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Abstract

In this study, we sequenced the complete mitochondrial genome (15,220 bp) of the citrus
spiny whitefly, Aleurocanthus spiniferus (Quaintance), a well-known pest from the super-
family Aleyrodidae. The A. spiniferus mitogenome contains 36 genes, including 13 protein-
coding genes (PCGs), 21 transfer RNAs (tRNA), two ribosomal RNAs (rRNA) and a large
non-coding region (control region, CR). Like most whiteflies, the A. spiniferus mitogenome
had a large degree of rearrangement due to translocation of the nad3-trnG-cox3 gene clus-
ter. The 13 PCGs initiated with ATN and generally terminated with TAA, although some
used TAG or T as stop codons; atp6 showed the highest evolutionary rate, whereas cox2
appeared to have the lowest rate. The A. spiniferus mitogenome had 21 tRNAs with a typi-
cal cloverleaf secondary structure composed of four arms. Modeling of the two rRNA genes
indicated that their secondary structure was similar to that of other insects. The CR of A. spi-
niferus was 920 bp and mapped between the nad3-trnG-cox3 and trnl-trnM gene clusters.
One potential stem-loop structure and five tandem repeats were identified in the CR. Phylo-
genetic relationships of 11 species from the Aleyrodidae were analyzed based on the
deduced amino acid sequences of the 13 PCGs and evolutionary characteristics were
explored. Species with more genetic rearrangements were generally more evolved within
the Aleyrodidae.

Introduction

Aleurocanthus spiniferus (Quaintance), the citrus (orange) spiny whitefly (Hemiptera: Aleyro-
didae), is an important pest of citrus (Citrus spp.; Rutaceae) and tea (Camelia sinensis (L.)
Kuntze; Ericales: Theaceae). A. spiniferus is indigenous to tropical Asia and was first reported
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in Japan [1]; thereafter, it spread to Africa, Australia, America, the Pacific Islands and Italy [2-
3] and became a highly destructive pest [4]. There are two main types of damage caused by A.
spiniferus; the first type is the direct damage caused when immature and adult whiteflies ingest
phloem sap, which leads to a weakened host plant and premature senescence. The second type
of damage is caused when the whiteflies excrete honeydew on leaf surfaces; this promotes the
growth of sooty mold, interferes with photosynthesis, and reduces plant quality [5]. In addi-
tion, numerous puparia of A. spiniferus may reside on the abaxial surface of infested leaves,
which provides a safe overwintering site for a variety of mite pests [6]. In addition to citrus and
tea, A. spiniferus infests many other economically important plants including rose, grape,
peach, pear, and guava [7]. It is important to mention that A. spiniferus is on the list of quaran-
tined species published by EPPO and was recently moved from the A1 to the A2 list [8]. In
recent years, mitogenome has become an informative molecular structure widely used in stud-
ies focusing on species identification, phylogeography, evolutionary biology, molecular evolu-
tion, phylogenetic inference, and population genetics [9-13]. Generally, animal mitogenomes
possess many unique characteristics, including maternal inheritance, lack of intermolecular
recombination, and faster evolutionary frequency than nuclear DNA [14-15]. Thao et al. [13]
sequenced the mitogenomes of six whitefly, one aphid, and one psyllid species and discovered
that four had rearrangements in the cox3-nad3 region as compared to the hypothesized model
insect mitogenome. Based on these rearrangements, they speculated that this region underwent
a transposition and at least four types of gene rearrangement had occurred in the evolution of
whiteflies. Although the genes contained in the insect mitogenome are highly conserved, rear-
rangements or even disappearance of these 37 genes often occur, and the position of tRNA
genes rearrange more frequently than the PCGs and rRNA genes in some species [16].

Currently, many aspects of A. spiniferus, including the biology, behavior, ecology, and man-
agement have been thoroughly investigated [17-22]. However, complete mitogenomic data for
A. spiniferus have been lacking; consequently, the phylogenetic position of this species is
unclear [23-24]. Furthermore, determination of the mitogenome of the citrus whitefly will
contribute to our understanding of whitefly mitogenome structures and phylogenetics in the
Hemiptera. In this study, we sequenced the complete mitogenome of A. spiniferus and pro-
vided a thorough description of its genome features. Finally, we discussed phylogenetic rela-
tionships and evolutionary traits among species of the Aleyrodidae based on the sequenced
mitogenomes.

Materials and Methods
Sample preparation and DNA extraction

Adult specimens of A. spiniferus were collected at West Lake (30°15'01.97"N, 120°09'44.91"E)
in September, 2012, Zhejiang Province, China. All studies were conducted on public lands; our
research activities were not banned by any organization or individual and did not involve
endangered or protected species. Samples were identified, preserved in 100% ethanol, and
stored at —20°C until DNA was extracted. Whole genomic DNA was extracted from individual
samples using DNAVzol (Bioteke, Beijing, China) and stored at —20°C until used for PCR.

PCR amplification, cloning and sequencing

The mitogenome of A. spiniferus was amplified with 15-20 overlapping PCR fragments. PCR
primers were designed using Primer Premier 5.0 software and were based on universal primers
of insect mitogenome [14] and 11 Sternorrhyncha mitogenome sequences that were available
in GenBank [13] (Table A in S1 File).
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Conditions for PCR amplification were as follows: initial denaturation for 5 min at 94°C, fol-
lowed by 35 cycles at 94°C (30 s each), annealing for 1 min at 45-60°C, elongation for 1-3 min
(depending on putative length of the fragments) at 72°C, and a final extension step of 10 min at
72°C. LA Taq polymerase (TaKaRa, Dalian, China) was used for PCR amplification, except for
fragments less than 1.2 kb, which were amplified with Taq polymerase (TaKaRa). All PCR reac-
tions were performed in an ABI thermal cycler (PE Applied Biosystems, San Francisco, CA,
USA). PCR products were separated by 1.0% agarose gel electrophoresis. Purified PCR products
were ligated into pGEM-T Easy Vector (Promega). Recombinant clones were sequenced in both
directions using the BigDye Terminator Sequencing Kit (Applied BioSystems) and the ABI
3730XL Genetic Analyzer (PE Applied Biosystems, San Francisco, CA, USA) with vector-spe-
cific and internal primers. All PCR fragments were sequenced after separation and purification.

Sequence, analysis and secondary structure prediction

Codencode Aligner (http://www.codoncode.com/aligner/) was used for sequence assembly and
annotation. Protein-coding (PCGs) and rRNA genes were identified by sequence alignment
[25] with published mitogenomes of other whiteflies. Both the base composition and codon
usage were further analyzed with MEGA v. 5.0 [26].

Most tRNA genes were identified by tRNAscan-SE Search Server v. 1.21 (http://lowelab.ucsc.
edu/tRNAscan-SE/) [27] using the default setting. The secondary structures of tRNA genes that
could not be found by tRNAscan-SE were identified by comparison with other Hemipteran spe-
cies. Secondary structures of small and large rRNA subunits were deduced based on models pre-
dicted for other species [28-31]. Strand asymmetry was calculated using the formulae: AT skew
= [A-T]/[A+T] and GC skew = [G—C]/[G+C] [32]. The software packages DnaSP v. 5.10 [33]
was used to calculate the synonymous substitution rate (Ks) and the nonsynonymous substitu-
tion rate (Ka). The tandem repeats within the putative control region were analyzed with the
Tandem Repeats Finder program (http://tandem.bu.edu/trt/trf.advanced.submit.html) [34].

Phylogenetic analysis

Ten complete Aleyrodidae mitogenomes were downloaded from GenBank to investigate phylo-
genetic relationships (Table A in S1 File). We chose Sitobion avenae and Diuraphis noxia, two
Aphididae species, as outgroups. Thirteen PCGs were initially aligned with Clustal X, translated
into amino acid sequences using default settings, and then analyzed with MEGA v. 5.0 [26].
Alignments of individual genes were concatenated, excluding the start and stop codons [25].

The best fit model for nucleotide alignments was determined by Modeltest v. 3.7 [35] using
likelihood ratio tests. The GTR+I+G paradigm was considered to be the ideal model for phylo-
genetic analysis of amino acid sequence alignments. Based on Modeltest v. 3.7, phylogenetic
trees were constructed using MrBayes v. 3.2.1 [36] and a PHYML online web server [37-38].
Bayesian inference (BI) analyses were processed with 3,000,000 generations and four chains
(one cold and three hot chains), with sampling every 100 generations and a burnin of 25% [39-
40]. The confidence values of the BI tree were shown as Bayesian posterior probabilities in per-
centages. Multiple genome arrangements (MGR) [41] was also used for constructing phyloge-
nies based on gene orders of the eleven whitefly mitogenomes.

Results and Discussion
Genome organization and composition

The complete mitogenome of A. spiniferus was a 15,220 bp circular DNA molecule (GenBank
accession no. KJ437166) (Fig 1, Table 1). The mitogenome contained 36 genes, including 13
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Aleurocanthus spiniferus

Mitochondrial genome

15,220 bp

Fig 1. Mitochondrial map of A. spiniferus. Genes that are not underscored are transcribed on the majority strand (J-
strand; an exception is the control region, CR). Genes that are underscored are transcribed on the minority strand (N-
strand). tRNA genes are designated by single letter amino acid codes outside the map.

doi:10.1371/journal.pone.0161385.g001

PCGs and two rRNA genes. The A. spiniferus mitogenome contained 21 tRNA genes instead of
the typical 22 found in many other metazoan mitogenomes. There was also a large non-coding
region (the CR). Substantial rearrangements and altered transcriptional directions were
observed in the tRNAs, rRNAs and PCGs relative to other insect mitogenomes. Seventeen A.
spiniferus genes were transcribed on the J-strand and the remaining 19 were transcribed on the
N-strand.

The A. spiniferus mitogenome contained 51 bp of overlapping nucleotides; these spanned
ten pairs of neighboring genes and ranged in length from 1 to 20 bp. The longest overlap (20
bp) existed between trnE and trnF. Overall, the complete mitogenome of A. spiniferus was very
compact; the mitogenome contained only 91 bp of intergenic nucleotides (IGN). The IGNs
were located between 14 pairs of neighboring genes and ranged from 1 to 25 bp; the longest
IGN was a 25-bp region located between trnT and trnP.

The nucleotide base composition of the A. spiniferus mitogenome was as follows:

A =31.0%, T =39.8%, C=12.4%, G = 16.8%. The A. spiniferus mitogenome was significantly
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biased towards the A and T nucleotides (70.8%), and this percentage was lower than the A+T
content of other whitefly mitogenomes. The overall A+T content of the PCGs was 69.2%;
genes with the highest and lowest A+T content were trnC (92.1%), and atp8 (63.3%). Further-

more, the AT-skew and GC-skew were calculated for the A. spiniferus mitogenome (Table B in

Table 1. Gene structure of the mitogenome of Aleurocanthus spiniferus.

Gene Position Size Direction® IGN® Anti- or start/ A+T
(bp) (bp) stop codons® content (%)
cox1 1-1539 1539 Forward 2 ATG, TAA 65.0
trnL1 (UUR) 1542-1605 64 Forward 0 TAA 68.8
cox2 1606—2269 664 Forward 0 ATT, T-- 69.0
trnLys (K) 2270-2339 70 Forward 6 CTT 72.8
trnAsp (D) 2346-2407 62 Forward 9 GTC 64.5
atp8 2417-2563 147 Forward -1 ATA, TAA 63.3
atp6 2563-3207 645 Forward 18 ATA, TAG 68.6
trnGlu (E) 3226-3292 67 Forward 7 TTC 701
trnPhe (F) 3300-3362 63 Reverse -20 GAA 77.8
nad5 3348-5022 1675 Reverse 0 ATA, T-- 73.0
trnHis (H) 5023-5083 61 Reverse 1 GTG 80.3
nad4 5085-6365 1281 Reverse -4 ATG, TAG 69.1
nad4/ 6362—6658 297 Reverse 2 ATG, TAA 75.8
trnThr (T) 6661-6722 62 Forward 0 TGT 77.4
trnPro (P) 6723-6783 61 Reverse 25 TGG 73.7
nad6 6809-7249 441 Forward -1 ATA, TAA 72.6
cytb 7249-8382 1134 Forward 0 ATG, TAA 66.2
trnS2 (UCN) 8383-8439 57 Forward -7 GCT 75.5
nad1 8433-9353 921 Reverse 0 ATA, TAA 72.5
trnL2 (CUN) 9360-9422 63 Reverse 0 TAG 82.5
rrnL 9423-10700 1278 Reverse 5 77.7
mnS 10706-11476 771 Reverse 9 771
trnAsn (N) 11486-11551 66 Forward 4 GTT 75.7
trnGin (Q) 1155611626 71 Reverse -7 TTG 88.8
trnVal (V) 11620-11683 64 Reverse -3 TAC 73.4
trnArg (R) 11681-11745 65 Reverse 1 TCG 69.2
trnAla (A) 11747-11808 62 Reverse 0 TGC 75.8
nad3 11809-12161 353 Forward 1 ATT, T-- 71.7
trnGly (G) 12163-12225 63 Forward 0 TCC 84.1
cox3 12226-13011 786 Forward 0 ATG, TAA 67.3
CR 13012-13933 920 65.9
trnlle (/) 13932-13997 66 Forward -4 GAT 69.7
trnMet (M) 1399414061 68 Forward 0 CAT 76.5
nad2 14062-15036 975 Forward -2 ATA, TAA 68.5
trnTrp (W) 15035-15097 63 Forward -2 TCA 80.9
trnTyr (Y) 15096-15157 62 Reverse 0 GCA 80.7
trnCys (C) 15158-15220 63 Reverse 1 GTA 92.1

& Forward or reverse indicate that the gene is encoded by the J or N strand.

P Intergenic nucleotide;
(-) indicates overlapping genes.
¢ T--, represents incomplete stop codons.

doi:10.1371/journal.pone.0161385.t001
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S1 File). The strand bias of the A. spiniferus mitogenome was not consistent with the strand

bias of metazoan mitogenome (positive AT-skew and negative GC-skew for the J-strand). The
results showed that the AT-skew of the A. spiniferus mitogenome was -0.125 and was biased to
use T rather than A; conversely, the GC-skew was 0.151 and was biased to use G rather than C.

Protein-coding genes

The combined length of the 13 PCGs was 10,841 bp; the mean A+T content was 69.2% and
ranged from 65% (cox1) to 75.8% (nad4l) (Table B in S1 File). Start and stop codons were con-
firmed by sequence alignment with corresponding genes obtained from other whiteflies. All
PCGs initiated with ATN, six genes (atp6, atp8, nadl, nad2, nad5 and nadé6) initiated with
ATA, five with ATG (cox1, cox3, nad4, nad4l and cytb), and two with ATT (cox2 and nad3)
(Table 1). Although some PCGs in the order Hemiptera initiate with unusual initiation codons
such as TTG or GTG, this was not the case for A. spiniferus or other whiteflies. Most of the 13
PCGs in A. spiniferus contained typical termination codons (e.g. TAA or TAG); exceptions
included nad3, cox2, and nad5, which contained the incomplete termination codon T. It is
important to note that the truncated termination codon T could be potentially completed
through post-transcriptional polyadenylation [42].

The base composition at each codon position of the concatenated PCGs was analyzed. The
results showed that the A+T content of the first, second, and third codon positions was 68.8,
69.2, and 69.6%, respectively, and there was no obvious nucleotide bias. We summarized and
compared the relative synonymous codon usage (RSCU) values of all eleven whiteflies in Fig 2,
which reflected a biased usage of A and T nucleotides in all 11 species. The use of the antico-
dons NNA and NNU revealed the preference for A or T in the third position. Generally, the
five most frequently used codons in A. spiniferus and the other ten whiteflies were TTT (Phe),
ATT (Ile), TTA (Leu), ATA (Met) and AAT (Asn), which is consistent with the strong bias for
AandT.

In addition, the average ratio of Ka/Ks was calculated for each PCG of the 11 whitefly mito-
genomes. The results showed that atp6 had the highest evolutionary rate, followed by cytb,
while cox2 appeared to be the lowest (Fig 3). The ratios of Ka/Ks for atp6, cox3, cytb, nadl,
nad5 and nad6 were above 1, indicating that these genes are evolving under positive selection.
Simultaneously, ratios of Ka/Ks for other seven PCGs were all below 1, indicating the existence
of purifying selection in these genes. Therefore, cox2 and nad2 with relatively slow rates may
be candidate DNA barcoding markers. By contrast, atp6, cytb and nadl can be selected as an
effective molecular marker to reconstruct evolutionary relationships at the species level and
contribute to population studies of whiteflies.

Transfer RNA genes

The combined length of all tRNA genes was 1,343 bp; individual genes ranged from 57 to 71
bp with an average A+T content of 76.7% (Table A in S1 File). Unlike typical metazoan mito-
genomes that contain 22 tRNA genes, the A. spiniferus mitogenome possessed 21 tRNA genes
and lacked trnSI (AGN). With the exception of trnS2 (UCN), the tRNAs were identified using
tRNAscan-SE [27]. The secondary structure of trnS2 was inferred by comparison with other
Hemipteran mitogenomes. There were 15 mismatched nucleotides in the 21 tRNA genes of A.
spiniferus, and these were all G-U pairs (Fig 4). All tRNA genes of A. spiniferus were predicted
to fold into typical cloverleaf secondary structures (Fig 4). However, unlike other metazoan
mitogenomes [43], the dihydrouridine (DHU) arms of trnS2 in A. spiniferus formed a complete
arm, not a D loop. Generally, the anticodons and secondary structures of the 21 tRNAs were
essentially identical to those described in Locusta migratoria and Liriomyza trifolii [44-45].
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Aleurocanthus spiniferus

RSCU

Na Mg Asn Asp Cys G Gn Gy Ms lle Leut Lewz Lys Met Phe Pro Sert Serz Th Tp Ty Vol

Aleurodicus dugesii

RsCU
o - v o s a o

Ala Arg Asn Asp Cys Glu Gin Gly His lle Leul Leu Lys Met Phe Pro Seri Ser2 Thr Trp Tyr Val

Trialeurodes vaporariorum

Ma Ag Asn Asp Cys Glu Gln Gy His llo Leut Lewz Lys Met Phe Pro Sert Serz Thr Trp Tyr Val

Bemisia tabaci (New World )

Ma Ag Asn Asp Cys Glu Gin Gly Mis llo Lout Lew2 Lys Mot Phe Pro Sert Sez Thr Trp Tyr Val

Bemisia. tabaci (Asia l)

Ala Arg Asn Asp Cys Glu Gln Gly His lle Leul Leu2 Lys Met Phe Pro Serl Ser2 Thr Trp Tyr Val

RSCU
canwa G

Bemisia. tabaci (Mediterranean)

RSCU
canwana

Ala Arg Asn Asp Cys Glu Gin Gly His lle Leul Leu2 Lys Met Phe Pro Serl Se2 Thr Trp Tyr Val

Bemisia afer (Africa)

RSCU

Ala Arg Asn Asp Cys Glu Gln Gly His llo Leul Leu2 Lys Met Phe Pro Serl Serz Thr Trp Tyr Val

Bemisia afer (China)

A

Ma Arg Asn Asp Cys Glu Gln Gly His lle LeulLeu2 Lys Met Phe Pro Serl Se2 Thr Trp Tyr Val

RSCU
canwana

Tetraleurodes acaciae

RSCU

Aa Ag Asn Asp Cys Glu Gln Gly His lle Leut Lew Lys Mot Phe Pro Serl Sez The Trp Tyr Val

Neomaskellia andropogonis

RscU

Ala Arg Asn Asp Cys Glu Gin Gly His lle Leut Leuz lys Met Phe Pro Sert Ser2 Thr Trp Tyr Val

Aleurochiton aceris

RSCU

Ala Arg Asn Asp Cys Glu Gln Gly His lle LeulLeu2 Lys Met Phe Pro Serl Se2 Thr Trp Tyr Val

Fig 2. Relative synonymous codon usage (RSCU) in the mitogenomes of A. spiniferus and ten other
species of Aleyrodidae. Codon families are given on the X-axis.

doi:10.1371/journal.pone.0161385.g002
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Fig 3. Evolutionary rates of PCGs in whitefly mitogenomes. The blue bar indicates the gene’s Ka/Ks.

doi:10.1371/journal.pone.0161385.9003

Ribosomal RNA genes

The large ribosomal RNA (rrnL) gene of A. spiniferus was 1,278 bp in length with an A+T con-
tent of 77.7%, and the small ribosomal RNA (rrnS) gene was 771 bp with an A+T content of
77.1%. rrnL and rrnS were located between trnL2 (CUN) and truN (Fig 1), presumably due to
genetic rearrangements. In A. spiniferus, the two RNA genes were contiguous and not sepa-
rated by trnV; the latter is common in other insect mitogenomes. The secondary structure of A.
spiniferus rRNAs corresponded with models proposed for other insects [28-31]. The secondary
structure of rruL consisted of six domains (domain IIT is absent in arthropod mitogenomes)
with 47 helices (Fig 5), whereas rrnS contained 31 helices belonging to three domains (Fig 6).

The control region

In A. spiniferus, the large non-coding, control region (CR) contained 920 bp nucleotides, and
the A+T content was 65.9%. The CR was located between the nad3-trnG-cox3 and trnl-trnM
gene clusters, and this unusual location for CR is presumably due to genetic rearrangement.
The CR of A. spiniferus could be subdivided into five parts (Fig 7): (1) a 293-bp region where
the G+C content (39%) was slightly higher than the mitogenome (29.2%); this was adjacent to
69-bp poly-T region; (2) a 63-bp segment, containing a 44-bp putative stem-loop structure; (3)
a region containing two 128-bp tandem repeats (R1 and R2); (4) a 94-bp intervening region
with an A+T content (56%) lower than the mitogenome (70.8%); this region contained a 71-bp
segment that contained sequences conserved in the tandem repeats (R1 / R2); and (5) a region
containing three 38-bp tandem repeats (R3, R4, and R5); an exception was R5, which had a
6-bp deletion.

There are very few reports that compare the CRs of different whitefly species. Wang et al.
[46] compared the CRs from two biotypes of Bemisia tabaci, and each biotype had two putative
CRs. Thus the CRs of whiteflies obviously vary in length, nucleotide content, and structure
when compared with other insects. CR length is generally dictated by the number and length of
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PLOS ONE | DOI:10.1371/journal.pone.0161385 August 23,2016

11/18



el e
@ : PLOS | ONE Mitogenome of Aleurocanthus spiniferus (Hemiptera: Aleyrodidae)

A 920 bp control region

SL R3 |[R4|R5

Stem-loop Tandem Repeats Tandem Repeats

B 1T¢C
T—A
G—C
T.._.
G—C
A —T
A—T

stem-loop A

T—A
T—A
T—A
5' 13373-CTATTTAAAAA-CTTAT — A—[i%hp HGATTAACTTGT -13437 3

[TA(A)n]-like stretch G(A)nT motif

Fig 7. Predicted structural elements in the control region of A. spiniferus. (A) The control region flanking genes cox3, trnl
() and trnM (M) is represented by a purple shaded rectangle. The A+T regions are indicated by red and pink shaded rectangles.
The yellow shaded box indicates stem-loop regions; dark blue and aqua shaded boxes represent the five tandem repeats,
R1-R5. (B) Putative stem-loop structures found in the control region. The red outlined boxes indicate highly-conserved flanking
sequences.
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tandem repeats. The CR of A. spiniferus contained a single stem-loop structure, which was
probably associated with the initiation of mitogenome replication or transcription [47]. Two
motifs in the stem-loop structure, TATA at the 5’ end and G(A), T motif at the 3’ end of the
stem-loop structure(s), are conserved in some insect species [48]. However, the [TA(A)],-like
stretch in A. spiniferus was different from the 4-bp motif (TATA) observed in other whiteflies.

Gene rearrangement

Genetic rearrangements in insect mitogenomes occur randomly between orders but are very
informative with respect to insect evolution [49]. The first insect mitogenome to be sequenced
was obtained from Drosophila yakuba; this was regarded as the model mitogenome because of
its conserved gene order when compared with non-insect hexapods [50] and crustaceans [51].
The Aleurodicus dugesii mitogenome is similar to D. yakuba and is recognized as the model
mitogenome of whiteflies [13, 52].

We noted extensive variation in the A. spiniferus mitogenome when compared to the D.
yakuba mitogenome. In this respect, our findings are similar with those reported previously
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[13]. Thao et al. sequenced the mitogenomes of six whitefly species and found that four species
showed genetic rearrangements and lacked one or more tRNA genes [13]. The rearrangements
observed in the A. spiniferus mitogenome were similar to the A type observed in B. tabaci [13].
The cox3-trnG-nad3 ancestral gene cluster was rearranged in A. spiniferus and occurred in the
reverse order (nad3-trnG-cox3) between trnA and CR. The ancestral cluster consisting of trnA-
trnR-trnN was translocated in A. spiniferus and mapped between rrnS and the nad3-trnG-cox3
gene cluster. In addition, trnS1 (AGN) was absent from the A. spiniferus mitogenome, and
trnV and trnQ were placed between trnN and trnR (Fig 8). The rationale and mechanisms
underlying these rearrangements in the A. spiniferus mitogenome are unclear; nonetheless,
these results greatly contribute to our knowledge of whitefly mitogenome phylogeny.

To date, 11 whitefly mitogenomes have been sequenced, and nine exhibit rearrangements
that indicate translocation of the nad3-trnG-cox3 gene cluster [13, 46, 53-54]. Furthermore,
the absence of one or more tRNAs has been documented in Neomaskellia andropogonis, Aleur-
ochiton aceris, Aleurodicus dugesii, T. acaciae, A. spiniferus (this study) and Bemisia afer
(Africa). The sequences of additional whitefly mitogenomes are needed to confirm whether the
translocation of the nad3-trnG-cox3 gene cluster is a common feature in the Aleyrodidae. It is
also noteworthy that the phylogenetic tree recovered by MGR is very similar to the trees con-
structed by BI and ML, which shows that a total of 28 rearrangements occurred in the pub-
lished mitogenomes of Aleyrodidae (Figs 9 and 10).

Phylogenetic characteristics and evolution of whiteflies

The analysis of PCGs encoded by the mitogenomes has emerged as an informative strategy for
inferring phylogenetic relationships [55]. In our study, phylogenetic analyses were conducted
based on a concatenated nucleotide data set containing 13 PCGs from 11 Aleyrodidae and two
Aphididae species (the latter were included as outgroups; Table A in S1 File). Furthermore, the
two phylogenetic trees generated by BI and ML analyses were identical (Fig 10). Both analyses
supported the division of the Aleyrodidae into subfamilies Aleurodicinae and Aleyrodinae. A.
dugesii belonged to Aleurodicinae. In the Aleyrodinae, our results support the assignment of A.
spiniferus as a sister group to T. acacia. The three B. tabaci species grouped together as did the
two B. afer spp. These results were consistent with morphologic classification and phylogenetic
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studies of whiteflies [13, 56-59]. Notably, the phylogeny of the B. tabaci complex supported
the close relationship between New World and Mediterranean species, which was observed by
Lee et al. [57] and Boykin et al. [60]. However, De Barro et al. [61] and Dinsdale et al. [62]
reported that the New World species were closer to the Asia I than the Mediterranean species.
In an earlier study conducted by Boykin et al. [58], the phylogenetic relationship between the
three B. tabaci groups was variable.

Based on three selected PCGs (atp6, cytb and nadl) with high evolutionary rates, an addi-
tional phylogenetic tree was constructed by BI analysis (Fig 11). Topology of this tree was simi-
lar to the former one in Fig 9, except that the relative position of N. andropogonis, A. aceris and
Trialeurodes vaporariorum was changed. The inconsistency in these studies may be due to the
different molecular data and models selected for analyses.

Analysis of Arthropoda indicated that species with high rates of genetic rearrangement tended
to have high evolutionary rates [63]. Our phylogenetic analysis of the Aleyrodidae agreed with
the conclusion of Thao et al. [13]; namely, within the Aleyrodidae, species with relatively con-
served mitogenomes often group at the base of the phylogenetic tree, while species with higher
rates of genetic rearrangement often occupy a more evolved position (Figs 9 and 10). These phe-
nomena suggest that the rearrangement of mitogenomes were heightened during evolution in
Aleyrodidae. However, additional molecular data and subsequent analyses are clearly needed to
clarify the genetic arrangements and evolutionary characteristics within the Aleyrodidae.
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