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Abstract

This paper studies a reliable facility location problem with facility protection that aims to
hedge against random facility disruptions by both strategically protecting some facilities and
using backup facilities for the demands. An Integer Programming model is proposed for this
problem, in which the failure probabilities of facilities are site-specific. A solution approach
combining Lagrangian Relaxation and local search is proposed and is demonstrated to be
both effective and efficient based on computational experiments on random numerical
examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city
network in Hunan province, China, is presented, based on which the properties of the
model are discussed and some managerial insights are analyzed.

Introduction

Facilities are critical infrastructures of service networks and supply networks, and locating
facilities properly is highly important for providing products, information or services to cus-
tomers both efficiently and sustainably. In real life, facilities may occasionally fail to work due
to disruptions such as earthquakes, hurricanes, terrorist attacks, and equipment breakdowns.
These disruptions substantially increase both the service costs and customer dissatisfaction
because customers may have to seek service from locations other than their preferred facilities
or because their demand may be delayed or even abandoned after a disruption, which may lead
to higher transportation costs, order delays, or a loss of market shares.

Unfortunately, some disruptions may compromise the performance of the whole supply
network and result in devastating consequences. For example, in 2001, an eight-minute fire
halted a semiconductor factory belonging to Philips in New Mexico, USA, for 9 months, which
indirectly caused one of its customers, Ericsson, to lose USD 2.34 billion [1].In 2011, a
8.9-magnitude earthquake and its resulting tsunami struck Japan, which severely affected com-
ponent plants of several industries; the production lines of many international companies were
shut down for long periods due to part shortages from their Japanese suppliers [2, 3].

Facility location decisions are strategic: once a facility network is constructed, it is costly
and time-consuming to reconfigure and rebuild. Additionally, recourses are always limited,
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and restoration processes can be very lengthy after a disputation. These factors highlight the
need for taking facility disruptions into account and designing a robust facility network that
has the abilities to hedge against disruptions.

This paper studies a reliable facility location problem with facility protection, henceforth
abbreviated RFLPFP, that aims to increase the reliability of a facility network by both protect-
ing some facilities and assigning customers to backup facilities. More specifically, RFLPFP
assumes that facilities may fail independently and with site-specific failure probabilities but
that their reliability can be protected through extra investments. In RFLPFP, each customer
should be assigned to a primary facility, which can be either a reliable facility or an unreliable
facility. If the primary facility of a customer is unreliable, she should be assigned to a protected
reliable facility as well, which works as her backup facility. Therefore, the customer can obtain
emergency services from her backup facility when her primary facility fails. This protection
and backup mechanism ensures that all customers are served, even if some facilities fail. The
objective of RFLPFP is to determine the facility location and protection decisions as well as cus-
tomer assignments to minimize the fixed charges and expected service cost.

This work contributes to the current literature in three main aspects. First, the facility loca-
tion and protection problem is formulated as an integer programming model that considers
the site-specific failure probabilities. Compared to the literature on reliable facility location
problems with facility protection, this new integer programming model more precisely cap-
tures the impact of different failure probabilities when facilities are located at different places.
Second, a solution approach is developed by combining Lagrangian relaxation with some local
search strategies. The performance of the approach is compared with the commercial optimiza-
tion solver CPLEX by using random numerical examples with different sizes. Third, a practical
case study is presented, based on which the impact of facility disruption probabilities, protec-
tion cost and emergency supply cost on the location decisions is analyzed.

The rest of this paper is organized as follows: in Section 2, some relevant studies are
reviewed. In Section 3, the RFLPFP problem is described, and a new linear integer program-
ming model is proposed. In Section 4, based on the formulation, a solution method combining
Lagrangian relaxation and local search is presented. In Section 5, some computational experi-
ments are conducted on some benchmark datasets, and comparisons of the developed algo-
rithm and the CPLEX are provided. Additionally, a sensitivity analysis is conducted on a case
example, and some managerial insights are presented. Finally, in Section 6, we provide a con-
clusion and suggest several future research directions.

Literature review

The facility location problem is both a classical optimization problem and a fundamental prob-
lem in designing supply or service networks, and it has been extensively studied over the past
several decades. There is an abundant body of literature on both deterministic and stochastic
facility location problems [4-8].However, a majority of the literature addresses primarily
demand and cost uncertainties [8],and relatively fewer studies consider the influence of facility
disruptions. Most recently, both academics and practitioners have realized that facility disrup-
tions may be triggered by various factors and may occur frequently, and an increasing number
of studies are investigating ways to improve the reliability of facility networks by planning for
facility disruptions [9-11].

There are two main research streams on tackling facility disruptions. The first one seeks to
improve the availability of facilities by increasing redundancy and utilizing backups. These
models always explicitly consider the disruption probabilities when designing a facility net-
work. Snyder et al. [12] study the reliable P-median problem and the reliable uncapacitated
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fixed-charge location problem, which simultaneously optimize the operating cost under regular
circumstances and the expected cost when disruption occurs. By analyzing the trade-off curves
of both costs, the authors note that substantial improvements in reliability can always be
obtained with only slight increases in the regular cost. Cui et al. [13] extend Snyder’s work by
relaxing the assumption of uniform disruption probability and allow site-specific disruption
probabilities; they thus design a Lagrangian relaxation-based algorithm and a continuous
approximation algorithm to solve the problem. Berman et al. [14] study the reliable P-median
problem on a network and propose several exact and heuristic algorithms, ultimately revealing
that facilities become more centralized or even co-located as the failure probability increases.
Shen et al. [15] propose a scenario-based stochastic program and a nonlinear integer program
for the reliable facility location problem with heterogeneous failure probabilities. They prove
that both models are equivalent and propose a constant-ratio approximation algorithm for the
uniform case. Li et al. [16] consider the correlated effect of disruptions and propose a continu-
ous approximation approach for the reliable facility location problem.

A common feature of the above papers is that they all utilize the multiple-level assignment
strategy to increase the reliability of a facility network; that is, each customer should be
assigned to a group of facilities that are ordered by levels. Once a customer’s nth-level facility is
disrupted, she will seek service from her (n + 1)th-level operational facility, and so on. Ulti-
mately, a customer is served by an operational facility, or her demand is abandoned if all of her
assigned facilities fail; in the latter case, a penalty is charged. Though this multi-level backup
mechanism can improve the availability of facilities, it also increases the operational and mana-
gerial complexities because each customer must set up connections with multiple facilities and
vice versa. A more complicated situation emerges when prior information on the operational
states of facilities is unknown to a customer before reaching it; therefore, the customer may
have to visit several disrupted facilities before finding an operational one [17-19].

The second stream of related work focuses on improving facility availability by explicitly
protecting or fortifying some of the most critical facilities. In reality, various protection mea-
sures are available, such as installing structural reinforcements, adding built-in redundancies,
improving monitoring and security guarding, buying insurance and using outsourcing. Most
of the papers considering facility protection assume a context of deliberate attacks, i.e., where
an intelligent adversary intentionally tries to interdict the facility network to maximize the
losses and where, in contrast, a defender protects some of the most critical components to miti-
gate the effect of the attacks.

Scaparra et al. [20] study the r-interdiction median problem with fortification, which selects
q facilities to protect among the total p existing facilities such that the impact of the most dis-
ruptive attack on r(q + r < p) unprotected facilities is minimized. Aksen et al. [21] study the
protection resource-constrained facility protection problems, in which the number of protected
facilities is not predetermined but should be computed optimally while satisfying the protec-
tion resource constraints. Zhu et al. [22] further consider the probabilistic protection problem,
which assumes that the probability of being interdicted for a facility decreases as more protec-
tion resources are allocated to it. Liberatore et al. [23] consider the correlation between the
facilities, use a two-dimensional correlation matrix to model the interdependence between
facilities and present a location-attack-assignment tri-level model. A location-hardening prob-
lem with the objective of minimizing the maximum distance from a customer to its closest
operational facility after facility disruptions is studied in [24]. Almost all of these protection
models focus on the worst case, and no failure probability information about the facilities is
considered.

The objective of this paper is to combine the use of backup mechanisms with facility protec-
tion to hedge against random facility disruptions. A few studies investigating such types of
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reliable facility location problems are those by Lim et al. [25] and Li et al. [26, 27]. Lim et al.
[25] study a reliable facility location problem in which facility fortification options and single-
level backup strategies are adopted to improve the availability of the facilities. A linear integer
programming model is presented to formulate the problem, and the efficiency of the model is
illustrated through examples in which all of the facilities have the same failure probability;
however, there is a lack of deep analysis for solving a problem with site-specific probabilities. Li
etal. [26, 27] extend the work of Lim et al. by further considering the protection budget con-
straint, and they make the strong assumption that a backup facility is always available even
when it is not protected.

Different from Lim’s model, this paper proposes a more general linear integer programming
model that can address site-specific failure probabilities; therefore, it is more suitable for the ran-
dom disruptions that are triggered by natural or accidental events. Additionally, different from
Li’s models, in our model, only a protected reliable facility can work as a backup facility, and a
customer must be backed up to a protected facility if her primary facility is unreliable. This mech-
anism ensures that customers are always served. Compared to the multi-level assignment mecha-
nisms presented in the existing literature, this paper adopts a single-level backup mechanism to
hedge against facility disruptions, as performed in [25-27], which makes the facility-customer
relationship simpler and clearer, thereby reducing the operational complexity of the system. Fur-
thermore, the time latency for emergency services can be reduced because a backup facility is
always available, which is critical, especially when the customers’ needs are time-sensitive.

Mathematical formulation

RFLPFP is an extension of the classical facility location problem (FLP). It is assumed that facili-
ties may fail independently and with site-specific failure probabilities, and the probability infor-
mation can be estimated by analyzing the historical data. We also assume that the reliability of
facilities can be protected through extra investments. Possible protection measures include
built-in redundancies, structural reinforcements, preventive monitoring and safety guarding,
and outsourcing. The protected facilities never fail, but they are more expensive than their
unprotected counterparts are. Therefore, there are two types of facilities in the system: the
unreliable regular ones and the reliable protected ones. Each customer should be assigned to a
primary facility, which can be either a regular facility or a protected facility. If the primary facil-
ity of a customer is a regular one, she should be assigned to a protected facility as well, which
works as her backup facility. In this way, the customer can obtain emergency services from her
backup facility when her primary facility fails. This protection and backup mechanism ensures
that each customer is served with a probability of 1. RFLPFP aims to determine the facility
location and protection decisions as well as customer assignments to minimize the fixed char-
ges and expected service cost.

To formulate the problem as an integer programming model, we use the following notations:

Notations

I: set of customer points, indexed by i

J: set of potential facility sites, indexed by j

h;: demand of customer i

gj failure probability of the unreliable facility opened at site j

J?U: fixed charge of opening an unreliable facility at site j

S fixed charge of opening a reliable facility at site j, and % > £V
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d; : unit service cost when customer i is served by her primary facility opened at site j.

dg : unit service cost when customer i is served by her backup facility opened at site j. We assume
that dg > df; to reflect that the emergency cost when customer i is served by her backup

facility is not lower than the regular cost when customer i is served by her primary facility.
Decision variables
R _ . . 1. . . . R _ .
X" = lifareliable facility is opened at site j; X;* = 0 otherwise.

XjU = 1 if an unreliable facility is opened at site j; X].U = 1 otherwise.

Yiij = 1 if customer i is assigned to an unreliable facility k as her primary facility and to a reli-
able facility j as her backup facility; Yy; = 0 otherwise.

Z;; = 1if customer i is assigned to a reliable facility j as her primary facility; Z;; = 0 otherwise.

The linear integer programming model for the RFLPFP is as follows.

P min Y+ S S S hdiz ¢

vie] Vil viel Vje]

Z Z Z(hidi(l - qk)Yikj + hidquYikj) (1)

viel Vke] ki Vie]

s.t.
U R .
Xj +Xj <LVje]

DN vy +d z,=1Viel (3)

Vke] k#j Vel /S
R . .
Z,<XPVielVje] (4)
Y v <Xx\VielLvVie] (5)
Vke] k#j
S v, <X'VielVie] (6)
ke k#j

doxt>1 (7)

vie]
Xt XU e{0,1},% €] (8)
Z,e{0,1},VielLVje] )
Y, €{0,1},VieLVjk#je] (10)

The objective function Eq 1 is to minimize the overall costs, including the fixed cost of
opened unreliable and reliable facilities, the deterministic service cost for customers who are
served by a reliable facility, and the expected service cost for customers who are served by a
primary facility and a backup facility. Constraint 2 denote that either a reliable facility or an
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unreliable facility, but not both, can be opened at a single site. Constraint 3 state that a cus-
tomer is assigned either directly to a reliable primary facility or to an unreliable facility as her
primary facility and a protected facility as her backup facility. Constraint 4 state that if a cus-
tomer is assigned to only one layer facility, then that facility should be reliable. Constraints 5
and 6 indicate that if a customer is assigned to two layer facilities, then the primary facility
should be unreliable and the backup facility should be reliable. Constraint 7 states that at
least one reliable facility should be opened, which is a redundant constraint and can be
derived by combining constraints 3, 4 and 6, but we use it to tighten the bound when we
develop the Lagrangian relaxation algorithm. Constraints 8-10 are the integrality
constraints.

Solution approach based on Lagrangian Relaxation

When all of the facilities have a failure probability of 0, the RFLPFP is reduced to the classical
uncapacitated fixed-charge facility location problem, which is NP hard. Hence, RFLPFP is
also NP hard. The model contains 2|J| + |I| X |J| x |J| binary variables and |J| + |I| + 3]I| x |]]
+ 1 constraints. In this section, we present a Lagrangian relaxation-based approach to solve
the problem. The main ideas of the Lagrangian relaxation approach are the following: first,
the “hard” constraints of the original problem are relaxed, which leads to a relaxation prob-
lem that can be solved relatively easily and helps in obtaining a lower bound for the original
problem. Then, based on the solution to the relaxation problem, we can construct a feasible
solution to the original problem, which provides an upper bound. Usually, some search algo-
rithms can be used to improve the upper bound solution. The Lagrange multipliers are then
adjusted to reduce the amount of constraint violation, and we again obtain a new relaxation
problem that corresponds to the updated Lagrange multipliers. This procedure repeats until
some stopping conditions are met. The details of the algorithm are explained in the following
subsections.

We relax constraint 3 with the Lagrange multipliers 4, relax constraint 5 with Lagrange mul-
tipliers y and obtain the corresponding Lagrangian relaxation problem.

Z > UxU RxR PZ
wlhnz0)= min ) +D XY D hdiZ+

vje] viel Vje]
DD D hd; +d3qk Vig+ D 41— D> Yy= D> 7
Viel ke] k£ Vie] viel ke] k4 Vie] vie] (1 1)

DD (D Yy —X)

Viel Vje] Vke] k#j

s.£.2,4,6,7,8,9,10

Because Yy, ¢ (Xvj e /2vk e ik # j Hij Yijk = Zvi € 15k € J2vj € J,j = k Hik Yikj = 2vi € [2vk € Jk # j2
e J Wik Yi» the above formulation can be rewritten as

Zg(2yu>0) = an;&I}y X+ Z(f” Z’“u )X+ ZZ hdy — 2,)

vje] Viel viel VjeJ

+Z Z Z hd; (1 )+ hqu% A My — 4;) Yy + Zi (12)

Viel Vke] k#j Vil Viel

s.£.2,4,6,7,8,9,10
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For the sake of brevity, we rewrite the above formulation 12 as follows:

Zyg(hop>0) = min S X4 ax! + >N pz+

R xU
XX ZY Vel Viel Vje]

Z Z Z%k; ikj +Z’1 (13)

Viel Vke] k#j Vie] Viel

s.£.2,4,6,7,8,9,10

where o, :]?U = Dvierksp By h,dﬁ A and py; = hdi (1 —q,) + hzd,ﬂk + g — 4.
For the given Lagrange multipliers A and y, Eq 13 provides a lower bound for the original

problem 1. The Lagrangian dual problem involves finding the maximal lower bound of the

original problem 1 by calculating the optimal Lagrange multipliers A and g, which can be

expressed as follows:

LD(A,p > 0) = max min RXR + Z“ XV 4 ZZ/;U

>0 xR xU
Auz0XR XY Z, Y vje] Viel vje]
§ § E E 14
Viijik;‘ + jbi (14)
Viel Yke] k#j Vie] Viel

s.£.2,4,6,7,8,9,10

The dual problem 14 can be solved by using the sub-gradient algorithm [28, 29].

Solving the Lagrangian relaxation problem

Solving the relaxation problem, that is, solving the minimization problem 13 for the given
Lagrange multipliers A and , is a very critical step.

If we ignore constraint 7, which stipulates the restriction that at least one reliable facility is
opened, the Lagrangian relaxation problem Z; z(4, 4 > 0) is separable on j, and it can be
decomposed into |J| independent subproblems, which can be solved relatively easily. Specifi-
cally, the subproblem corresponding to site j while dropping Eq 7 can be expressed as shown
below:

(P) minf*X!+ X'+ BZ 4> D>y (15)

viel Vil Vke] ki

s.t.
X0+ < "
Z, < XLViel (17)
Y v, <X\Viel (18)

Vke] kA
X', X7 €{0,1} (19)
Z,€{0,1},Viel (20)
Y, €{0,1},Vie LVk#j€] (21)
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For each site j, there are three possible states, i.e., an unreliable facility is opened, a reliable
facility is opened, or no facility is opened. We first compute the objective value Eq 15 corre-
sponding to each state; then, the state with the minimum objective value will be selected, and
the values for the decision variables (X, X', Z;, Y;,;) will be set according to the selected state.
The details for these three cases are presented below.

Case 1: Assume that X = 1, which means that one unreliable facility is opened at j. We
denote the objective value for this case as V. Because when X" = 1, we have

=0,Z,=0,Viel,Y,; =0,Vi€ I,Vk 75] € J,itcan be eas1ly seen from expression 15
that V].U = o,

Case 2: Assume that X' = 1, which means that one reliable facility is built at j. This case is
more complicated than case 1. We denote the objective value for this case as V. When
Xf = 1, according to constraints 16-18, we can derive that XjU =0,Z; <l,VieLand Yy e,
k= Yiey < 1, Vi € I. We then obtain
VE=fR+ 3 e min (B;,0) + >, min (min, 7, 0), and the values for Z; and Yy are

set as follows:

L, if B, <0
Z, = Viel (22)

0, otherwise.

1, if v, <0 and k = argming, ;.74
l,g—{ v WIRAT i Tk € Tk £ (23)

0, otherwise.

Case 3: Assume that X;’ = X = 0, which means that no facility is built on site j. In this
case, we can easily derive that Z;; = 0, Vi € LY;; = 0, Vi € I, Vk # j € ]. Therefore, its contribu-
tion to the objective function is 0.

Next, still ignoring constraint 7, we determine the state for every site j as follows: If
min (V, V},0) = V7 <0, weset X = 1, and the values for variables (X}, Z;, Y;;) associated
with j are set as stated for case 1. If min (V/, Vi*,0) = V[ < 0, we set X = 1, and the values

for (X7, Z;, Yy;) are set as stated for case 2. If min (V/, V*,0) = 0, we set all of the variables

(X, X7, Z, Yy) as 0.

1]7
We now consider constraint 7. Let J* = {j|X{* = 1,j € J} denote the set of sites at which a

reliable facility is opened, let ¥ = {j|X!" = 1, € J} denote the set of sites at which an unreli-

able facility is opened, and let J = J\ {J¥,J"} denote the rest of the sites at which no facility has
been opened yet. If we have at least one reliable facility opened, i.e., |[J%| > 1, then the lower
bound has been achieved because the constraint 7 has been satisfied already. Otherwise, we
need to open a reliable facility at a site in either J Yor J°. We determine the best location for
opening a reliable facility as follows:

Let V]U = VU,] € JY and V]C V,R,] eJCe.If mm]e]UV]U < m1n]€]cV] we set
X! =1, where] = argmin,_;u V]; otherwise, we set X! = 1, where j* = argmin ;c VJF.

Once the location j* for opening the reliable facility is determined, we set the values for the

other decision variables (X, Z., Y;.) associated with j* according to case 2 as specified above.

By solving the Lagrangian relaxation problem, we obtain the lower bound:

Zig(hop = 0) = > (VPX) + VXD + YA, (24)

vje] viel
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Computation of the upper bound

After solving the Lagrangian relaxation problem, we obtain a feasible location configuration
(X7, X}"), which may not be the optimal location configuration for the original problem 1 but
can be used to construct a feasible solution that provides an upper bound for Eq 1. We let the
location decisions of the feasible solution be the same as that of the relaxation problem; thus,
the customer assignment of the feasible solution is the optimal assignment corresponding to
the location configuration, which is computed as described below.

Let J® be the set of opened reliable facilities, and let ] Y be the set of opened unreliable facili-
ties. First, we provide some properties:

Property 1: If customer i has a reliable facility j* as her backup facility, then j* = argmin, . d;.

Proof: Assume that i has an unreliable facility k € JV as her primary facility and another
reliable facility j° € J*,j° # j* as her backup facility; then, the expected service cost for i is
hdi(1—q,) + hdj.q,. Asj* = argmin,_.d;, we have hd; (1 — q,) + hdj.q, > hd;(1—
qi) + h,d;. q;; hence, it is better to have j* as her backup facility.

Property 2: Let j* = argmin . d;; if customer i has an unreliable facility k* as her primary
facility, then k* = argmin, v (d (1 — q,) + di..q,).

Proof: Assume i has another unreliable facility € JV, # k as her primary facility and that the
expected service cost for i is h,dj (1 — q,) + hd}.q,. Ask* = argmin v (di(1 — q,) + d}.q,), we
have h,d;(1 — q,) + hdj.q, > hd;. (1 — q,.) + h,d;.q,.; hence, it is better to have k" as her pri-
mary facility.

Property 3: Let j* = argminjejkdg, = argmin,_u(di (1 — q,) + df;*qk), and
o = argmin,_,d;. Then, if di. < (dj.(1 — g;.) + dj.q,.), customer i should be assigned to j°
directly; otherwise, she should be assigned to k* as her primary facility and j* as her backup
facility.

Proof: Customer i is assigned either directly to a reliable facility or to an unreliable facility as
her primary facility and a reliable facility as her backup facility. For the former case, the service
cost is h; dyj; for the latter case, the service cost is h,(dj. (1 — g;.) + d}.q;.). Obviously, the
assignment with the smaller service cost will be selected.

Based on the above properties, the procedure for determining the optimal assignment for
customer i is straightforward and can be performed in O(|]]) as follows:

First, we compute j° = argmin,_dy, j* = argmin,_xd;, and
k= argmin v (di(l —q) + d;%c)-

Then, if . <dj.(1 — gq,.) + d;.q,., we set

1, if j=j%

= ;and Y, = 0,Vk,Vj € ]. 25
! { 0, otherwise. b / 29)

Otherwise, we set

1, if k=k" and j =5
iki —

,and Z, = 0,Vj € ]. 26
0, otherwise. ! / (26)

The objective value corresponding to this feasible solution is

Z(J;UX;U +ijX;R) + Z min (hfdf;w hidf;* (1- Qk*) + hidg*%*)v (27)

vie] viel

which is an upper bound for the original problem.
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Local search to improve the upper bound solution

As is commonly used in Lagrangian relaxation-based algorithms, a local search procedure is
designed to improve the upper bound solution, which is demonstrated to be both effective and
efficient based on the computational experiments.

The local search is based on the switching states of the sites. Specifically, each site has only
three possible states as stated above: no facility opened, denoted as 0; one unreliable facility
opened, denoted as 1; or one reliable facility opened, denoted as 2. Hence, for each site, there
are two possible moves, i.e., switching from the current state to one of the two other states. It
should be noted that when a site that has a reliable facility opened switches its state, i.e., 2—0
or 2—1, it should be guaranteed that at least one reliable facility remains opened in the system.
For each move, the customer assignment and objective value corresponding to the new location
configuration can be computed by using the method stated above. An example of the local
moves is depicted in Fig 1, where the left graph shows the initial location and assignment con-
figurations, the middle one shows the configurations when site 2 moves from state 1 to state 2,
and the right graph shows the configurations when site 2 moves from state 1 to state 0.

We use a steepest descent strategy to choose the moves. For each inner loop, the move with
the highest cost savings will be selected, and this process will be repeated until no cost savings
can be obtained from any moves of any site. The pseudocode for the local search procedure is
presented as “Algorithm 1”:

Algorithm1 The local search procedure
upperBound «+ objective value of the upper bound solution
while true do
forall j€ Jdo
if jistheonlysitewithareliable facility opened then
continue;
else
compute the objective value corresponding tomovel andmove?2 for 7,
denoted as costMovelJand costMove2dJ, respectively;
upperBound « min (upperBound, costMoveldJ, costMove2J) ;
endif
end for
if upperBound is updated then
select themove that leads to upperBound, i.e., update the locationdeci-
sions and assignment decisions according to that move;
else
break;
endif
endwhile

Because each site has at most two possible moves and computing the objective value for
each move requires O(|1||]]) effort, the time complexity of the internal loop of “Algorithm 1” is
O(|I|J]). To reduce the overall computational time, we only run the local search when the
minimal upper bound obtained thus far is updated. This strategy is shown to be very efficient
in the computational experiments.

Sub-gradient algorithm
As stated above, the Lagrangian dual problem

(LD) max Z1(2s 1)
A,u>0 (28)
5..2,4,6,7,8,9,10
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can be solved using the sub-gradient algorithm, which improves the lower bound by iteratively
adjusting the Lagrange multipliers A and y. During this process, the upper bound solution can
be also improved. This process repeats until some stopping criteria are met. The whole proce-
dure for the sub-gradient algorithm is explained below:

Step 1: Generate an initial upper bound solution and initialize some parameters.

Because a location configuration with at least one reliable facility opened automatically leads to
a feasible solution, we greedily select the site j* = argmin, > ", h,d; to open a reliable facility and
assign all customers to j* directly. Then, we use the local search procedure to improve this solution
and obtain an initial upper bound UB. UB is also used to denote the best upper bound found thus
far. We initialize the iteration counter iterNum = 0, the Lagrange multipliers 1" = 0, Vi € I,
yij) = 0,Vi € 1,Vj € ], and the direction vectors df’(o) = dﬁjm) =0,Viel,Vje].

Step 2: Compute the lower bound solution and update the upper bound solution at the nth
iteration.

Specifically, we can obtain a lower bound solution (XY, X*, Y, Z) by solving the Lagrangian
relaxation problem Z; x(A"™, u™) at the nth iteration, denoting its value as LB™. Based on the
lower bound solution, we construct a feasible solution as stated above. If the value of the feasi-
ble solution is smaller than UB, we use the local search procedure to improve it and update UB
accordingly.

Step 3: Update the Lagrange multipliers.

First, we compute the move directions for the Lagrange multipliers A and y at the nth itera-

tion, denoted as d’" and df}(”), respectively. They are computed as shown below:

W =(1= > > V=) Z)+C.d" (29)

Vke] k#j Vil vijel]
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ke ki

where Cis a Crowder damping constant [30].We set C = 0.3 to the same value used in [25].
Then, we compute the step size £ for the Lagrange multipliers as shown below:

UB — LB™
£ = 0" (31)

A(n)\2 (n)\2
D ( @)+ D e e (A5 )
where 8 is a smoothing parameter, which is initialized to 2 and halved if no improvement for
the lower bound can be obtained in the consecutive 200 iterations. The denominator

S (@) + Zwelzvjel(d;(”)f denotes the norm of the move directions. Finally, we update

1 (n+1
i

) and p{

i atthe nth iteration by using the step size £ and

the Lagrange multipliers

move directions (d/", dfjf(")) as follows:

2D = max {0, A" + ¢ . g/} (32)

w Y = max {0, @ + ¢ - di"} (33)

Step 4: The algorithm stops if one of the following stop conditions is satisfied, and we hope-
fully obtain an optimal or nearly optimal solution. Otherwise, we increase iterNum by 1 and
repeat step 2.

1. The gap between the upper bound and the lower bound is less than a predefined constant,

ie., % < e. In this paper, we set € = 0.0001.

2. iterNum reaches the maximal iteration number N. In this paper, we set N = 3000.

3. The stepsize 8 is smaller than a predefined limit 6. In this paper, we set 6 = 0.0001.

Computational Experiments

We conducted a series of computational experiments to test the algorithm’s performance and
gain some managerial insights from the model.

Algorithm performance

To test the performance of the proposed Lagrangian relaxation algorithm and the effectiveness
of the local search procedure, we compared the Lagrangian relaxation algorithm without local
search (abbreviated as LR) and the Lagrangian relaxation algorithm with local search (abbrevi-
ated as LR+LS) with the commercial optimization solver CPLEX, version 12.6. All of the codes
were written using C++, and CPLEX was invoked using Concert Technology. All experiments
were run on the same SONY laptop with a Windows 7 64-bit operating system, an Intel Core
i5 2.5 GHz CPU and 6.0 GB of physical RAM.

We tested the algorithms on four datasets that are commonly used in the reliable facility loca-
tion literature: (1) a 49-node dataset that consists of 49 nodes representing the 48 state capitals
of the continental United States plus Washington, D.C.; (2) an 88-node dataset that consists of
the 49 cities in set (1) plus the 50 largest cities in the United States, minus duplicates; (3) a
150-node dataset that consists of the 150 largest cities in the United States; and (4) a 263-node
dataset that consists of the 263 largest cities in the contiguous 48 states in the United States.

The fixed cost of the unreliable facility at site j is set as f = 500, 000 + 1.7h,, which con-

sists of a fixed cost and a variable cost proportional to the population at the node. The fixed
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cost of the reliable facility at site j is set as f* = £ + 5,000, 000g;. For each node pair i and j,
we compute their great circle distance d;; according to their longitudes and latitudes and set
d; = 0.02d,;. To reflect the fact that the emergency supply from a backup node is always more
expensive than the regular supply, we set d = 1.25d;. To sufficiently test the performance of
our approach for solving problems with site-specific probability, we randomly generate the fail-
ure probability g; in interval [0, 0.05] using the uniform distribution.

Let UB(X) and LB(X) denote the minimal upper bound and maximal lower bound for algo-
rithm X, respectively. Here, X refers to both LR and LR+LS. We use the performance gap and
optimality gap to measure the performances of the algorithms, and they are defined as follows:

UB(X) — UB(CPLEX)
UB(X)

Performance Gap = % 100 (34)

UB(X) — LB(X)

B 100 (35)

Optimality Gap =

For each data set, we randomly generate 20 instances with g € U(0, 0.05). All of the data are
available at S1 Dataset. We record the minimal, maximal, average value and standard deviation
for the performance gap and optimality gap as well as the CPU time for each algorithm. The
CPLEX is invoked with all of the default settings, and only the pure CPU time for the solver is
recorded. The results are shown in Table 1.

From Table 1, we can see that LR+LS performs very well for all four datasets and that it per-
forms better than pure LR does with respect to both the performance gap and optimality gap.
Additionally, both LR+LS and LR are far more efficient than CPLEX.

For the 49-node dataset, the LR+LS produces the same results as CPLEX, with a perfor-
mance gap of 0. The LR also works well for this dataset with an average performance gap of
0.01%. Both algorithms have small optimality gaps, with average values of 0.05% and 0.04%,
respectively. These values indicate that the both algorithms are very effective for small-sized
problems.

Table 1. Algorithm performances for the four datasets.

Data set Performance Gap (%) Optimality Gap (%) Computational time (seconds)
LR LR+LS LR LR+LS LR LR+LS CPLEX
49 nodes Min. 0.00 0.00 0.01 0.01 <0.01 <0.01 37
Max. 0.03 0.00 0.10 0.09 5 5 80
Avg. 0.01 0.00 0.05 0.04 3.95 4.05 47.55
Std. 0.01 0.00 0.03 0.02 1.70 1.61 9.73
88 nodes Min. 0.00 0.00 0.07 0.09 32 32 340
Max. 0.37 0.13 0.84 0.80 36 36 429
Avg. 0.12 0.03 0.52 0.46 33.30 33.60 358.90
Std. 0.12 0.04 0.26 0.21 1.08 1.05 23.17
150 nodes Min. 0.00 0.00 0.15 0.36 271 273 1375
Max. 0.58 0.24 1.15 1.05 292 301 4720
Avg. 0.23 0.08 0.72 0.70 286.40 289.00 2974.10
Std. 0.17 0.09 0.26 0.19 6.75 7.53 692.17
263 nodes Min. - - 4.12 0.33 1896 1898 -
Max. - - 14.24 1.13 1947 2045 -
Avg. - - 9.08 0.78 1908.45 1941.75 -
Std. - - 2.34 0.22 15.43 44.76 -

doi:10.1371/journal.pone.0161532.t001
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For the 88-node dataset, LR+LS can still produce almost the same solutions as CPLEX; its
worst performance gap is 0.13%, its average performance gap is only 0.03%, and the standard
deviation is 0.04%. The pure LR obviously performs worse than LR+LS for this dataset, and its
average performance gap is 0.12%.

For the 150-node dataset, the performance of pure LR deteriorates greatly, with the average
performance gap increasing to 0.23%. LR+LS can still produce high-quality solutions, with an
average performance gap of only 0.08% and a standard deviation of 0.09%, which illustrates
that LR+LS works effectively for this dataset and obviously dominates pure LR. The optimality
gaps of both algorithms increase, and LR+LS is slightly better than LR, with an average value of
0.7% compared to 0.72%.

CPLEX fails to solve the 263-node dataset due to insufficient memory; therefore, only the
optimality gaps are recorded for the two algorithms for this dataset. The differences between
the optimality gaps obtained for each of the algorithms are large for this dataset. More specifi-
cally, the average optimality gap of LR is 9.08%, whereas that of LR+LS is only 0.78%, which
again illustrates the effectiveness of a local search for reducing the optimality gap. Because the
performance gap seems to increase more slowly than the optimality gap, we can expect that LR
+LS produces nearly optimal solutions for this large-sized dataset. To reduce the optimality
gap, the Lagrangian relaxation algorithm can be embedded into a branch-and-bound frame-
work, but it may require a longer computational time to produce an optimal or nearly optimal
solution.

Considering the computational efficiency, it is easily seen that both LR and LR+LS are
much more efficient than CPLEX. For all three of the datasets that can be solved using CPELX,
the algorithms require less than 10% of the computational time required by CPLEX, illustrating
that they are more than one order of magnitude faster than CPLEX. Moreover, the standard
deviations of the computational time of the algorithms are much lower than those of CPLEX,
especially for the 88- and 150-node datasets, which indicates that they are much more stable
than CPLEX. We also observe from our experiments that the upper bound solution converges
very quickly, taking far fewer than 3000 iterations to converge to the final solution, but the
lower bound converges much more slowly; thus, the iteration limit is set to 3000 to increase the
lower bound as far as possible. The computational time can be further reduced by setting the
iteration limit to be a smaller number.

Case study and managerial analysis

To analyze the model and obtain some managerial insights, we use the practical example of
Hunan province to discuss the properties of the model. The case study contains the 100 main
cities in Hunan province, as shown in Fig 2, which is located in the central south of China with
an area of 211,800 kmm” and a population of 71,193,400. Demand 4; is set as the population in
the city according to the 2010 census data, divided by 100. The fixed cost of unreliable facilities
is setas £ = 500,000 + 2.5h;, and the fixed cost of reliable facilities is set as f* = f +
5,000, 000g; to capture the fact that protecting a facility with a higher failure risk is more

expensive. Again, for each node pair i and j, we compute their great circle distance d;; according
to their latitudes and longitudes, and we let d; = d,, dj = 1.25d;. Data for this case example
are available at S1 Dataset

The aim of these experiments is to analyze the impact of changes in different parameters on
the optimal solution and different terms of cost. Three kinds of parameters are discussed in the
following sections.

Impact of the facility failure probability. Because the failure probability g; is not easy to

estimate precisely and is intrinsically uncertain, we attempt to understand how fluctuations in
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Fig 2. Demand points of the case example.
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this parameter impact the optimal locations and different terms of cost. Here, we assume all g;
= q and let g fluctuate in the interval [0.01, 0.2]. We record different terms of cost and the num-
ber of opened facilities according to different g, which are presented in Figs 3 and 4.

As shown in Fig 3, the objective value seems to increase monotonously as g increases, and a
similar trend can be observed from the curve of the expected service cost. This is not difficult to
understand: as g increases, the unreliable facilities fail more frequently, and their customers
must be rerouted to more expensive backup facilities more often, resulting in higher emergency
service costs.

It is interesting to see that the fixed cost is insensitive to q because the number of opened
unreliable facilities drops as g increases, while the number of reliable facilities remains steady.
More specifically, as shown in Fig 4, when g < 0.04, 15 unreliable facilities are opened, and
when g > 0.12, only 11 unreliable facilities are opened. The reason for this is obvious: though
an unreliable facility is much cheaper than a reliable one, its failure may trigger additional
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emergency service costs due to customer rerouting. As g increases, the rerouting cost increases
as well; thus, the number of unreliable facilities should be decreased.

At the same time, the number of opened reliable facilities remains fixed as g increases
because the protection is expensive; thus, only a few of the most important cities can be pro-
tected. Specifically, when q changes from 0.01 to 0.2, only 7 of the 100 nodes appear to be
among the cities that opened a reliable facility once, and their frequencies are shown in Fig 5.
By carefully checking these nodes, we find that the optimal solution prefers to protect the larg-
est cities or their satellite cities and transportation hubs. For example, node 0, which appears to
be protected in all 20 cases, represents Changsha, the capital city of Hunan province, also the
most populous city. Node 20 represents Changde, which is the largest city in western Hunan.
Node 27 represents Xinshao, which is located approximately in the geographical center of
Hunan and is an important transportation hub.

Table 2 shows the details of the opened facilities for different g, from which we can see that
the optimal locations are similar or even the same as the others when g fluctuates slightly,
which indicates that the optimal solution is robust to minor fluctuations in g. Therefore,
although the facility failure probability is not easy to estimate precisely, the optimal solutions
seem insensitive to minor fluctuations in the facility failure probability.

In summary, when making location and protection decisions, the decision makers should
account for the facility failure probability, demand and geographical position. Generally, when
the failure probability is high, managers should open fewer unreliable facilities and open more
reliable facilities to reduce the rerouting cost, and vice versa. At the same time, it seems better
to centralize the protection of a few large cities or transportation hubs because these cities
appear in the optimal solutions most frequently. Finally, the fixed cost seems insensitive to the
facility failure probability; thus, even when the budget for fixed charges is limited, decision
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Table 2. The sites with facilities opened corresponding to different q.

q
0.01-0.02
0.03-0.04
0.05-0.08
0.09-0.11
0.12-0.13
0.14-0.17
0.18-0.2

sites with unreliable facilities opened

sites with reliable facilities opened

8,13,24,32,46,50,53,55,57,65,68,83,89,95,97 0,20,27,39
8,13,24,32,46,50,53,55,57,65,68,83,89,95,97 0,20,23,39
8,13,24,32,50,55,57,65,68,83,89,95,97 0,20,23,42
8,13,24,32,50,55,57,65,68,83,95,97 0,20,27,42
8,13,24,32,50,55,65,68,83,95,97 0,20,27,42
13,20,24,32,50,55,65,68,83,95,97 0,15,27,42
13,20,24,32,50,55,65,68,83,95,97 0,15,27,39,

doi:10.1371/journal.pone.0161532.t002

makers can still handle high disruption risks by adjusting the number of reliable and unreliable
facilities.

Impact of the protection cost. Because f* = £ + W - g, the protection cost is related not
only to the failure probability but also to the protection cost coefficient W, which represents
the cost for reducing the unit failure probability. The coefficient W is unrelated to the failure
probability, but it is related to some other factors, such as the technical factors. Therefore, it
may be relatively low under some circumstances but much higher under other circumstances.
In this section, we discuss how the fluctuations of W affect the location and protection
decisions.

We let W vary from 1,000,000 to 12,500,000 and then observe its impact on the location
decisions and the overall cost. At the same time, we set g; = 0.025 and g; = 0.125 to represent
the cases when the failure probability is low and high, respectively, and we let
f* = £7 +5,000,000q,. We record the number of opened facilities and different terms of cost
corresponding to different W for both cases, which are depicted in Figs 6 and 7.

As can be seen from Fig 6, the numbers of both reliable and unreliable facilities are affected
remarkably by W. As W increases, which means that protection becomes more expensive,
fewer reliable facilities are opened; at the same time, more unreliable facilities are opened. This
trend is especially obvious when W increases from 1,000,000 to 5,000,000. These observations
are in accordance with our intuition: when the protection price is high, we should open fewer
reliable facilities while opening more unreliable facilities, and vice versa.

Now, we observe the impact of W for different facility failure probabilities q. As can be seem
from Fig 6, the numbers of reliable facilities when g = 0.025 and when g = 0.125 are very close
in value. They are the same for the range of W, except when W =10,000,000. In contrast, the
number of unreliable facilities when g = 0.125 is much smaller than that when g = 0.025. This
indicates that the number of reliable facilities is mainly affected by W but that the number of
unreliable facilities is affected by both W and q.

As can be seen from Fig 7, both the overall cost and the service cost increase as W increases,
and this trend is more obvious when the failure probability is high. More specifically, when
q = 0.025, both the total cost and the service cost increase only slightly with W. For example,
when W increases from 1,000,000 to 12,500,000, the total cost increases by 6.07% and the
transportation cost increases by 0.23%. However, when g = 0.125, the objective value increases
by 28.73% and the transportation cost increases by 35.17%. Therefore, if the failure probability
is high, managers should try different ways of reducing the protection cost coefficient W
because doing so can significantly impact both the service cost and the total cost; otherwise,
they should not worry too much about a large W.

Compared to the service cost, the fixed cost seems much less sensitive to W, which holds
true when g = 0.025 and g = 0.125. More specifically, as W increases from 1,000,000 to
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12,500,000, i.e., it becomes 12.5 times larger, the fixed cost increases by only 14.32% when

q = 0.025 and increases by only 19.13% when g = 0.125. The insensitivity of the fixed cost to W
indicates that when the protection measures are expensive, decision makers can still obtain
low-fixed-cost solutions, which can be achieved by reducing the number of reliable facilities
opened and opening more unreliable facilities.

Impact of the emergency supply cost. The emergency supply cost coefficient d;/d; is the
ratio of the emergency supply cost to the regular cost for each unit demand, which reflects the
system’s capability to cope with facility disruptions. A lower value denotes a better reactive
emergency mechanism. The special case when d;}/d;; = 1 represents the ideal situation, namely,
the emergency cost is the same as the regular cost. However, this ideal situation may not be easy
to ensure in reality, and we always have d /d; > 1. In this section, we discuss the impact of the
emergency supply cost coefficient on the optimal solution and different terms of cost.

We let d;/d; increase from 1 to 2 to model the cases when the emergency supply becomes
increasmgly expensive, and we set g = 0.025 and g = 0.125 to represent the cases when the facil-
ity failure risk is low and high, respectively. The costs of different terms and the numbers of
opened facilities according to different dj /d; are presented in Figs 8 and 9.

Intuitively, one may think that the emergency supply cost coefficient affects the total cost
significantly. Because the higher d;}/d; is, the more expensive it is to obtain an emergency sup-
ply, especially when the facility failure probability is high, the emergency supply will be trig-
gered more frequently, which will result in higher emergency service costs. However, as shown
in Fig 8, the objective value increases rather slowly as d;//d;’ increases when both g = 0.025 and
q = 0.125. More specifically, when dj/d; becomes twice as large, the objective value increases
by only 1.51% when g = 0.025 and by only 8.87% when g = 0.125.
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Therefore, the overall cost is actually insensitive to d;/ /d, at least when g < 0.125. This
seems counterintuitive at first glance, but it can be explained easily. When d;/ /d increases, the
only increasing cost is the emergency service cost, which is both part of the total service cost
and a small part of the total cost. Even when dj/d;’ increases greatly, say to 2, and the facility
failure probability is relatively high, say 0.125, assuming that the locations are the same, the
increasing ratio of the emergency cost is still only 2 * 0.125 = 0.25, and the increasing ratio of
the total cost is much smaller than 0.25 as the emergency cost is only part of it. This property is
very useful because it reminds the decision makers that even when the emergency cost for each
unit demand is high, they can still obtain cost-effective solutions by setting the number of both
unreliable and reliable facilities wisely, as the objective value is actually insensitive to the emer-
gency cost.

Fig 9 presents the number of opened facilities corresponding to different d;/ /d;. It can be
easily seen that the number of unreliable facilities decreases and the number of reliable facilities
increases as d /d;; increases. This trend is more obvious when the facility failure probability is
high. Therefore, when the emergency supply cost is high, the decision makers should open
more reliable and fewer unreliable facilities to reduce the impact. By protecting more facilities,
the overall cost will not be affected too greatly when the emergency service cost increases. How-

ever, the decision makers should also consider the protection cost and thus make good trade-
offs.

Conclusions

This paper proposes an integer programming model for the reliable facility location problem
with facility protection, which allows for site-specific failure probabilities. The model uses both
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the proactive measure, i.e., protecting some of the facilities, and the reactive measure, i.e.,
obtaining an emergency supply from a backup facility when a customer’s primary facility fails.
This facility protection and single-level backup mechanism can increase facility availability
while reducing the operating complexities of facility networks.

An effective solution approach that combines Lagrangian relaxation and local search is
developed to solve the model. Using numerical examples with different sizes, i.e., networks
with 49, 88, 150 and 263 nodes, the performances of the proposed algorithms are compared
with those of CPLEX, and the computational results show that our approach works well and
consumes much less CPU time than CPLEX does for all of the examples.

Using a practical example from China, the influences of the facility disruption probabilities,
protection cost and emergency service cost are analyzed, and we find that the overall cost
increases as the facility failure probability and protection cost increase but is insensitive to the
emergency service cost. Decision makers should wisely determine the number of both reliable
and unreliable facilities to obtain a cost-effective solution.

In this work, all of the facilities are assumed to be uncapacitated, and a meaningful exten-
sion would be to consider the facility capacity constraints, which can make the problem reflect
more practical situations. Additionally, as stated above, the facility failure probabilities are not
easy to estimate precisely; thus, considering facility protection and backup assignment strate-
gies in other modeling frameworks, such as robust optimization, may be a promising future
direction. Finally, designing a facility network that is robust to both random disruptions and
deliberate attacks is also worthy of further study.

Supporting Information

S1 Dataset. The computational experiment dataset. Includes the 49,88,150 and 263 nodes
datasets, and each dataset contains 20 randomly generated instances. The case example data-
set. Includes the information on the Hunan case example.
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