371/journal.pone.0161543.g002
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D”, and Volumetric Cardiac Acquisition (Aquilion ONE, Toshiba Medical Centre, Japan)–
therefore referred as “protocol E”.

The anthropomorphic phantom pre-loaded with 244 OSLDs from brain to femora was posi-
tioned on the CT scanner table (Fig 2A). The scan range was fixed at 140 mm covering from
the carina of trachea to the apex of the heart (Fig 2B). The CT scanner was connected to an
ECG monitor and a constant heart rate of 60 bpm was applied using ECG demo mode. Table 1
summarizes the scanning parameters for a complete CCTA examination including the scan
projection radiograph (SPR), bolus tracking or test bolus and prospectively ECG-triggered
CCTA using the respected CT scanners. For bolus tracking technique, threshold of 150 HU
was set at the region of interest (ROI) to initiate the scan. For the test bolus technique, six expo-
sures were performed at the ROI to identify the triggering threshold and continued with the
prospectively ECG-triggered CCTA.

Organ Dose Measurement. A total of three measurements were done for each imaging
protocol. Each measurement was obtained by averaging the results from five exposures. The
OSLD signals were analyzed and converted to absorbed dose using the calibration curve.
Organ doses were obtained by multiplying the absorbed dose with individual tissue weighting

Table 1. Scanning parameters for prospectively ECG-triggered CCTA using five CT scanners from different generations.

Imaging Protocol Protocol A Protocol B Protocol C Protocol D Protocol E

Scanner model Optima CT 660 Ingenuity128 SomatomDefinition Dual
Source

Somatom Definition
Flash

Aquilion ONE

Number of slices 128 128 128 256 640

Detector type HiLight V-Res
VolaraDAS

NanoPanel Ultrafast ceramic Ultrafast ceramic Solid-
stateGd2O2S

Detector-row 64 64 2 × 32 2 × 64 320

Detector thickness (mm) 0.625 0.625 0.6 0.6 0.5

Z-coverage per gantry rotation
(mm)

40.0 40.0 19.2 38.4 160.0

Gantry rotation time (ms) 350 300 330 280 350

Scan Projection Radiograph (SPR)

Tube voltage (kVp) 120 120 120 120 120

Tube current (mA) 40 30 35 50 50

Bolus tracking/Test bolus

Tube voltage (kVp) 120 120 120 120 120

Tube current-time (mAs) 40 30 45 60 25

Contrast timing method Bolus tracking Bolus tracking Test bolus Test bolus Test bolus

Number of scan 6 6 6 6 6

Threshold (HU) 150 150 - - -

Scanning time (s) 8.76 10.0 10.5 10.3 10.0

Prospectively ECG-triggered CCTA

Acquisition technique Snapshot Pulse Step and Shoot
Cardiac

Adaptive Cardio Sequence Flash Spiral Volumetric
Cardiac

Tube voltage (kVp) 120 120 120 120 120

Tube current-time (mAs) 197 180 218 169 15

Heart rate (bpm) 60 60 60 60 60

Tube rotation time (s) 0.35 0.40 0.38 0.28 0.35

Total exposure time (s) 1.76 1.96 3.04 0.45 1.22

Acquisition slice thickness
(mm)

0.625 0.625 0.6 0.6 0.5

Reconstruction slice thickness
(mm)

0.625 0.9 3.0 0.75 0.5

doi:10.1371/journal.pone.0161543.t001
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factors recommended by the International Commission on Radiological Protection Publication
(ICRP) Publication 103 [20].

Effective Dose (HE) Estimation. The HE was estimated using two different approaches in
this study and the results were compared. First, the HE was computed by summing up all the
organ doses measured from the anthropomorphic phantom. Second, the HE was calculated by
multiplying the air kerma-length product (PKL) (previously known as dose length product)
recorded from the CT console with the EKL conversion factor as following [20, 21]:

HE ¼ EKLPKL

Where EKL is region-specific, PKL normalized HE (mSv.mGy-1cm-1) conversion factor. The
EKL for chest, 0.014 mSv.mGy-1cm-1 as recommended by the European Commission (EC) and
Public Health England (PHE) (formerly National Radiological Protection Board (NRPB)) was
used in this study [22, 23].

Statistical Analysis. The statistical analysis was performed using a commercially available
software package (IBM SPSS Statistical 20.0, SPSS Inc, Chicago, USA). Continuous variables
were presented as mean ± standard deviation. The organ doses measured from all the protocols
were compared using one-way ANOVA, followed by post-hoc Fisher’s LSD test to identify the
significance of the differences between each data pair. 95% confidence interval was used in all
the statistical tests.

Results

Organ Doses
The organ doses measured from the anthropomorphic phantom are tabulated in Table 2.
There were 34 organs involved from brain to femora excluding skin. Comparison of organ
doses across different scanners is better presented in a graph format, as shown in Fig 3. Ten
organs were directly exposed to the primary beam in the field of view (FOV) during CCTA, i.e.
breasts, lungs, oesophagus, liver, stomach, sternum, heart, thoracic spine, ribs and scapula.
Among these organs, breasts received the highest radiation dose followed by lungs, oesophagus,
liver, stomach, etc. Using 320-detector-row SSCT scanner and Protocol E, the organ doses
were significantly reduced compared to all other scanners and protocols. The second lowest
radiation dose was achieved by using 2 × 64-detector-row DSCT scanner and protocol D, fol-
lowed by 64-detector-row SSCT scanner with Protocol B and Protocol A. The 2 × 32-detector-
row DSCT scanner contributed higher dose compared to the 64-detector-row SSCT. One-way
ANOVA test shows significant difference (p< 0.05) for organ doses measured in different pro-
tocols. On post-hoc Fisher’s LSD test, organ doses measured in protocol E was statistically dif-
ferent to organ doses measured in protocols A, B and C; organ doses measured in protocol D
was statistically significant different to organ doses measured in protocol A and C, while no
other comparison was statistically significant different (Table 3). Fig 4 illustrates the distribu-
tion of dose at different organs at a glance. The colour coding indicates the level of radiation
dose received by the respective organs, and the red box shows the FOV. Protocol E contributed
the least dose to all organs among all the protocols.

HE Estimation
The comparison of HE obtained by summing up all the organ doses from the phantom mea-
surement (measured HE) and by computing using the PKL-to-HE conversion factor (computed
HE) is shown in Table 4. In general, the measured HE was higher than the computed HE by
38.3 to 53.2%. Protocol C contributed the highest HE, followed by protocol A, B, D and E.
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Discussion
To our knowledge, this is the first report comparing the direct measured organ doses from pro-
spectively ECG-triggered CCTA using 64-, dual source 2 × 32-, dual source 2 × 64- and
320-detector-row CT scanners and a standard female adult anthropomorphic phantom. The
dose measurement setup in this study followed exactly the procedures of a typical CCTA exam-
ination of a female patient, that include the positioning, scout scanning (or scan projection
radiograph), bolus tracking or test bolus and prospectively ECG-triggered CCTA imaging. The
imaging parameters recommended by different CT scanner manufacturers are used according
to the CT scanner model. Low heart rate of 60 bpm was used during ECG-triggered CCTA
considering that this is the average heart rate in most of the clinical cases after beta blocker is

Table 2. Mean organ dosesmeasured from the female anthropomorphic phantom during prospectively ECG-triggered CCTA.

Organ Mean Absorbed Dose (mGy)

Protocol A Protocol B Protocol C Protocol D Protocol E

Adrenals 3.96 ± 0.05 3.46 ± 0.16 3.72 ± 0.04 3.20 ± 0.02 0.83 ± 0.13

Bladder 0.05 ± 0.06 0.01 ± 0.02 0.11 ± 0.17 0.22 ± 0.01 0.30 ± 0.33

Brain 0.36 ± 0.30 0.01 ± 0.02 0.26 ± 0.20 0.04 ± 0.02 0.04 ± 0.07

Breast, Left 16.20 ± 0.32 14.58 ± 0.24 15.76 ± 0.28 3.50 ± 0.02 4.60 ± 0.45

Breast, Right 14.23 ± 0.32 13.77 ± 0.31 15.23 ± 0.53 3.83 ± 0.06 4.24 ± 0.14

Cervical Spine 0.77 ± 0.35 0.29 ± 0.41 0.62 ± 0.01 0.29 ± 0.20 0.29 ± 0.19

Clavicle 1.43 ± 0.14 0.37 ± 0.13 1.95 ± 0.54 0.86 ± 0.06 0.25 ± 0.32

Colon 0.43 ± 0.27 0.20 ± 0.07 0.22 ± 0.11 0.20 ± 0.01 0.06 ± 0.08

Cranium 0.29 ± 0.30 0.01 ± 0.01 0.27 ± 0.30 0.03 ± 0.01 0.20 ± 0.38

Femora 0.12 ± 0.17 0.01 ± 0.02 0.17 ± 0.19 0.01 ± 0.00 0.27 ± 0.39

Gallbladder 1.16 ± 0.69 0.82 ± 0.30 1.11 ± 0.54 0.55 ± 0.32 0.64 ± 0.56

Heart 15.28 ± 0.18 11.51 ± 0.78 18.91 ± 0.66 5.14 ± 0.41 4.17 ± 0.23

Kidney, Left 0.95 ± 0.51 0.87 ± 0.51 0.95 ± 0.35 0.41 ± 0.11 0.29 ± 0.20

Kidney, Right 0.60 ± 0.29 0.62 ± 0.25 0.90 ± 0.80 0.57 ± 0.27 0.37 ± 0.44

Liver 11.83 ± 1.22 9.47 ± 0.92 14.06 ± 1.45 3.98 ± 0.17 2.91 ± 1.15

Lumbar Spine 0.31 ± 0.38 0.15 ± 0.14 0.40 ± 0.30 0.20 ± 0.27 0.07 ± 0.06

Lung, Left 12.06 ± 1.61 12.04 ± 1.72 12.36 ± 1.88 4.07 ± 0.47 2.25 ± 1.22

Lung, Right 13.57 ± 2.04 12.57 ± 1.94 14.54 ± 2.30 4.54 ± 0.54 2.48 ± 1.17

Mandible 0.57 ± 0.38 0.06 ± 0.11 0.43 ± 0.09 0.19 ± 0.03 0.05 ± 0.09

Oesophagus 13.21 ± 1.26 11.58 ± 4.69 16.63 ± 0.69 6.89 ± 3.25 2.08 ± 1.05

Ovary, Left 0.02 ± 0.01 0.05 ± 0.00 0.04 ± 0.01 0.02 ± 0.00 0.03 ± 0.01

Ovary, Right 0.01 ± 0.01 0.01 ± 0.01 0.05 ± 0/01 0.02 ± 0.00 0.01 ± 0.02

Pancreas 1.15 ± 0.37 0.66 ± 0.47 0.96 ± 0.31 0.55 ± 0.06 0.41 ± 0.21

Pelvis 0.22 ± 0.21 0.07 ± 0.08 0.11 ± 0.10 0.05 ± 0.02 0.14 ± 0.31

Ribs 9.90 ± 1.37 8.92 ± 1.17 11.00 ± 2.47 3.62 ± 0.42 2.13 ± 1.43

Scapula 8.60 ± 1.00 9.62 ± 0.79 10.94 ± 0.12 4.64 ± 0.65 0.62 ± 0.40

Small Intestine 0.07 ± 0.08 0.07 ± 0.10 0.07 ± 0.07 0.05 ± 0.03 0.27 ± 0.40

Spleen 10.74 ± 1.44 9.99 ± 0.12 10.44 ± 1.03 3.70 ± 0.14 1.58 ± 0.93

Sternum 15.88 ± 0.09 12.23 ± 0.52 17.69 ± 0.47 4.11 ± 0.11 2.28 ± 2.06

Stomach 2.50 ± 1.45 1.96 ± 1.23 2.81 ± 1.74 1.46 ± 0.91 0.99 ± 0.56

Thoracic Spine 9.52 ± 1.88 10.21 ± 2.42 11.45 ± 0.07 4.71 ± 1.68 2.33 ± 1.38

Thymus 2.47 ± 0.47 1.26 ± 0.89 2.93 ± 1.55 2.10 ± 0.77 0.77 ± 0.18

Thyroid 0.65 ± 0.14 0.31 ± 0.06 0.68 ± 0.26 0.42 ± 0.04 0.21 ± 0.29

Uterus 0.01 ± 0.01 0.01 ± 0.02 0.04 ± 0.04 0.03 ± 0.01 0.29 ± 0.38

doi:10.1371/journal.pone.0161543.t002
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applied. Low heart rate is desirable to guarantee a better image quality and lower radiation
dose to the patient during prospectively ECG-triggered CCTA [7].

The data from this study show that, if excluding skin, breasts received the highest radiation
dose, followed by lungs, oesophagus, liver, stomach, sternum and heart. It is therefore impor-
tant to note that, although heart is the organ of interest in CCTA imaging, other organs such as
breasts, lungs, oesophagus, liver and stomach receive relatively higher radiation dose due to
their higher sensitivity towards ionizing radiation. According to ICRP-103 publication, heart is
one of the most radioresistant organs which are categorized as “remainder tissues” when con-
sidering its tissue weighting factor. Although spleen was not included in the FOV, it still
received comparable dose as the scapula, ribs and thoracic spine due to scattered radiation

Fig 3. Graph shows the organ dose of 34 organs obtained using prospectively ECG-triggered CCTA in five different generations CT scanners. The
red box indicates organs included in the scanning field of view.

doi:10.1371/journal.pone.0161543.g003

Table 3. Results of post-hoc Fisher’s LSD test to evaluate significance level of each protocol pair.

Data-Pair P-value

Protocol A–Protocol B 0.750

Protocol A–Protocol C 0.799

Protocol A–Protocol D 0.047*

Protocol A–Protocol E 0.023*

Protocol B–Protocol C 0.567

Protocol B–Protocol D 0.094

Protocol B–Protocol E 0.050

Protocol C–Protocol D 0.025*

Protocol C–Protocol E 0.012*

Protocol D–Protocol E 0.774

* P < 0.05 is considered statistically significant different.

doi:10.1371/journal.pone.0161543.t003
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from the nearest organ such as liver. The scattered radiation doses received by other organs
were negligible.

Among all the CT scanners, 320-detector-row SSCT system gave lowest radiation dose to
most of the organs. The measured HE was 1.34 ± 0.48 mSv while computed HE was 0.81 ± 0.02
mSv. It is the current latest CT system that has wide z-axis coverage of 160 mm, enabling the
whole heart to be imaged in a single tube rotation. This configuration allows volumetric whole
heart imaging during the diastole of one R-R interval and the entire heart is imaged without
temporal delay [7]. However, the scanner has a standard temporal resolution of approximately
175 ms which is inferior to the 83 ms from DSCT, therefore, this type of scanner is only suitable

Fig 4. Organ dose obtained in prospectively ECG-triggered CCTA using a) Protocol A; b) Protocol B; c) Protocol C; d) Protocol D; e) Protocol E (from left to
right).

doi:10.1371/journal.pone.0161543.g004

Table 4. Estimated effective doses obtained from prospectively ECG-triggered CCTA using different generations CT scanners and protocols.

Parameter Protocol A Protocol B Protocol C Protocol D Protocol E

PKL (mGy.cm) 193.40 ± 2.52 168.10 ± 3.44 204.00 ± 3.30 83.00 ± 3.01 57.90 ± 1.21

Measured HE (mSv) 5.60 ± 0.68 5.02 ± 0.73 6.06 ± 0.72 1.88 ± 0.25 1.34 ± 0.48

Computed HE (mSv) 2.71 ± 0.04 2.35 ± 0.05 2.86 ± 0.05 1.16± 0.04 0.81 ± 0.02

% difference (Measured HE−Computed HE) 51.6% 53.2% 52.8% 38.3% 39.6%

doi:10.1371/journal.pone.0161543.t004
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to image patients with low and regular heart rate. The recently developed Revolution CT by GE
medical system shows promise in imaging patients with high heart rate as it has 160 mm detec-
tor array and improved temporal resolution of 140 ms [24].

Although the two models of 64-detector-row SSCT scanners and one model of 2 × 32-detec-
tor-row DSCT scanner used in this study have the same total number of detector row, the radi-
ation doses contributed by the SSCT scanners were generally lower than the DSCT scanner by
7 and 17%, respectively. This may be due to the wider z-coverage per gantry rotation (40 mm)
in 64-detector-row SSCT scanners, compared to only 19.2 mm z-coverage per gantry rotation
in 2 × 32-detector-row DSCT scanner. Consequently, the 2 × 32-detector-row DSCT scanner
requires more than 2 times acquisition time in order to achieve the same volume coverage.
Since there is slight overlap in each acquisition slice (helical scan), this may result in higher
dose. Fortunately, this first generation DSCT scanner has now been replaced by the second
generation DSCT scanner. Several improvements have been introduced in the second gen-
eration DSCT system. First, the detector row was increased from 2 × 32-detector-row to
2 × 64-detector-row with z-coverage of 38.4 mm. Second, the gantry rotation speed was
boosted to 280 ms compared to 330 ms in the first generation system. Third, the scan field-of-
view (in the x/y plane) of the second detector (Detector B) was widened from 26 to 33 cm to
provide better coverage of patient anatomy. Fourth, a new tin-based selective photon shield
was used to filter unnecessary low energy photons from the high energy X-ray tube spectrum.
This helps to reduce patient dose and enables the separation of high energy and low energy X-
ray spectra during dual-energy imaging. Finally, a new “Flash” scanning mode was introduced
in the system, which uses fast gantry rotation time in conjunction with a high table pitch of up
to 3.2. With such high pitch, the system can acquire cardiac images in a quarter of heartbeat or
250 ms in a single diastolic phase, compared to scanners that may require several cardiac cycles
for image acquisition, hence eliminating additional radiation dose from overlapping slices. In
this study, it was observed that, although the HE obtained from the 2 × 64-detector-row DSCT
scanner was higher than the 320-detector-row SSCT scanner, the doses delivered to the breasts
were actually lower. This was a promising result as breast is one of the most radiosensitive
organs in CCTA examination.

In the comparison of measured versus computed HE, the mean difference observed from
this study ranged between 38.3 and 53.2%. These findings were consistent with the findings
from Hurwitz et al where the measured HE were higher than the computed HE [25]. In this
study, the latest PKL-to-HE conversion factor as recommended by the EC and PHE was applied
[22, 23]. In our opinion, the measured HE were more reliable than computed HE because the
radiation doses were directly measured from all the organs, including those located outside of
the primary beam during the CCTA imaging. The use of PKL-to-HE conversion factor of 0.014
mSv.mGy-1cm-1 may underestimate the overall radiation exposure from CCTA imaging, hence
this method may need to be reviewed and improved. In fact, Gosling et al. [26] and Akmal
et al. [18] have both suggested that a conversion factor of 0.028 mSv.mGy-1cm-1 would give a
better estimation of the HE in cardiac-specific imaging.

From our results, the 2 × 32-detector-row DSCT scanner contributed highest HE in pro-
spectively ECG-triggered CCTA, followed by 64-detector-row SSCT scanners, 2 × 64-detector-
row DSCT scanner and 320-detector-row SSCT scanner. Although the HE varied from
1.34 ± 0.48 to 6.06 ± 0.72 mSv among different generations of CT scanners and imaging proto-
cols, the radiation doses were relatively low compared to many other CT examinations. A
study carried out by Akmal et al. [18] found no significant difference in the HE between gen-
ders, however body mass index (BMI) is identified as the main factor that significantly affects
the radiation dose. This is also confirmed by a recent study using latest CT model [24].
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The radiation doses reported in this study provide medical practitioners with data that can
be used to assess risk versus benefit of CCTA examination in patients. However, our study has
some limitations. First, since this was a phantom study, only one body type was used. The
actual doses will vary from patient to patient, depending on patient body habitus, tube current
setting, heart rate and z-axis coverage. Second, only five most commonly used CT scanner
models for CCTA examination were used in this study, while the most recent CT scanners
such as 128-detector-row SSCT scanner, 256-detector-row SSCT scanner, third generation of
DSCT scanner and second generation of 320-detetor-row SSCT scanner were not included in
our data acquisition because the latest CT scanners are not available yet in many clinical cen-
ters [27].

Hou et al. [16] reported HE of 1.21 ± 0.41 mSv in prospectively ECG-triggered CCTA using
128-detector-row CT scanner. For 256-detector-row CT scanner, HE ranged from 0.18 to 1.22
mSv was reported in prospectively ECG-triggered CCTA at a cut-off heart rate of 67 bpm [28].
Gordic et al. [29] reported that third generation DSCT scanner in high-pitch mode allows diag-
nostic image quality and HE of 0.4 mSv at heart rate up to 70 bpm in prospectively ECG-trig-
gered CCTA. The authors further concluded that heart rate viability is not significantly related
to image quality of CCTA. Using second generation DSCT scanner, Scharf et al. [30] reported
that an average heart rate less than 64 bpm is required to obtain the diagnostic depiction of cor-
onary arteries for patients. The better image quality at lower radiation dose in patients with ele-
vated heart rate (70 bpm versus 64 bpm) in third generation DSCT scanner is due to the
increase of detector row (2 × 96) with z-coverage of 57.6 mm, gantry rotation speed of 250 ms,
scan field-of-view of 50 cm and high pitch scanning. For second generation 320-detector-row
SSCT scanner, estimated HE of 2.1 and 2.8 mSv were reported for patient with heart rate< 65
and� 65 bpm, respectively [31]. Finally, we did not include assessment of image quality in this
study as our focus is to compare the radiation dose among these different CT scanners. Recent
developments in CCTA (both prospectively and retrospectively ECG-triggering) with use of
iterative reconstruction (IR) algorithms have been shown to significantly improve image qual-
ity while reducing radiation dose to a greater extent [32, 33]. Thus, further studies with testing
of these IR techniques on different CT scanners are needed.

Conclusion
This study provides the most recent data on specific organ dose measurement and HE estima-
tion from prospectively ECG-triggered CCTA examination using five commonly used different
generations CT scanners and imaging protocols. Although the heart is the organ of interest in
CCTA imaging, breasts and lungs received the highest radiation dose due to their high radio-
sensitivity towards ionizing radiation. The use of CCTA especially in young women should be
considered carefully in conjunction with clinical indications, benefits versus risks and alterna-
tive imaging modalities.
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