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Abstract

The advancement of techniques to visualize and analyze large-scale sequencing datasets
is an area of active research and is rooted in traditional techniques such as heat maps and
dendrograms. We introduce dendritic heat maps that display heat map results over aligned
DNA sequence clusters for a range of clustering cutoffs. Dendritic heat maps aid in visualiz-
ing the effects of group differences on clustering hierarchy and relative abundance of sam-
pled sequences. Here, we artificially generate two separate datasets with simplified
mutation and population growth procedures with GC content group separation to use as
example phenotypes. In this work, we use the term phenotype to represent any feature by
which groups can be separated. These sequences were clustered in a fractional identity
range of 0.75 to 1.0 using agglomerative minimum-, maximum-, and average-linkage algo-
rithms, as well as a divisive centroid-based algorithm. We demonstrate that dendritic heat
maps give freedom to scrutinize specific clustering levels across a range of cutoffs, track
changes in phenotype inequity across multiple levels of sequence clustering specificity, and
easily visualize how deeply rooted changes in phenotype inequity are in a dataset. As geno-
types diverge in sample populations, clusters are shown to break apart into smaller clusters
at higher identity cutoff levels, similar to a dendrogram. Phenotype divergence, which is
shown as a heat map of relative abundance bin response, may or may not follow genotype
divergences. This joined view highlights the relationship between genotype and phenotype
divergence for treatment groups. We discuss the minimum-, maximum-, average-, and cen-
troid-linkage algorithm approaches to building dendritic heat maps and make a case for the
divisive “top-down” centroid-based clustering methodology as being the best option visual-
ize the effects of changing factors on clustering hierarchy and relative abundance.

1.0 Introduction

Advances in sequencing technology and-omics research has led to rapid growth in sequencing
datasets, and techniques to visualize and analyze the data are struggling to keep up. New ave-
nues of research that expand on traditional techniques are being explored with much room for
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further advancement, as software development attempts to meet the demands of elucidating
important aspects of such large and complex datasets like metagenomes or metatranscrip-
tomes. One of the most fundamental steps for analysis of any sequence dataset is annotation
and classification into hierarchies, which can be achieved via sequence comparison tools such
as USEARCH, the Ribosomal Database Project (RDP) Classifier, the Basic Local Alignment
Search Tool (BLAST), RapSearch2, and Phylosift [1,2,3,4,5]. While all of these tools do well at
the annotation of sequences, there is a well-known classification bias that comes with limited
databases that do not contain true representatives of every sequence [6]. The development of
more efficient and accurate comparison tools is an area of active research, and understanding
the results of these tools in the context of in vivo dynamics is of great interest. MEGAN is one
of the more well-known software options for metagenomic analysis and visualization of
sequence comparison results, as are some web-based platforms such as MG-RAST, METAREP,
and Krona [7,8,9,10]. The fundamentals of traditional techniques such as heat maps and den-
drograms are at the root of all these recent software advances, where hierarchy and relative
abundance are represented through branching and value indicators, respectively. Here, we
explore a method of creating dendritic heat maps (DHMs) that combines heat maps and den-
drograms in order to visualize phenotype divergence alongside genotype divergence. We use
the term phenotype to represent any feature by which groups can be separated (e.g. physical
traits, locations, growth conditions, etc.). Importantly, DHMs are not limited to sequence data
and can be used to describe changes in group inequity and clustering hierarchy for any data
that can be hierarchically ordered and compared (e.g. microarrays, phylotype counts, species
richness, etc). However, here we exclusively examine their application toward sequence
datasets.

Heat maps are useful for comparing data across a range of possible states, allowing viewers
to intuitively see differences and similarities in data subset responses. Canonically, each data
point is expressed as a color, with hue intensity representing its bin response, or position within
the data range [11]. Likewise, sections on a heat map can also represent bins of data, where
individual data points have been grouped together based on similarity and their corresponding
heat map color is a result of their combined response [12]. Clustering, especially of DNA,
RNA, or protein sequences, is commonly used for data binning and is based on sequence iden-
tity or homology. For instance, 16S rRNA heat maps are frequently used to compare relative
abundances of sequences between multiple samples, allowing visualization of the presence and
absence of taxa across samples or populations [13,14,15]. With genomic and transcriptomic
data, binning and visualization on heat maps can be used to compare and contrast gene and
transcript abundances, with the most common use of heat maps being visualization of changes
in gene expression across different sample treatments or conditions [16,17,18].

However, heat map bin response for a data point can change depending on the level of spec-
ificity, defined by the cutoff level at which that data is binned and visualized. By altering the
binning specificity level, data bin assignment can be rearranged, potentially changing their heat
map bin response. Traditional heat maps only work at a single specificity level and limit view-
ers to one representation of the data. For instance, heat maps that depict clustering of 16S
rRNA gene sequences are typically done at a 97% identity level. Choosing an appropriate speci-
ficity level then becomes crucial to not obscuring the important features of the data with bins
that are too specific or too broad. For example, bins that are too specific for a transcriptome
dataset can result in fractured count information with many clusters identified as the same tar-
get sequence. Conversely, bins that are too broad for a transcriptome dataset can result in clus-
ters containing multiple transcript groups. Both of these scenarios can be problematic if only
one cutoff level is being displayed.
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Our motivation for this work is to visualize sequence dynamics in a way that captures
important variations in the data and is scalable across a large range of data sizes. We also
wanted to explore a technique that is independent of annotation and instead performs analysis
and visualization of sequence information, leaving annotation as a final step, since sequence
reference databases are dependent on the quality and focus of previous work. To these ends we
improve on current techniques in three areas:

1. Freedom to scrutinize specific clustering levels across a range of cutoffs.
2. Ability to track changes in state across multiple levels of sequence clustering specificity.
3. Ease to visualize how deeply rooted changes in state are in a data set.

DHMs are particularly useful where similarities in a dataset occur across a multitude of
scales, such as in homology-based clustering of the large number of sequences found within a
microbial community. Because the sequences within a complex community can range from
being extremely well conserved to very poorly conserved, our method will allow the simulta-
neous visualization of homology clusters at many different cutoffs. Importantly, tracking
changes in relative abundance bin response can be particularly useful for observing the levels at
which genotypic divergence (cluster branching) correlates with phenotypic divergence (differ-
ing heat map bin response) for a population.

To demonstrate this approach, we generate artificial datasets that use simplified mutation
and growth processes in biological communities. The first dataset starts with 100 identical
100-bp DNA fragments which all mutate with random single base substitutions over fifteen
iterations. The second dataset is used exclusively with the “top-down” method due to its size
and begins with a 100-bp DNA fragment, allowing it to mutate and duplicate, then iterating
the mutate-and-duplicate process on progeny DNA. The end result is a population of tens-of-
thousands of DNA molecules derived from a common ancestor, each showing varying degrees
of conservation. Clustering and visualization of changes of state are used to track relative abun-
dance bin responses for populations of different nucleotide usage (GC content) as various sub-
populations evolve for both datasets. Using these simulated datasets, we discuss the potential of
DHMs to describe data across varying levels of complexity.

2.0 Methods
2.1 Sequence Generation

Mutation Lineage Data Set. Random base substitutions were performed on a set of 100
artificially-generated 100-bp DNA sequences over fifteen iterations. Base substitutions are
allowed to occur at the same position more than once. At iteration zero, all 100 sequences are
identical with 50% GC content; at iteration fifteen they have the least homology with 15 ran-
dom base substitutions having occurred in each sequence. At each iteration all 100 sequences
were grouped based on < or >50% GC content and output to FASTA files. The < or >50%
GC content group sizes were kept relatively even by restarting the sequence generation if the
count difference between the two groups exceeded 20 sequences (|Group1-Group2|>20) (20%
of the total dataset). This group evening was done to ensure a good representation of each
group for an effective demonstration of DHMs.

Population Growth Data Set. Additional FASTA files of fifteen generations started
from a single randomly-generated sequence, which was subsequently propagated by dupli-
cating each sequence once with a random base substitution and once without at each genera-
tion of population growth, reaching 2'° sequences after fifteen generations. The artificial
growth process created fifteen separate, but related, datasets to demonstrate the ability of
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top-down centroid-based clustering to handle larger datasets for DHM construction. The
artificially-generated 100-bp DNA sequences were grouped based on < or >50% GC con-
tent. The < or >50% GC content group sizes were kept relatively even by restarting the
sequence generation if the difference between the number of sequences for the two groups
became greater than 5% of the total amount of sequences (|Group1l-Group2|>Total*0.05).
This group evening was done to ensure a good representation of each group for an effective
demonstration of DHMs.

2.2 Clustering

Bottom-up agglomerative clustering. For each incremental 0.01 fractional identity(*“-id”)
cutoff between 0.75 and 1.0, clustering of sequences was performed using USEARCH (version
8.0.1517_i86linux64) (“-cluster_agg”) with linkages min, max, and avg.

Top-down divisive clustering. For the each 0.01 -id cutoff between 0.75 and 1.0, cluster-
ing of sequences was performed using the USEARCH UCLUST algorithm (version
7.0.1090_i86linux64) (“-cluster_fast”), which performs centroid-based clustering. Counts of
duplicate sequences were recorded with “-derep_fulllength” [1]. Clustering at each cutoff -id
was done in a stepwise fashion, starting from the initial FASTA file for 0.75, then using the
clusters from the previous cutoff as inputs for 0.76-1.0. Since the USEARCH command “-clus-
ter_fast” performs centroid-based clustering in the order of the input FASTA file, input
sequences were first multiple aligned using Clustal Omega (described later) and arranged to
ensure that the most distantly related and potentially cluster splitting “centroid” sequences
were listed first in a staggered order (conceptualized in Fig 1). This ordering process was per-
formed by a script that reads from opposite ends of the multiple alignment and is unnecessary
for the “bottom-up” approaches since binning is done through the use of a distance matrix. A
brief example of the top-down clustering is available as S1 File.

2.3 Alignment

Clustal Omega (Version 1.2.0) with tree-output ordering anddefault alignment parameters
and heuristics was used for multiple alignment of FASTA files [19]. Manipulation of the
multiple alignment and clustering files were performed via Perl scripts, which are available
in S2 and S3 Files. This multiple alignment was used to order the lowest -id cutoff (0.75)
clusters, then the sequences contained within them. For each -id cutoff from 0.76 to 1.0, the
order was determined by the arrangement of the previous -id cutoff. In the “top-down”
method, this alignment was also used to order the clustering input files in a staggered fash-
ion (Fig 1). Alignment is important for preserving the radial position of each sequence at
each cutoff level/ring in the DHM:s so that the position of any given sequence is preserved
from its center out to its circumference. Starting the clustering cutoff range at a minimum
value of 0.75 was done because the USEARCH manual states that the UCLUST algorithm is
effective at identities of ~75% and above for nucleotide sequences, but dendritic heat maps
in general are not limited to this cutoff range and should aim to show as large a clustering
cutoff range as possible.

2.4 Dendritic Heat Map Construction

Visualization of the clusters at each cutoff and their arrangements was performed using the
Perl package Circos (version 0.64) [20]. For each -id cutoff ring, cluster sizes are determined
by number of sequences within each cluster. The heat map hues are partitioned to have
gradual changes with twenty-three possible categories (two sequential 11-color Brewer pal-
ettes and white) and is determined by the logarithmic value of the ratio of sequences from
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Fig 1. Sequence input ordering. Graphical representation of the binning effect of using alignment-ordered versus
staggered sequence input order for “top-down” centroid-based clustering. Shaded rectangles represent
sequences, where the shade consistently portrays a specific sequence throughout the diagram. The multiple
alignment on the left shows each of the sequences ordered based on fractional identity, where nearby sequences
are more closely related than distant ones, and distributed evenly across a fractional identity range of 0.1. For both
aligned and staggered input ordering, sequences are read from top to bottom by the UCLUST algorithm of
USEARCH and either placed in a cluster that has the best match to the centroid sequence above the given identity
cutoff, or is made the centroid sequence of a new cluster if a match cannot be found. In this diagram, centroid
sequences are the top sequences of each cluster. With the aligned input order, it is shown that some sequences
can be binned in clusters that do not contain their closest centroid match. The staggered input places sequences in
correct bins essentially by first defining all centroid sequences.

doi:10.1371/journal.pone.0161292.g001

each group, log((Groupl +1)/(Group2 +1)). The log of the ratio is used because in typical
clustering datasets, the vast majority of the clusters are relatively small and a few are very
large. Without using the log of the ratio, smaller clusters with an interesting bin response
would be assigned a neutral hue and only the largest clusters would have the most luminous
hues. A log transformation of the ratios puts all bin responses on a more relatable scale
while still showing their distinctions in ratio. Red hue indicates relative abundance bin
response toward Group 1(GC<50%) and blue hue indicates relative abundance bin response
toward Group 2 (GC>50%), with white indicating a neutral bin response. A red-white-blue
color scheme was chosen here because it is more color-blind friendly, however any color
scheme can be used. Hue luminosity corresponds to the strength of the heat map response.
A darkly colored wedge at the 0° position acts as a key, displaying the opposite ends of the
heat map hues possible for each ring. The minimum and maximum heat map values in this
wedge are equal at their absolute values and are important for normalizing the hue distribu-
tion throughout the entire DHM. A brief example of DHM construction is available in S1
File.
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3.0 Results/Discussion
3.1 Dendritic Heat Map

To make relationships that may emerge across hierarchical cutoffs more apparent, heat maps
at each cutoff level are aligned, so that clusters may be directly compared across multiple cutoff
levels. By aligning and clustering DNA molecules across these multiple cutoff levels, the aligned
heat maps take on a radial dendrogram configuration. This is particularly useful, as the branch-
ing of a cluster into progressively more fine-grained clusters can be tracked and further anno-
tated with heat map bin responses to reveal salient features of the clusters. To visualize DHMs,
we make use of a Perl-based software package called Circos that was developed to address chal-
lenges in visualizing large genomic data sets and creates circular heat maps from position and
value data [20]. In the case of DHMs, circular heat maps allow for the placement of exterior
ring heat map bins to be fanned out, giving them more space than interior ring bins where the
need for space is less critical. While a useful tool for generating images, Circos is illustration
software that is dependent on user-formatted input files and is not designed to analyze raw
data or arrange heat maps. Therefore, we have developed Perl scripts (available in S2 and S3
Files) to align and convert clustering data derived from large scale sequence datasets to Circos-
ready input files.

Fig 2 shows the average-linkage DHM for the fifth mutation from the mutation lineage data
set generated as described in the methods section. The feature that is immediately recognized is
the heat map color variation in different regions of the figure, displaying the relative abundance
bin response of GC content groups (neutral-white; Group 1 bin response (GC<50%)-red;
Group 2 bin response (GC>50%)-blue) for each cluster. The decision to use red and blue hues
was aided with the use of ColorBrewer palettes (http://colorbrewer2.org/) to represent values
as a colorblind-friendly alternative to the red-green color scheme that is a popular heat map
motif [21]. However, RGB color codes were eventually used to select hues outside of Color-
Brewer palettes. Navigating through the figure, the innermost ring represents clusters at the
most lenient fractional identity cutoff of 0.75, stepping out in increments of 0.01 at each ring to
a final identity cutoff of 1.0. Simultaneously displaying a range of heat maps that change with
specificity level gives a more accurate view of how the data is skewed than any single heat map
can provide individually, due to the fact that heat map bin response for a data point can change
direction depending on the level of specificity at which the data is binned. In a natural data
example, central rings with lower cutoffs would be associated with broad groupings such as
phyla or gene superfamilies, while the increasingly strict cutoffs at the peripheral rings would
represent more specific identifiers (e.g. same genus/species, gene families/subfamilies). Studies
that involve natural data sets might not be grouped based on GC content, but rather some sepa-
ration that is relevant to the questions being asked or conditions being measured (and that
could be easily substituted into a DHM). For our purposes, using GC content as a phenotype is
a convenient method for creating and tracking relative abundance bin responses of two distinct
groups while also forcing a correlation between genotype and phenotype for these artificially
generated datasets.

The more subtle feature of Fig 2 is the dendrogram-like layout of the figure rings. The
aligned configuration of the rings preserves the relationships of a dendrogram, where nearby
clusters and sequences are closer relatives than distant clusters. The more central in the dia-
gram a cluster divergence occurs, the more distantly related those clusters are to one another.
Since each ring is aligned to adjacent rings, large clusters gradually divide into smaller and
more specific clusters moving out from the center. In Fig 2, many of the clusters in the exterior
rings contain single-sequence clusters that have a conserved radial range from the more inte-
rior clusters they derive from. Some clusters contain sequences that are highly conserved and
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Fig 2. Dendritic heat map. Dendritic heat map representing the fifth mutation step of the simulated mutation lineage data generated as described in the
methods and clustered using the average-linkage algorithm of the “bottom-up” method. The darkly colored wedge at the 0° position represents the minimum
(red) and maximum (blue) possible heat map relative abundance bin responses, GC<50% and GC>50% respectively. White space in the heat maps
represents clusters with neutral bin response. Rings, starting at the center, represent clusters of sequences for identity cutoffs of 0.75 to 1.0. Clusters,
including single-sequence clusters, are plotted in a radial range that is conserved from the clusters from which they were derived. High resolution versions of
all DHMs in this manuscript are available in S2 and S3 Files.

doi:10.1371/journal.pone.0161292.9002
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their membership does not change over a wide range of clustering cutoffs, as seen at around
the 11 o’clock position of Fig 2. Also important to point out are cases where bin response
changes in direction and not just intensity. At about the 3 o’clock position of Fig 2, interior
rings contain a large blue (mostly GC>50% sequences) cluster that gradually divides toward
the exterior rings. These clusters divide, some of their bin responses change from blue (mostly
GC>50% sequences), to the neutral white, to red (mostly GC<50% sequences). The darkly col-
ored wedge at the 0° position represents the minimum (red) and maximum (blue) possible
heat map relative abundance bin responses, GC<50% and GC>50% respectively. This wedge
at the 0° position serves two functions. First, the wedge serves as a legend for the minimum and
maximum heat map bin responses. Second, the wedge separates the most distantly related clus-
ters at opposite ends of the DHM. Without a separation, it may be easy to confuse the clusters
at opposite ends of the dendrogram layout as closely related. White space in the heat maps rep-
resents clusters with neutral bin response.

Opverlaying phenotype shifts on genotype divergence creates a way to visually compare how
deeply rooted observed phenotype ratios are across multiple genotypes. Displaying how deeply
rooted a response is can be informative in many comparative studies that seek to better under-
stand both the general and more finely detailed structures of the data by elucidating divergence
points. Work that focuses on multi-scale genomic changes, such as experimental evolution of
microbial or viral populations, would benefit from the visualizations of DHMs [22,23].

3.2 Bottom-up Hierarchical Clustering

For agglomerative, or “bottom-up,” approaches where clusters are joined by incrementally
decreasing the sequence identity required to bin sequences together, we contrasted minimum-,
maximum-, and average-linkage algorithms, all common graph metrics. Briefly, these methods
differ in how connections between cluster elements (i.e. the edges connecting various nodes
within a cluster) affect cluster membership. Minimum-linkage, sometimes referred to as near-
est neighbor, only requires a single edge between two clusters above a specified cutoff before
they can be joined, regardless of the other edge relationships [24,12]. Maximum-linkage, some-
times referred to as complete-linkage or farthest neighbor, requires all elements of a cluster to
have a cutoff-agreeing edge to all elements of a joining cluster [25]. Average-linkage, some-
times referred to as mean linkage or unweighted pair group method with arithmetic mean
(UPGMA), requires the mean of all cluster element edge distances to meet the clustering cutoff
before they can be joined [26,25]. However, all of these agglomerative linkage methods yield
relatively poor results when compared to a divisive method, mainly due to cluster joining
requirements (discussed in detail below) as opposed to cluster splitting requirements.

There are obvious visible differences between the three linkage algorithms used to cluster
the DHMs of Figs 3-5. In all of these “bottom-up” agglomerative algorithms, each cluster starts
out as a group of identical sequences or a single sequence. Those clusters of identical sequences
are then joined as the clustering cutoff is gradually decreased using the chosen linkage algo-
rithm. As a result, the outermost ring (representing 100% sequence identity) for each respective
mutation DHM contains the same clustering breakdown, but possibly in a different configura-
tion due to the ring alignment process. However, the clustering breakdown for the joined clus-
ters of the interior rings is subject to the clustering algorithm and is not the same for each
mutation step. For example, the interior rings of the seventh mutation step (panel 7 of Figs 3-
5) for each agglomerative algorithm appear different.

The minimum linkage algorithm of Fig 3 produces figures that give the appearance of rela-
tively well-conserved clusters. The transition from a single cluster to multiple clusters occurs at
higher identity cutoffs than that of the other algorithms. This apparent overestimation of
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Fig 3. Dendritic heat maps from bottom-up minimum-linkage hierarchical clustering of a mutating
population. Dendritic heat maps representing 0 through 15 mutations of the simulated mutation lineage data
generated as described in the methods and clustered using the minimum-linkage algorithm of the “bottom-up”
method. Panel zero represents the most homologous set of sequences (identical) and panel fifteen represents the
least homologous set of sequences (fifteen base substitutions). The darkly colored wedge at the 0° position of each
dendritic heat map represents the minimum (red) and maximum (blue) possible heat map relative abundance bin
responses of all dendritic heat maps displayed, GC<50% and GC>50% respectively. White space in the heat maps
represents clusters with neutral bin response. Rings, starting at the center, represent clusters of sequences for
identity cutoffs of 0.75 to 1.0. Clusters, including single-sequence clusters, are plotted in a radial range that is
conserved from the clusters from which they were derived. High resolution versions of all DHMs in this manuscript
are available in S2 and S3 Files.

doi:10.1371/journal.pone.0161292.9003

sequence conservation is expected with the minimum linkage algorithm since clusters are easily
joined, only requiring one sequence from each cluster to match one another at the clustering
cutoff level. This method has a well-known drawback called the chaining phenomenon, where
clusters that have been joined may share only a single close relationship edge while all other
edges are very distant [27]. The chaining phenomenon certainly affects the results of Fig 3,
especially during the earlier mutations, as it would for many single-linkage DHMs, making sin-
gle-linkage less than ideal for many data sets.

PLOS ONE | DOI:10.1371/journal.pone.0161292 August 18,2016 9/22
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Fig 4. Dendritic heat maps from bottom-up maximum-linkage hierarchical clustering of a mutating
population. Dendritic heat maps representing 0 through 15 mutations of the simulated mutation lineage data
generated as described in the methods and clustered using the maximum-linkage algorithm of the “bottom-up”
method. Panel zero represents the most homologous set of sequences (identical) and panel fifteen represents the
least homologous set of sequences (fifteen base substitutions). The darkly colored wedge at the 0° position of each
dendritic heat map represents the minimum (red) and maximum (blue) possible heat map relative abundance bin
responses of all dendritic heat maps displayed, GC<50% and GC>50% respectively. White space in the heat maps
represents clusters with neutral bin response. Rings, starting at the center, represent clusters of sequences for
identity cutoffs of 0.75 to 1.0. Clusters, including single-sequence clusters, are plotted in a radial range that is
conserved from the clusters from which they were derived. High resolution versions of all DHMs in this manuscript
are available in S2 and S3 Files.

doi:10.1371/journal.pone.0161292.9g004

Fig 4, which was constructed using the maximum-linkage algorithm, contains non-joining
cluster segments as mutations progress. While maximum-linkage clustering avoids the chain-
ing phenomenon by requiring all cluster members to have an edge to all other members, it is
also an underestimation of sequence conservation and some clusters never join with others for
the given cutoff range. This algorithm can be simplified by considering only the furthest edge
distance, since all other pairings would be more closely related. In many clusters, a member
may be very distantly related to any member of another cluster, regardless of potentially other
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Fig 5. Dendritic heat maps from bottom-up average-linkage hierarchical clustering of a mutating
population. Dendritic heat maps representing 0 through 15 mutations of the simulated mutation lineage data
generated as described in the methods and clustered using the average-linkage algorithm of the “bottom-up”
method. Panel zero represents the most homologous set of sequences (identical) and panel fifteen represents the
least homologous set of sequences (fifteen base substitutions). The darkly colored wedge at the 0° position of each
dendritic heat map represents the minimum (red) and maximum (blue) possible heat map relative abundance bin
responses of all dendritic heat maps displayed, GC<50% and GC>50% respectively. White space in the heat maps
represents clusters with neutral bin response. Rings, starting at the center, represent clusters of sequences for
identity cutoffs of 0.75 to 1.0. Clusters, including single-sequence clusters, are plotted in a radial range that is
conserved from the clusters from which they were derived. High resolution versions of all DHMs in this manuscript
are available in S2 and S3 Files.

doi:10.1371/journal.pone.0161292.9g005

members in its cluster. This is exactly what can be seen in some mutation iterations in Fig 4,
where clusters containing more than one sequence never form edges with all members of
another cluster for any given cutoff value, thus never joining.

Like Fig 4, Fig 5 contains many non-joining cluster segments. Using the average-linkage
algorithm of Fig 5, clusters are joined if their mean edge distance for all pairs meets the cluster-
ing cutoff requirements. The result is similar to the maximum-linkage algorithm because all
members of the clusters have an effect on the mean edge distance that dictates if joining will
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occur. However, average-linkage can be thought of as joining clusters by their “center of cluster
mass” instead of a single distant edge, lowering the requirements for joining from that of maxi-
mum-linkage and yielding a more accurate apparent sequence conservation.

Due to the chaining phenomenon, minimum-linkage clustering will often be a less than
ideal choice for constructing DHMs, although it will still produce a valid DHM. Maximum-
and average-linkage algorithms remain viable alternatives, however their propensity to form
non-joining cluster segments and the underestimation of sequence conservation by maximum-
linkage also makes them less than ideal. In terms of information gained, it is not likely that a
non-joining cluster segment does much to aid in visually comparing how deeply rooted a phe-
notype is across multiple genotypes. Like dendrogram building in general, the algorithm used
often comes down to user preference. However, the need to construct a distance matrix, a step
that can require large amounts of computer memory and time, and a propensity for creating
non-joining cluster segments makes all three “bottom-up” approaches less than ideal for large
data sets.

3.3 Top-down Hierarchical Clustering

The algorithms of the “bottom-up” approaches require constructing a distance matrix from
pairwise identity or similarity calculations between all sequences, which for large datasets can
lead to impractically large memory or computational time requirements. For this reason, we
implemented a “top-down” hierarchical clustering method that splits clusters by incrementally
increasing the sequence identity required to bin sequences, similar to previously described divi-
sive methods [26,28]. The “top-down” approach does not require a large comprehensive dis-
tance matrix to be built and uses centroid-based clustering, where clusters are split if multiple
cluster “centroid” elements can be separated with the given clustering cutoff. Centroids are
then used as a database for a sequence search algorithm to assign closest matching sequences
or new centroids if the closest match is out of the cutoff range [1]. The dendritic heat maps of
Fig 6 were constructed using a top-down approach. A brief example of the top-down clustering
is available in S1 File.

The most fundamental difference between the “top-down” and all three “bottom-up” algo-
rithms is that the DHM is created by splitting clusters, rather than joining them. The figure is
constructed by first assigning sequences to clusters at the lowest cutoff level, which corresponds
to the innermost ring on all DHMs, then splitting those clusters for subsequent DHM rings as
the clustering cutoff is incrementally increased.

The advantages of the “top-down” centroid-based clustering approach over “bottom-up”
approaches are speed, memory requirements, and a more intuitive view of sequence conserva-
tion as data size increases. Circumventing the construction of a distance matrix has obvious
advantages in speed and memory requirements for sufficiently large data sets, where a distance
matrix becomes impractically large. The apparent sequence conservation of the “top-down”
DHM is more intuitive in that it avoids the chaining phenomenon of single-linkage and also
avoids the non-joining cluster segments of maximum- and average-linkage, potentially leading
to more informative observations of the level at which genotype divergence (cluster branching)
has an effect on phenotype divergence (relative abundance visualized via differing heat map
bin response). The “top-down” approach has a slight bias away from forming non-joining clus-
ter segments because clusters must pass a threshold to be split, rather than having to pass a
threshold to be joined as is the case with “bottom-up” approaches.

In all cases, including the three “bottom-up” approaches, sequence length and homology
can have significant effects on the clustering layout of DHMs. Shorter sequences and also less
homologous sequences would result in more non-joining clusters, while the opposite
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Fig 6. Dendritic heat maps from top-down hierarchical clustering of a mutating population. Dendritic heat
maps representing 0 through 15 mutations of the simulated mutation lineage data generated as described in the
methods and clustered using the “top-down” method. Panel zero represents the most homologous set of
sequences (identical) and panel fifteen represents the least homologous set of sequences (fifteen base
substitutions). The darkly colored wedge at the 0° position of each dendritic heat map represents the minimum
(red) and maximum (blue) possible heat map relative abundance bin responses of all dendritic heat maps
displayed, GC<50% and GC>50% respectively. White space in the heat maps represents clusters with neutral bin
response. Rings, starting at the center, represent clusters of sequences for identity cutoffs of 0.75 to 1.0. Clusters,
including single-sequence clusters, are plotted in a radial range that is conserved from the clusters from which they
were derived. High resolution versions of all DHMs in this manuscript are available in S2 and S3 Files.

doi:10.1371/journal.pone.0161292.9g006

conditions would result in more cluster joining. In a study that tracks sequence homology of
different lineages, as is simulated in our mutation data set, non-joining cluster segments would
appear sooner in data sets with shorter sequences and faster mutation rates. Therefore, there
are potential data conditions where even the “top-down” approach yields less-informative
DHMs.

Summary tables of the sequence and cluster counts from the mutation dataset DHMs are
provided as an Excel document in S3 File, showing different bin distributions for each of the
algorithms which affects their appearance. As previously described with the DHM
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appearances, the tables reiterate that the minimum-linkage algorithm bins sequences together
more readily than the others, while the maximum-linkage and average-linkage algorithms are
more exclusive. The centroid-based algorithm, which does not use a distance matrix to deter-
mine cluster similarity, occupies a binning inclusiveness middle ground between the three oth-
ers. It is our opinion that the moderate inclusiveness of centroid-based clustering, as well as its
ability to cluster larger datasets (described in more detail in the following section), makes it the
best option of the four to construct DHMs. However, just as each of those clustering algorithms
is a valid technique, each of the DHMs that are constructed from their clusters is also valid.

3.4 Dendritic Heat Maps of a Growing Population

DHMs can be scaled to fit a wide range of dataset sizes while maintaining their dendrogram
layout. Fig 7 shows DHMs of the artificially generated dataset that simplifies mutation and
growth as substitutions are introduced without fatal consequences into generations, displaying
an increasing complexity (as described in the methods section as the population growth data
set). Up to fifteen generations, including the initial sequence at generation 0, are shown as indi-
vidual DHMs. The number of total sequences doubles for each generation, increasing data size
and complexity exponentially. This dataset is used to show the scalability of DHMs.

The DHM for generation 0 represents the simplest possible cluster configuration, displaying
information for only a single sequence. For a fixed sequence length as in the artificial data used
here, there is a theoretical final cluster distribution, where mutations have progressed to a
point where additional sequences can no longer be unique. The cluster distribution for the
DHM of this theoretical endpoint would appear symmetrical, and all evolutionary paths end at
this same fixed endpoint cluster distribution. The number of unique sequences in the endpoint
cluster distribution is calculable at b”, where b is the number of possible base choices and 7 is
the total number of bases used in the simulated DNA sequences. The generations that are dis-
played in Fig 7 are snapshots into one of the many pathways toward the theoretical endpoint
cluster distribution of b” unique sequences. This theoretical endpoint holds true for traditional
dendrograms as well, however DHM:s have the added dimension of displaying relative abun-
dance information (heat map bin response). The random qualities built into our sequence gen-
eration with the added dimension of heat map distribution yields many DHM colorations for
the fixed endpoint cluster distribution discussed above.

Drawing parallels to natural data, for every set of samples, there is also a theoretical fixed
endpoint cluster distribution. While natural data does not have fixed sequence lengths, there is
likely a range of lengths that are allowed by evolutionary pressures and there would be many
possible evolutionary paths toward the endpoint cluster distribution [29,30]. However, the dif-
ference with a natural data set is that generations are determined by evolutionary processes
that are much more complex than random non-lethal base substitutions [31,32]. Essentially,
the artificial data set endpoint would display every possible lineage while natural data would
have fatal dendrogram branches trimmed out of the endpoint cluster distribution, likely in a
non-symmetrical distribution. The complexity that is common in natural samples would likely
yield many possible DHM colorations, similar to an artificial data set. For these reasons, it is
not unreasonable to use artificially-generated data to show DHMs of population growth.

Fig 7 is an informative way to introduce the evolutionary context of DHMs, where each dis-
plays a multi-level snapshot into the phenotype history of a sample. Each snapshot represents a
view from the same evolutionary path, one of the many paths toward the theoretical endpoint.
As each generation doubles in size, in many cases it is easy to visually track the growth and
divergence of individual clusters from generation to generation. As new unique sequences are
added, new clusters in the outermost ring are created and inner clusters diverge to account for
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Fig 7. Dendritic heat maps from top-down hierarchical clustering of a growing population. Dendritic heat
maps representing generations 0 through 15 of the simulated population growth data generated as described in the
methods and clustered using the “top-down” method. The darkly colored wedge at the 0° position of each dendritic
heat map represents the minimum (red) and maximum (blue) possible heat map relative abundance bin responses
of all dendritic heat maps displayed, GC <50% and GC>50% respectively. White space represents clusters with
neutral bin response. Rings, starting at the center, represent clusters of sequences for identity cutoffs of 0.75t0 1.0.
Clusters, including single-sequence clusters, are plotted in a radial range that is conserved from the clusters from
which they were derived. High resolution versions of all DHMs in this manuscript are available in S2 and S3 Files.

doi:10.1371/journal.pone.0161292.g007

their addition. Likewise, when duplicate sequences are added, their respective sections increase
in width, which represents cluster size. Phenotype divergences occur deeper into the DHMs as
generations progress and population genotypes diverge. Eventually, we are able to see increas-
ing fracturing of genotypes and phenotypes as the total population becomes more complex.
While something similar to Fig 7 could be recreated with experimental evolution datasets, a
natural dataset would yield only a single DHM unless a time component is involved. However,
even with a time element involved, it is unlikely to find a natural sample as simple as the earli-

est generations of Fig 7.
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Fig 8. Fig 3 reused from Elser et al. 2014 with the kind permission of ASM. Dendritic heat maps displaying
habitat preferences for multiple levels of phylogenetic clades across multiple time points and locations. Reprinted
from [33] under a CC BY license, with permission from AEM, original copyright 2014.

doi:10.1371/journal.pone.0161292.9008
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Fig 9. Fig 4 reused from Elser et al. 2014 with the kind permission of ASM. Histograms displaying the
strongest habitat preferences for the phylum, order, and genus taxonomical levels of four sample types. A
skew line is used to show the relative strength of habitat preference. Reprinted from [33] under a CC BY
license, with permission from AEM, original copyright 2014.

doi:10.1371/journal.pone.0161292.g009

3.5 Application

Recently, DHMs were used to describe large and complex microbial community sequence
data from aquatic pumice samples, where the goal was to show microbial habitat preference
at multiple levels of taxonomical classification [33]. While seemingly a straightforward task
of counting homologous sequences for each habitat, the problem of similarity cutoff choice
can influence how sequences are binned and ultimately expressed in a heat map. In Fig 8
(Fig 3 of Elser et al. [33]) (original copyright 2014, Applied and Environmental Microbiol-
ogy), sequences maintain the same radial position throughout each of the DHMs. For nearly
all sequences, the strength, and sometimes direction, of their heat map expression changes
depending on the specificity of the clustering cutoff used to bin them. Fig 9 (Fig 4 of Elser

et al. [33]) (original copyright 2014, Applied and Environmental Microbiology) shows histo-
grams of the same data being binned according to Ribosomal Database Project taxonomic
classifications [33]. Essentially, these histogram bar heights translate to heat map color
intensity and convey the same information in different formats. Of course, binning based on
taxonomic classification does not exactly represent binning based on sequence identity, but
it can be a close and familiar approximation. The issue with clustering cutoff choice is per-
fectly represented in Fig 9 (Fig 4 of Elser et al. [33]), where depending on the level at which
sequences are binned, the scale of the “Skew Line” axis changes to accommodate the range
in relative abundance bin response, which translates to heat map color and intensity. DHMs
on the other hand embrace this effect of clustering specificity on binning and bin response,
where it is used to show the effect of homology on heat map response.

In a publication by Eisen et al., heat maps are used to describe Saccharomyces cerevisiae
genome microarray data for a series of time points [34]. Each row in Fig 10 (Eisen et al. [34]
Fig 1) (original copyright 1998, The National Academy of Sciences) represents individual
genes, which in terms of binning are sequences at 100% identity or a fractional identity clus-
tering cutoff of 1.0, and each column represents a time point. Fig 10 (Fig 1 of Eisen ef al.
[34]) shows rows being clustered and arranged based on their heat map response and a den-
drogram is provided to display the cladistics of row bin responses, not row sequence iden-
tity, which is useful for displaying clades of similar patterns of expression. However, the goal
of DHMs is to display the effect of sequence homology and genotype clades with phenotype
heat map bin responses. Two important differences between the DHMs introduced in this
work and many published traditional heat maps, including those in Eisen et al., are the
inclusion of multiple heat maps for a single sample (represented by a column in Eisen et al.
[34]) and sequence identity rather than heat map expression pattern determining row
arrangement (or radial position in the case of radial heat maps). If we were to convert the
work of Eisen et al. into DHMs, each column of Fig 10 (Fig 1 of Eisen et al. [34]) would have
their own DHM with multiple levels of clustering arranged by sequence identity so that we
could see how well the heat map expression pattern for a gene is conserved among its homo-
logs. It would be possible to create a separate cladogram that represents bin response pattern
similarity (or dissimilarity) using Bray-Curtis dissimilarity, however this is beyond the
scope of the work presented here [35].
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Fig 10. Fig 1 reused from Eisen et al. 1998 with the kind permission of PNAS. Heat map displaying data
from a time course of serum stimulation of primary human fibroblasts. Reprinted from [34] under a CC BY
license, with permission from PNAS, original copyright 1998.

doi:10.1371/journal.pone.0161292.g010

4.0 Conclusion

DHMs represent a powerful tool for visualizing correlations in genotype and phenotype
changes across evolutionary space and time, and will ultimately help decipher dynamic pro-
cesses in complex, natural communities such as metatranscriptomes, where similarities occur
across a multitude of scales. The “top-down” approach that we outline here provides an effi-
cient method of constructing DHM:s that display phenotype relative abundance divergence
with homology divergence and is the method that we recommend for most cases, however, any
hierarchical clustering method can be used for DHM construction. While this paper discusses
the application of DHMs in an exclusively nucleic acid sequence context, their range is cer-
tainly not limited to sequence information and can be used in any dataset that has a pair of
groups that share underlying traits.

Supporting Information

S$1 File. DHM construction and top-down algorithm. This file contains a brief example of the
dendritic heat map construction process as well as the top-down algorithm.
(PDF)

S2 File. ZIP file containing Perl scripts, images, and configuration files for the bottom-up
approach. This file is a zipped folder containing the bottom-up Perl script described in the
methods section, high-resolution versions of the images in the discussion, and the configura-
tion files used by Circos to plot the images.

(Z1P)

S3 File. ZIP file containing Perl scripts, images, and configuration files for the top-down
approach. This file is a zipped folder containing the top-down Perl scripts described in the
methods section, high-resolution versions of the images in the discussion, the configuration
files used by Circos to plot the images, FASTA files of the artificial datasets, and an Excel file
summary of the clusters for each mutation dataset DHM.

(ZIP)
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