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Abstract
Extensively spectral-responsive photocatalytic hydrogen production was achieved over g-

C3N4 photo-sensitized by Au nanoparticles. The photo-sensitization, which was achieved

by a facile photo-assisted reduction route, resulted in an extended spectral range of absorp-

tion from 460 to 640 nm. The photo-sensitized g-C3N4 (Au/g-C3N4) photocatalysts exhibit

significantly enhanced photocatalytic hydrogen evolution with a TOF value of 223 μmol g-1

h-1, which is a 130-fold improvement over g-C3N4. The hydrogen production result confirms

that Au nanoparticles are effective photo-sensitizers for the visible light-responsive sub-

strate g-C3N4. UV–vis diffuse reflection spectra (DRS), photoluminescence spectra (PL),

electron spin resonance (ESR), and electrochemical measurements were used to investi-

gate the transfer process of photogenerated electrons. The optimal Au/g-C3N4 photocata-

lyst displays the lowest charge transfer resistance of 18.45Ω cm-2 and a high electron

transfer efficiency, as determined by electrochemical impedance spectroscopy (EIS). The

photo-sensitized g-C3N4 shows a broad range of response to visible light (400–640 nm),

with significantly high incident photon-to-current efficiency (IPCE) values of 14.52%, 2.9%,

and 0.74% under monochromatic light irradiation of 400, 550, and 640 nm, respectively.

ESR characterization suggests that Au nanoparticles are able to absorb visible light of

wavelengths higher than 460 nm and to generate hot electrons due to the SPR effect.

Introduction
In the past few decades, the development of photoinduced procedures for hydrogen production
has been a cutting-edge research area due to the growing expectation for clean energy produc-
tion and the increasingly serious energy crisis. [1–4] Photocatalytic production of hydrogen,
employing semiconductor catalysts may be the most promising albeit challenging approach
because of its potential application in the direct production of clean energy by utilizing water
and inexhaustible solar energy. Various semiconductor photocatalysts, such as TiO2, ZnO, and
SrTiO3 have been widely studied for the photocatalytic production of hydrogen from water
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splitting. [5–9] These semiconductor photocatalysts have been so far demonstrated to be active
in water splitting, however most of them are responsive to UV irradiation only. The relatively
low quantum efficiency and extremely insufficient utilization of solar light restrict further
application of semiconductor catalysts. [10] To address these limitations, much effort has been
focused on the development of second-generation catalysts with a broader response to visible
light.

Recently, a novel polymer n-type semiconductor, layered C3N4 with a graphitic structure
(g-C3N4) has attracted much attention, showing suitable energy band gap (Eg = 2.7 eV) and
photocatalytic stability for hydrogen production. Compared with the most studied materials,
g-C3N4 combines the advantages of low cost, nontoxicity and visible light activity, and in this
regard, it should be a good candidate for photocatalytic solar conversion. However, pure g-
C3N4 can only absorb blue light up to 460 nm, [11] which limits the utilization of solar energy.
A variety of approaches have been used to modify g-C3N4 to extend the range of visible light
absorption, such as doping g-C3N4 with other elements, [12] sensitization by quantum dots,
[13] and coupling with other semiconductor photocatalysts. [14] Ge et al. [12] introduced
impurities into g-C3N4 by doping it with S and found that the region of visible light absorption
was extended from 460 to 500 nm. Dong et al. [15] actualized carbon self-doping of g-C3N4 via
calcinating of solvothermally treated melamine with absolute alcohol, which increased the visi-
ble-light absorption and decreased band gap of g-C3N4 from 2.72 to 2.65 eV. Ge et al. [13]
reported that sensitizing g-C3N4 with CdS quantum dots greatly improved its photocatalytic
activity for hydrogen evolution and caused a red shift; the visible light absorption region was
shifted to 580 nm. Despite these improvements, S-doped g-C3N4, C-doped, as well as g-C3N4

sensitized with CdS quantum dots showed an absorption edge at 500 or 580 nm, which is mis-
matched with the visible light region of approximately 580–640 nm. In addition, doping intro-
duces trap states and induces charge carrier recombination, and CdS is a toxic material which
is easily photo-corroded. [16] Therefore, it is urgent to develop materials that are secure and
efficient and that show excellent response to visible light; these properties are desirable to
extend the absorption spectrum to longer wavelengths, so that such materials can be utilized in
the photocatalytic evolution of hydrogen from water.

The modification of semiconductor nanoparticles by noble metal catalysts has been exten-
sively studied because it is one of the most promising methods to broaden the visible-light
response. [17, 18] Noble metals such as Au and Ag, which possess excellent absorption in the
visible light region, have been used as photocatalysts due to the surface plasmon resonance
(SPR) effect. [19–21] SPR refers to the collective oscillation of surface electrons, with an oscilla-
tion frequency that is dependent on the size, shape, and nanostructure of the metal. [22, 23]
Pawar et al. [24] reported that Au nanoparticles substantially increase the light absorption of g-
C3N4 from 460 to 700 nm, leading to enhanced photocatalytic activity. Chang et al. [25] veri-
fied that nanoparticles of the noble metal Pd deposited on the surface of g-C3N4 facilitated the
separation of photoinduced charge carriers and showed strong absorption in the visible light
region from 400 to 700 nm. Silva et al. [26] found that the use of Au nanoparticles as photo-
sensitizers on the surface of s increased hydrogen evolution under irradiation with monochro-
matic visible light (λ = 532 nm) in the presence of such Au/TiO2 catalysts. This wavelength is
above the TiO2 absorption edge and coincides approximately with the maximum of the Au-
SPR absorption band. Thus, it is reasonable to assume that Au nanoparticles can be used to
harvest visible light due to their SPR. On the other hand, the relatively low Fermi level of Au
nanoparticles leads to electron transfer from the semiconductor conduction band (CB) to the
Au nanoparticles, which should suppress the recombination of charge carriers. Considering
the advantages of Au nanoparticles, it is expected that the photocatalytic performances of semi-
conductor photocatalysts can be further improved by loading them with Au nanoparticles.
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Based on the above analysis, it is proposed that the modification of g-C3N4 by Au nanopar-
ticles can improve the electron–hole separation of g-C3N4 and extend the absorption region to
the visible light region. At the same time, g-C3N4, acting as a substrate can enhance the disper-
sion of Au nanoparticles. [27] The hybrid plasmonic structure developed here exhibits signifi-
cantly improved visible-light-driven activity for photocatalytic hydrogen evolution under
visible light illumination (400< λ< 640 nm). The enhancement of hydrogen production in
the presence of Au/g-C3N4 is discussed in this paper. The SPR effect of Au nanoparticles, lower
electron transfer resistance, high IPCE value, broader visible light response, and higher inten-
sity of trapped electrons, all lead to a superior photocatalytic activity; the mechanism of which
is discussed in this work.

Materials and Methods

Materials
Dicyandiamide (C2H4N4), acetone (CH3COCH2COCH3), chloroauric acid tetrahydrate
(AuCl3�HCl�4H2O), methanol (CH3OH), ethanol (C2H5OH), and sodium sulfate anhydrous
(Na2SO4) were purchased from Sinopharm Chemical Reagent Co., Ltd, China. All reagents
were analytical grade and used without further purification. Deionized water was used for all
experiments.

Preparation of photocatalysts
The fabrication procedure of g-C3N4 was based on previous work. [28] Typically, 10 g of
dicyandiamide, placed in a crucible with a cover under ambient pressure at room temperature,
was heated at a rate of 10°C min-1 to reach a temperature of 500°C and then calcined at this
temperature for 2 h. The product was heated further at a rate of 5°C min-1 to reach a tempera-
ture of 520°C and then calcined at this temperature for another 2 h. After naturally cooling to
room temperature, g-C3N4 was ground into a powder and collected through a 200 mesh sieve.
About 6 g of photocatalysts was made.

The photocatalyst Au/g-C3N4 with different amounts of Au nanoparticles was synthesized
by a facile, photo-assisted reduction method. The typical procedure was as follows: g-C3N4

(0.30 g) was dispersed in a methanol/water (1:4 v/v) solution with a total volume of 75 mL in a
double-layer photoreaction cell. A certain volume of AuCl3�HCl�4H2O solution (10 mg mL-1)
was then added to the cell as the gold precursor, and magnetic stirred for 2 h to mix homo-
geneously. The resulting suspension was irradiated under a 300 W Xe lamp with a wavelength
range of 200–400 nm for 3 h under continuous stirring. The final product was separated by fil-
tration, washed three times with distilled water, and dried in an oven at 60°C for 12 h. Follow-
ing this method, Au/g-C3N4 samples with different weight ratios of 0.2%, 0.5%, 1.0%, 2.0%,
and 5.0% were obtained and designated as S0.2, S0.5, S1, S2, and S5, respectively. The g-C3N4

sample was designated as S0.

Materials characterization
The crystal structure of the photocatalysts was analyzed by X-ray diffraction (XRD, XRD-6000,
Shimadzu, Japan) with Cu Kα radiation (λ = 0.1546 nm), at a scan rate of 10° min-1. The accel-
erating voltage and the applied current were 40 kV and 40 mA, respectively.

Transmission electron microscopy (TEM, TecnaiG2 F20S-TWIN, USA) and high-resolu-
tion transmission electron microscopy (HRTEM) at an accelerating voltage of 200 kV were
used to characterize the morphology and structure of the obtained products. The pretreatment
of samples were as follows: A certain amount sample was dispersed in an absolute ethyl alcohol
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solution followed by sonication for 20 min. After dispersed uniformly, the sample was drawn
by capillary tube to a cupper grid and air dried.

X-ray photoelectron spectroscopy (XPS) was performed on a Thermo Escalab 250 instru-
ment with a monochromatic Al Kα source (1486.71 eV). The binding energy scale was cali-
brated with respect to the C1s peak at 284.6 eV.

The surface areas of samples were determined by the Brunauer Emmett Teller (BET)
method using N2 adsorption–desorption isotherms at 77 K by a surface area analyzer (3H-
2000 PSII, Beishide Intrument, China). The samples were degassed 3 h before BET
measurements.

UV–vis diffuse reflection spectra (DRS) of the dry-pressed disk samples were obtained with
a UV–vis spectrometer (TU-1901, Pgeneral, China), using BaSO4 as a reference. The spectra
were recorded in the wavelength range from 230 to 850 nm.

Photoluminescence (PL) was measured at room temperature on a fluorescence spectropho-
tometer (Fluorolog-3-Tau, France) with an excitation wavelength of 325 nm. The widths of the
excitation and emission slits were 5.0 nm.

Electron spin resonance (ESR) spectra were recorded using a Jeol JES FA200 spectrometer
at a temperature of 90 K.

Quantitative elemental analyses of Au were carried out in an inductively coupled plasma-
atomic emission spectrometer (ICP-AES, Prodigy, Leeman, USA).

Electrochemical measurements
The electrochemical properties of all samples were measured using an electrochemical worksta-
tion (CH Instruments 650D, China) in a standard three-electrode setup with Pt mesh as the
counter electrode and Ag/AgCl as the reference electrode. The electrolyte was 120 mL of 0.1
mol L-1 Na2SO4 aqueous solution. Before measurement, the electrolyte was purged with pure
N2 for 30 min to remove dissolved oxygen. A high-pressure Xe lamp (300 W) equipped with a
VisREF (350–780 nm) and an UVIRCUT (400–780 nm) filter was used as the light source,
which provided visible light in the wavelength range of 400–780 nm. The working electrode
was constructed by screen-printing indium–tin oxide (ITO) glass with g-C3N4 and Au/g-C3N4

samples. The preparation procedure was as following: 1 g of photocatalysts was dissolved in
the mixture of 1 mL deionized water and 0.05 mL acetyl acetone. Then the slurry was screen-
printing in indium–tin oxide (ITO) glass electrode and the area of the photocatalyst printed
was kept on 1 cm2. Finally, the electrode was calcined at 300°C for 1 h as the working electrode.

The electrochemical impedance spectroscopy (EIS) data was obtained in the frequency
range from 100000 to 100 Hz at an amplitude of 10 mV in the dark, under open-circuit condi-
tions. Amperometric i-t curves were obtained using the same electrochemical device by alter-
nately turning the light on and off. The incident photon-to-current efficiency (IPCE), used to
investigate the photoresponsivity, was measured using the Xe lamp with specific wavelength fil-
ters to select the required wavelength of light.

Photocatalytic hydrogen production
The g-C3N4 and Au/g-C3N4 samples were tested for the production of hydrogen from water
under visible light irradiation (λ� 400 nm). Photocatalytic hydrogen production was carried
out in in a top-illuminated, jacketed quartz photoreactor. In the typical experiment, 0.05 g of
photocatalysts was dispersed in methanol/water (3:7 v:v) solution as a sacrificial agent for
hydrogen production. The concentration of photocatalysts was 1 g L-1. The solution was con-
tinuously stirred with a magnetic stirrer. Before measurement, argon was purged through the
suspension for 30 min to remove oxygen. The reaction system was irradiated using a 300 W Xe
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lamp equipped with a VisREF (350–780 nm) and an UVIRCUT (400–780 nm) filter. The
amount of hydrogen produced was determined by gas chromatography (Fuli 9790, China),
using a thermal conductivity detector (TCD).

Results and Discussion

X-ray diffraction
The crystal structures and the possible phase changes of the samples are examined by XRD. Fig
1 shows the XRD patterns of S0, S0.2, S0.5, S1, S2, and S5 samples. All the samples present similar
profiles. S0 displays two pronounced diffraction peaks corresponding to the (100) and (002)
planes of g-C3N4, at 2θ of approximately 13.04° and 27.34°, respectively. The diffraction peak
at 2θ of approximately 13.04° can be ascribed to the characteristic inter-layer structural pack-
ing. And the diffraction peak at 2θ of 27.34° is attributed to the interlinear stacking peaks of the

Fig 1. XRD patterns of S0, S0.2, S0.5, S1, S2, and S5 samples.

doi:10.1371/journal.pone.0161397.g001
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aromatic systems, respectively. [29, 30] This confirms that g-C3N4 was successfully synthesized
by thermal depolymerization method. The two diffraction peaks can also be clearly observed in
the Au/g-C3N4 samples with different Au loading amounts. After the deposition of Au nano-
particles, new diffraction peaks are observed at 38.16°, 44.54°, 64.84°, and 77.52°. These are,
respectively, the typical peaks for the (111), (200), (220), and (311) planes of Au (JCPDS: 04–
0784) nanoparticles, indicating their deposition on the g-C3N4 surface. The intensity of the
(111) peak is much stronger than those of other peaks, suggesting that Au (111) plane is the
predominant crystal facet in the synthesized Au nanoparticles. In the S0.2, S0.5, S1, S2, and S5
samples, the characteristic peaks of Au become stronger as the Au-content is increased. When
the content of Au nanoparticles is 0.2 wt % and 0.5 wt %, the diffraction peaks related to Au are
negligible. This can be attributed to the low weight-loading of Au nanoparticles on the surface
of g-C3N4.

Transmission electronic microscopy
TEM and HRTEM are used to investigate the morphology and microstructure of the samples.
As shown in Fig 2A, a typical aggregated morphology with a large size and lamellar structure
can be observed for S0. Moreover, there are many mesopores existing in those lamellar

Fig 2. TEM images of S0 (a), S1 (b, c), and HRTEM of the S1 sample.

doi:10.1371/journal.pone.0161397.g002
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structures due to the different size of each layer of g-C3N4. Fig 2B and 2C show a typical TEM
image of the S1 sample, which presents the best photocatalytic performance for hydrogen pro-
duction. It is evident that some of black-colored dots with an average size of approximately 5
nm, corresponding to Au nanoparticles, are distributed on the g-C3N4 surface. The Au nano-
particles contact with g-C3N4 closely, which suggests Au nanoparticles are successfully loaded
on the surface of g-C3N4. Fig 2D is a HRTEM image of the S1 sample. The lattice spacing is
0.236 nm, which corresponds to the Au (111) plane.

X-ray photoelectron spectroscopy
XPS measurement is carried out to obtain the information on oxidation state and surface
chemical composition of the samples. Fig 3A shows the full XPS spectra of the S0 and S1 sam-
ples. The XPS data for S0 is observed with sharp photoelectron peaks, confirms the presence of
C and N. Additionally, a small amount of O is also observed, which may be due to surface
absorption and oxidation. [21] For the S1 sample, besides the expected peaks of the C, N, and
O elements, the XPS survey spectrum clearly reveals the presence of Au nanoparticles, suggest-
ing that Au nanoparticles are successfully loaded on the surface of g-C3N4. No peaks for other
elements are found, indicating that the S1 sample is primarily composed of gold, carbon, and
nitrogen elements. This is consistent with the results of XRD and TEM. The two peaks centered
at 83.2 and 86.9 eV in Fig 3B correspond to Au 4f7/2 and 4f5/2, [31, 32] respectively, suggesting
that the Au nanoparticles exist in their metallic state. According to the XPS handbook and pre-
vious reports, [31] the binding energy values of 4f7/2 and 4f5/2 for metallic Au are centered at
84.0 and 87.7 eV, respectively. The shift of the Au 4f peaks of the S1 sample toward lower bind-
ing energies indicates strong interactions between Au particles and the g-C3N4 substrate. [31]
Fig 3C displays the high-resolution XPS spectra of C1s. Two peaks can be distinguished at
284.6 and 287.6 eV. The major peak at 284.6 eV is exclusively assigned to C–C or adventitious
carbon. [33, 34] The peak at 287.6 eV is as assigned to the C–(N)3 groups of g-C3N4. [35] The
N1s high-resolution spectrum in Fig 3D shows an asymmetrical feature, indicating the coexis-
tence of a number of distinguishable nitrogen environments; fitting with the three observed
binding energies of 398.0, 398.8, and 400.4 eV, respectively. The three peaks are attributed to
C–N = C, N–(C)3, and N–H. [36–38]

Specific surface area analysis
The microstructural characteristics of the photocatalysts are conducted via full nitrogen
absorption/desorption isotherms of the S0 and S1 samples, as shown in Fig 4. The curves of the
products reveal that the two samples possess type III absorption/desorption isotherms, [39]
which is caused by the weak adsorbent-adsorbent interaction and the existence of the nano-
structures in the sample. Table 1 records the corresponding textural properties. The Brunauer-
Emmett-Teller (BET) specific surface areas of the S0 and S1 samples are calculated to be 6.29
and 19.11 m2 g-1, respectively, suggesting that an optimal amount of Au nanoparticles could
significantly increase the surface area of the final product. Too much Au nanoparticles aggre-
gate on the surface of g-C3N4 and decrease the surface area of the photocatalysts. The different
Au content in the samples could be responsible for the slightly different surface areas. There-
fore, moderate content of Au nanoparticles plays an important role in the control over mor-
phology of the samples.

UV–vis diffuse reflection spectroscopy
Optical property is an important factor affecting the photocatalytic activity of the catalyst. Fig 5
exhibits the UV–vis DRS of S0, S0.2, S0.5, S1, S2, and S5. It is clear that the S0.2, S0.5, S1, S2, and S5
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samples exhibit excellent response to visible light at ~640 nm, which is beneficial for visible
light-induced production of hydrogen. According to the spectrum of S0, the maximum absorp-
tion wavelength is approximately 460 nm, which indicates that g-C3N4 is able to respond to vis-
ible light. The bandgap was calculated using the following equation: [40]

Eg ¼
1240

lg

ð1Þ

where Eg is the band gap energy (eV), λg is the crossing point between the extrapolated line tan-
gent to the shoulder of the absorption band and the x-axis (nm). According to the formula, the
bandgap of g-C3N4 is 2.7 eV and is in keeping with the previously reported value. [41]

Fig 3. Full XPS spectra of the S0 and S1 samples (a), high-resolution spectra of the Au 4f (b), C 1s (c), and N 1s (d) for S1 sample.

doi:10.1371/journal.pone.0161397.g003
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Additionally, the S0.2, S0.5, S1, S2, and S5 samples display a much broader absorption band com-
pared to the pristine g-C3N4, which extends throughout the whole visible light region of 400–
640 nm. A new absorption peak appears at approximately 550 nm in the visible light region,
and the absorbance of S0.2, S0.5, S1, S2, and S5 increases gradually as the Au-loading level is
increased from 0.2% to 5.0%. The new, broad peaks in the spectra of S0.2, S0.5, S1, S2, and S5 are

Fig 4. N2 adsorption-desorption isotherms of S0 and S1 samples.

doi:10.1371/journal.pone.0161397.g004

Table 1. Surface properties of different samples.

Samples Sbet (m
2 � g-1) daverage (nm) Vtotal (cm

3 � g-1) Au content (wt %)

S0 6.29 36.04 0.06 0.00

S5 9.72 27.37 0.07 4.74

S0.2 10.75 28.92 0.08 0.18

S2 12.22 34.81 0.10 1.86

S0.5 16.96 24.08 0.10 0.47

S1 19.11 23.19 0.11 0.93

doi:10.1371/journal.pone.0161397.t001
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attributed to the characteristic SPR absorption peak of metallic Au nanoparticles. The absor-
bance of single Au nanoparticles is displayed in Fig A in S1 File, which presents a high absor-
bance of near 100%. We use the optical absorbance of Au/SiO2 to instead of that of Au
nanoparticles, because SiO2 would not absorb light, which is displayed in Fig B in S1 File. The
SPR peak of Au is sensitive to the size, shape, and dispersity of the Au nanoparticles, of which
the latter is closely associated with the loading amount of Au nanoparticles. [22]

Photoluminescence
PL is an effective and commonly used method to investigate electron transfer in semiconduc-
tors. [42] The PL spectra of the S0, S0.2, S0.5, S1, S2, and S5 samples in the wavelength range of
350–600 nm, with the excitation light at 325 nm are shown in Fig 6. It can be seen that all the
samples have similar spectral shapes and they all show intense absorption in the visible light
range. The main peak at 460 nm is attributed to the emission corresponding to the band gap
transition of g-C3N4. When Au is loaded on the surface of g-C3N4, the PL intensity is

Fig 5. UV–vis DRS of S0, S0.2, S0.5, S1, S2, and S5.

doi:10.1371/journal.pone.0161397.g005
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decreased. In general, the lower the PL intensity, the lower the recombination rate of photo-
induced electron–hole pairs and the higher the photocatalytic activity of semiconductor photo-
catalysts. A higher loading content of Au results in the PL intensity being quenched to a higher
degree. When the amount of loaded Au is greater than 1 wt %, the intensity of PL continues to
decrease. The small decrease may result from the excessive loading of Au nanoparticles
decreasing the fluorescence rather than from the suppressed charge recombination, which is
confirmed by the reduced H2 evolution rates of S2 and S5. Au can form electron capture hydra-
zine on the surface of the catalyst as an effective cocatalyst, which prompted the photoinduced
charge migrate to cocatalyst and prevented the recombination of electrons and holes.

Amperometric i-t curves
To investigate the photoinduced behavior of the generated photocurrent response of samples,
the amperometric i-t curves obtained in the dark and under visible light irradiation, are shown
in Fig 7. In the dark, all the samples show a negligible current response. In contrast, upon illu-
mination, the photocurrent response is sharp increased and a steady-state current is obtained

Fig 6. PL spectra of the S0, S0.2, S0.5, S1, S2, and S5 samples.

doi:10.1371/journal.pone.0161397.g006
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after settling. The prompt increase in photocurrent response from light-off to light-on state is
mainly ascribed to the fast separation and transportation of the photogenerated electrons on
the surface of the working electrodes. The photocurrent returns to background value after turn-
ing off light. All of the samples show reproducible photocurrent generation in response to illu-
mination, and there is no obvious current drop after 600 s of testing. All tested samples with
Au loaded on the surface of g-C3N4 present higher photocurrent responses with respect to the
S0 sample, and the photocurrent density of the samples decreases in the order: S1 > S0.5> S2 >
S0.2> S5 > S0. It can be seen that the photocurrent of the S0.2, S0.5, S1, S2, and S5 samples
increases gradually as the content of Au is increased from 0.2 to 1.0 wt%, after which it begins
to decline with further increase in the content of Au. The lower photocurrent of the S2 and S5
samples with respect to S1 indicates that the increased aggregation of Au nanoparticles can
induce new recombination centers, thereby inhibiting further generation of electrons and
holes. [29] The current generated by the S1 sample is ca. 0.22 μA, whereas that of g-C3N4 is ca.

Fig 7. Photocurrent density of S0, S0.2, S0.5, S1, S2, and S5.

doi:10.1371/journal.pone.0161397.g007
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0.13 μA; the photocurrent density of the S1 sample is nearly twice as high as that of S0. The
loading of Au nanoparticles is beneficial for the improvement of photocatalytic activity. This is
explained by two reasons: (i) the formation of a Schottky barrier facilitating electron transfer
from g-C3N4 to Au, which accelerates the separation of photo-generated charge carriers, and
(ii) the SPR effect induced by plasmonic Au nanoparticles, which enhances the absorption of
visible light.

Electrochemical impedance spectroscopy
EIS is a powerful tool for characterizing charge transfer across interfaces. [43, 44] To gain
insight into the interfacial resistance of the samples, EIS measurements were carried out at
open-circuit voltages and in the dark. The Nyquist plots of all the samples are shown in Fig 8.
A semicircle is observed at the high-to-medium frequencies, and a straight, sloping line is
observed at low frequencies, as seen in the graph. The semicircle represents charge-transfer
resistance, whereas the straight sloping line is associated with diffusion resistance through the
bulk of the active material. [45] Obviously, the charge-transfer resistance of the S0.2, S0.5, S1, S2,
and S5 samples is smaller than that of S0, which may be attributed to the higher electronic con-
ductivity caused by the loading of Au nanoparticles. Based on the EIS data, an equivalent cir-
cuit (inset in Fig 8) can be fitted by the ZsimpWin 3.20d program with good accuracy. The
equivalent circuit is used to analyze the measured impedance data. As shown in the circuitry,
Rct and Cdl represent the charge transfer resistance and double layer capacitance, respectively;
and Zw stands for the Warburg impedance associated with the diffusion process. The fitting
values from this equivalent circuit are presented in Table 2. The Rct of all the samples decreases
in the order: S1 < S0.5 < S2 < S5 < S0.2 < S0. The S1 sample exhibits the smallest Rct value of
18.45 O � cm-2, much lower than that of g-C3N4, which means that charge-transfer resistance is
significantly reduced by Au-loading. The Cdl values display the opposite tendency as that of
Rct. The low Rct and high Cdl values of the S1 sample indicate high electron transfer efficiency
and photocatalytic activity, which is in accordance with i-t curves.

Incident photon-to-current conversion efficiency
To quantify the photoresponse of S0, S0.2, S0.5, S1, S2, and S5, IPCE measurements at 1.2 eV vs
Ag/AgCl as the reference electrode are presented in Fig 9. IPCE can be expressed as follows:
[46, 47]

IPCEð%Þ ¼ 1241� Ip � 100

l� φ
ð2Þ

where λ, φ, and Ip denote the wavelength of the incident light (nm), the illumination power
(mW cm-2), and the photocurrent density (mA cm-2) measured at the corresponding wave-
length, respectively.

All samples show a visible light IPCE value, and the IPCE is higher at shorter wavelengths.
The absorption threshold of g-C3N4 is approximately 460 nm, with an IPCE value of almost
zero, which varies correspondingly with the UV–vis DRS. Introduction of Au nanoparticles
into the g-C3N4 results in substantial enhancement of the IPCE in the wavelength range from
460 to 640 nm. The S1 sample displays significantly high IPCE values of 14.52%, 2.9%, and
0.74% under monochromatic light irradiation of 400, 550, and 640 nm, respectively. The IPCE
plots increase in the order: S0 < S5 < S0.2 < S2.0< S0.5 < S1, which is consistent with the
observed i-t curves and photocatalytic activity. The IPCE values gradually increase when the
content of Au nanoparticles is increased from 0.2% to 1.0%, and then decline as the content of
Au nanoparticles is further increased from 1.0% to 5.0%. This result indicates that the loaded
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Au nanoparticles initially improve the photoelectrical performance of the g-C3N4 sample,
while an excess of Au nanoparticles results in formation of agglomerates on the surface of g-
C3N4; these may act as recombination centers and thereby reduce the efficiency of charge sepa-
ration. In addition, the small hump in the region of 540–570 nm is caused primarily by the SPR

Fig 8. Nyquist plots of all the samples tested in the dark.

doi:10.1371/journal.pone.0161397.g008

Table 2. Model parameters of the photocatalysts based on EIS results.

Sample Rct (Ω � cm-2) Cdl × 108 (F � cm-2) Zw × 104 (S0.5 �Ω-1 � cm-2)

S0 21.88 ± 1.13 1.43 ± 0.17 6.69 ± 0.67

S0.2 21.60 ± 0.98 2.02 ± 0.18 8.34 ± 0.81

S5 20.06 ± 0.89 2.10 ± 0.18 8.29 ± 0.75

S2 19.38 ± 0.91 2.11 ± 0.20 7.81 ± 0.71

S0.5 19.35 ± 1.01 2.30 ± 0.22 7.61 ± 0.74

S1 18.45 ± 1.00 2.59 ± 0.31 5.75 ± 0.49

doi:10.1371/journal.pone.0161397.t002
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effect of Au nanoparticles, whose absorption peak is at*550 nm when deposited on the sur-
face of semiconductor photocatalysts. [48]

Electron spin resonance
ESR is a sensitive technique used to investigate the charge separation efficiency and the gen-
eration of photoactive, trapped CB electrons in samples, to further determine the influence
of Au-loading on the photogenerated carriers. The ESR experiments on S0 and S1 were car-
ried out in dark or under irradiation with visible light (λ > 465 nm) for 5 min at a tempera-
ture of 90 K. As depicted in Fig 10, a single Lorentzian line centered at a g-value of 2.0034 is
observed for S0, in the dark as well as under irradiation, establishing the semiconductor
structure of the sample. The Lorentzian line, according to the literature, originates from the
conduction electrons generated in the localized π states of g-C3N4. [49, 50] The existence of

Fig 9. IPCE plots for S0, S0.2, S0.5, S1, S2, and S5 at 1.2 eV vs Ag/AgCl in 0.1 M Na2SO4.

doi:10.1371/journal.pone.0161397.g009
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these conduction electrons is beneficial for photocatalytic reactions. In the dark, the loading
of Au nanoparticles results in the rise of the signal from trapped CB electrons. This suggests
that charge separation is much more efficient in this material. In addition, S1 also shows a
higher intensity of the CB electron signal under irradiation (λ > 465 nm). It must be noted
that the g-C3N4 support is not capable of absorbing light in this wavelength range. Thus, the
trapped electrons indicated by the higher-intensity signal may not from the CB of g-C3N4,
but from the Au nanoparticles. The Au nanoparticles are able to absorb visible light, consis-
tent with the results of UV–vis DRS.

Photocatalytic activity
The S0, S0.2, S0.5, S1, S2, and S5 samples exhibit stable photocatalytic activity for the production
of hydrogen from water under visible light irradiation (λ> 400 nm). Hydrogen evolution as a
function of time, during a 5 h testing period is shown in Fig 11. The measurements are carried
out in a quartz container filled with methanol/water (3:7 v/v) solution for the evolution of
hydrogen (methanol is used as the hole scavenger). The S0 sample shows low hydrogen produc-
tion of approximately 0.43 μmol continuously over 5 h. This is probably due to the rapid
recombination of electron−hole pairs generated through direct excitation of g-C3N4. Moreover,
there is short of applicable active sites on the surface of g-C3N4. When Au is loaded on the sur-
face of g-C3N4, a higher photocatalytic activity for hydrogen production is expected. The S1
sample displays an optimized TOF of 223 μmol h-1 g-1, which is nearly a 130-fold improvement
over g-C3N4. The Au can facilitate charge separation at the Au/g-C3N4 interface and promote
the transfer of photoexcited electrons from the g-C3N4 CB to the Au nanoparticles, inhibiting
the electron–hole pair recombination process. A noticeable decrease in the hydrogen produc-
tion rate is observed when an excess of Au nanoparticles is loaded (S2 and S5). This is mainly
because aggregates of Au nanoparticles can induce the formation of new recombination cen-
ters; additionally, an excess of Au nanoparticles will decrease the reaction interface involved in
the hydrogen production, which is in accordance with the BET results.

Fig 10. ESR spectra of the S0 and S1 samples in the dark and under visible light (λ > 465 nm).

doi:10.1371/journal.pone.0161397.g010
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Electron transfer mechanism
The rate of photocatalytic hydrogen production is approximately 130 times improved by 1 wt
% loading of Au nanoparticles on the surface of pure g-C3N4. The following mechanism of
photocatalytic hydrogen evolution from the reduction of water over Au/g-C3N4 under visible-
light irradiation is proposed, and the schematic diagram is presented in Fig 12. There are two
different mechanisms of electron transfer in Au/g-C3N4 for the reduction of water, depending
on the wavelength of the incident light.

Under irradiation by the visible light spectrum (400< λ< 460 nm), g-C3N4 is excited, and
CB electrons and valence band (VB) holes are generated. These electrons are quickly trans-
ferred to Au, due to its lower Fermi level (0.94 V vs NHE), which results in the formation of a
Schottky barrier at the interface between Au and g-C3N4. The Schottky barrier efficiently

Fig 11. Time courses of photocatalytic hydrogen evolution under visible light (λ > 400 nm) on all samples.

doi:10.1371/journal.pone.0161397.g011
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facilitates the separation of charge carriers. Holes left at the VB of g-C3N4 are quenched by the
sacrificial reactant, CH3OH. Water is reduced to hydrogen by the electrons at the Au surface.

Au nanoparticles can harvest visible light (460< λ< 640 nm) due to the SPR effect, and
thus extend the range of visible light absorption from 460 to 640 nm, which is confirmed by
UV-vis DRS and IPCE. Au nanoparticles absorb the resonant photons to generate “hot elec-
trons” [51, 52] and enrich the surface of g-C3N4. The “hot electrons”, together with electrons
on the CB of g-C3N4, reduce water to hydrogen.

Conclusions
In summary, enhanced hydrogen production was achieved using the photocatalyst Au/g-C3N4,
which is responsive to an extended range of wavelengths in the visible light region. Au/g-C3N4

is fabricated by a facile, photo-assisted reduction method. The g-C3N4 sample photo-sensitized
by Au nanoparticles exhibits a significantly enhanced hydrogen evolution TOF value of
223 μmol g-1 h-1, which is 130 times higher than that of g-C3N4. According to the XRD results,
the Au-loading affects neither the morphology nor the crystal structure of the g-C3N4 photoca-
talysts. XPS results confirm that the Au species loaded on the surface of g-C3N4 is metallic Au.
Au/g-C3N4 exhibits strong light absorption and an extended region of visible light absorption
from 460 to 640 nm, which is confirmed by UV–vis DRS and IPCE. The high photocatalytic
activity of Au/g-C3N4 is attributed to the following reasons. Firstly, the lower Femi level of Au
nanoparticles leads to electron transfer from the CB of g-C3N4 to the Au nanoparticles, which
suppresses the recombination of electron–hole pairs. In addition, higher visible light absorp-
tion due to the SPR effect in gold nanoparticles results in the production of a large number of
photogenerated electrons, which is confirmed by ESR. The Au/g-C3N4 composite is a promis-
ing photocatalyst which provides a new potential material for photocatalytic applications.

Fig 12. Photocatalytic mechanism of Au/g-C3N4-catalyzed hydrogen production under visible light (λ > 400 nm).

doi:10.1371/journal.pone.0161397.g012
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Supporting Information
S1 File. Methods and Figures. Fig A in S1 file. The UV–vis DRS of S0, S0.2, S0.5, S1, S2, S5, and
Au nanoparticles. (In order to measure the optical property of Au nanoparticles, we loaded Au
nanoparticles on the surface of SiO2. And the mass fraction of Au is about 5%. The absorbance
of SiO2 is nearly zero, so there is no effect on the absorbance measurement of Au nanoparti-
cles.) Fig B in S1 File. The UV–vis DRS of SiO2 and Au/SiO2. (It confirms that the optical
absorbance of SiO2 is nearly zero.)
(DOC)
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