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Abstract
Short-term traffic flow prediction is one of the most important issues in the field of intelligent

transport system (ITS). Because of the uncertainty and nonlinearity, short-term traffic flow

prediction is a challenging task. In order to improve the accuracy of short-time traffic flow pre-

diction, a hybrid model (SSA-KELM) is proposed based on singular spectrum analysis (SSA)

and kernel extreme learning machine (KELM). SSA is used to filter out the noise of traffic

flow time series. Then, the filtered traffic flow data is used to train KELMmodel, the optimal

input form of the proposed model is determined by phase space reconstruction, and parame-

ters of the model are optimized by gravitational search algorithm (GSA). Finally, case valida-

tion is carried out using the measured data of an expressway in Xiamen, China. And the

SSA-KELMmodel is compared with several well-known prediction models, including support

vector machine, extreme learning machine, and single KLEMmodel. The experimental

results demonstrate that performance of the proposed model is superior to that of the com-

parison models. Apart from accuracy improvement, the proposed model is more robust.

1 Introduction
Short-term traffic flow prediction is one of the most important issues in the field of intelligent
transport system (ITS) [1–2]. Many subsystems of ITS such as Advanced Traffic Management
System (ATMS) and Advanced Traveler Information Systems (ATIS) can benefit from
improved prediction of traffic flow parameters (such as traffic volume, average traffic speed,
and average occupancy) in a short-term future.

Many researchers have paid more attention to short-term traffic flow prediction because of
its importance. As a result, a large number of relevant methods have been published in the aca-
demic literature. In general, these methods are categorized into three types [3–4]: traffic
model-based methods, statistical methods and machine learning-based methods. A brief sum-
mary of these three types of methods is shown in Table 1.
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1. Traffic model-based methods, which use the traffic flow model (include macroscopic model
and microscopic model) to predict the evolving mechanism of traffic flow. Macroscopic
model regards the traffic flow as fluid for exploring its evolution mechanism based on fluid
dynamics [5–6]. Microscopic model focuses on behavior of single vehicle and the interac-
tions between vehicles, such as lane changing model [7] and car following model [8].

2. Statistical methods, which is implemented by using the historical data to obtain optimal
parameters in the fitting process. Typical statistical methods have been proposed and
applied for years, such as local linear regression model [9] and Auto-Regressive Integrated
Moving Average (ARIMA) [10].

3. Machine learning-based methods, which can effectively capture the nonlinearity relation-
ship between the input and output existed in the data by using intelligent learning algo-
rithm. Such as Artificial Neural Network (ANN) [11–12] and Support Vector Machine
(SVM) [13–14].

Reader interested in details of these prediction models can refer to review papers such as
Refs. [15–17]. By analyzing the characteristics of the three types of methods, traffic model-
based methods and statistical methods often assume several restrictive assumptions, such as a
predefined model structure, the normality of residuals and the stationary of the time series,
which are seldom satisfied in the case of nonlinear and chaotic traffic flow. However, machine
learning-based methods are not restricted by previous assumptions. Particularly, ANN and
SVM are more popular because of their mature theoretical basis and the excellent prediction
performance.

In recent years, a novel learning algorithm called Extreme Learning Machine (ELM) is pro-
posed for training Single Layer Feed-forward Neural Network (SLFN) [18]. In ELM, input
weights and hidden biases are assigned randomly instead of being exhaustively tuned. For this
reason, ELM training is fast and saves a lot of computing resources. Moreover, ELM also avoids
falling into local minima in the learning process. Therefore, ELM achieves superior perfor-
mance than traditional SLFN and Back-Propagation (BP) learning algorithm. Because of these
advantages of ELM, it has been applied in different fields successfully [19–25]. In order to
improve the generalization ability of ELM and reduce time consumption for determining the
number of hidden layer nodes, Kernel Extreme Learning Machine (KELM) is developed more
recently by replacing the ELM hidden layer with a kernel function [26]. Different with SVM,
the kernel function of KELM does not need to satisfy Mercer’s theorem. Thus application of
KELM is easier than SVM. In addition, KELM is applied to solve many prediction or classifica-
tion problems and achieves comparative or superior performance [27–30]. In spite of great suc-
cess in some scientific fields, the KELMmethod is not utilized for predicting short-term traffic

Table 1. A brief summary of the three types of methods.

Types Advantages Disadvantages

Traffic model-based methods
(macroscopic traffic model,
microscopic traffic model)

Well-established theoretical background and good
interpretability, consider the effect of various factors
(incidents, road works, traffic control measures, etc)

Many parameters and assumptions need to defined in
advance, parameter calibration is difficult, small errors of
these parameters could lead to large prediction errors

Statistical methods (local linear
regression, ARIMA)

comparatively basic structure, easy and practical to be
used

Requires a great deal of historical data, gives some
restrictive assumptions, difficult to model nonlinear traffic
flow

Machine learning-based methods
(ANN, SVM)

Gains knowledge from training data, do not need to
predefined model structure, good robustness, ability to
approximate any degree of complexity of traffic flow

Requires a training procedure and a large number of
training data, poor interpretability

doi:10.1371/journal.pone.0161259.t001
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flow at present. Thus, we have reasons to believe that KELMmethod has a better application
prospect in traffic flow prediction and try to employ KELMmethod for building a traffic flow
prediction model in this paper. At the same time, to obtain the optimal KELMmodel, it is
important to choose a kernel function and determine the model parameters. If the parameters
are not selected correctly, the performance of KELMmodel is greatly reduced. In this paper,
Gravitational Search Algorithm (GSA) is introduced to optimize the parameters of KELM
model, which is a heuristic optimization method based on the Newtonian gravity law [31]. The
GSA has demonstrated potential in parameter determination for nonlinear models [32–34].

Moreover, the input form of KELMmodel affects its performance and training speed. With
the development of chaos theory, recent studies such as Refs. [35–37] have concluded that the
nonlinear chaotic phenomena existed in short-term traffic flow time series. Phase Space Recon-
struction (PSR) is the basis of chaotic time series analysis, which affects the prediction perfor-
mance directly. It can map scalar time series to the multi-dimensional phase space and mining
the implicit information thoroughly. Therefore, PSR is used to determine the optimal input
form of KELMmodel in this paper. Delay time and embedding dimension are the key parame-
ters for PSR. At present, there are many methods for choosing the two parameters. The meth-
ods can be used to calculate delay time including Autocorrelation Function method [38],
Mutual Information method [39] and Average Displacement method [40]. The methods can
be used to calculate embedding dimension including G-P method [41], False Nearest Neigh-
bors method [42] and Cao method [43]. However, C-C method [44] is different from these
methods and can simultaneously estimate delay time and embedding dimension based on sta-
tistical results. The advantages of C-C method are small amount of calculation, strong anti-
interference ability and easy to use. Thus, we choose C-C method to determine the two param-
eters for PSR.

The data pre-processing is necessary before training the KELMmodel. Due to inevitable
interference in the process of data acquisition or transmission, the original traffic data contain
some noise components and unpredictable components (outliers) which have less useful infor-
mation and often lead to over-fitting. In pre-processing process, removing noise and outliers of
chaotic time series can reduce its complexity and increase its predictability [45]. Spectrum
Analysis (SSA) is a relatively new time series analysis technique which combines multivariate
statistic, probability theory and signal processing [46]. SSA is suitable for time series with vari-
ous features and structures, such as stationary and non-stationary, linear and nonlinear time
series [47]. It can extract the main features of time series, remove noise and unpredictable com-
ponents effectively. So far, SSA has received increasing attentions and has been employed in
several areas successfully, such as medicine, energy, climatology, and economics [48–51].
Therefore, we choose SSA to filter traffic flow time series in the pre-processing process.

The main objective of this work is to propose a hybrid short-term traffic flow prediction
model named SSA-KELM using SSA and KELM. The KELM can achieve a better prediction
performance using the filtered traffic flow time series data, because noise components of the
original traffic time series have been removed by SSA during the pre-processing process. The
novelty of the proposed model is highlighted in the following aspects.

1. The KELM as a relatively novel machine-learning method is first studied for short-term
traffic flow prediction.

2. The SSA as an effective data pre-processing method is employed to process the original traf-
fic flow series.

3. In view of the chaotic characteristics of traffic flow, PSR is performed to determine the opti-
mal input form of the KELM.

Short-Term Traffic Flow Prediction Model Based on SSA and KELM
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4. The parameters of KELM are tuned by gravitational search algorithm (GSA) to achieve a
better prediction performance.

5. Non-parametric statistical tests are used for multiple comparisons of different prediction
models on multiple data sets.

The rest of this paper is organized as follows. In Section 2, SSA method and KELMmodel
are described briefly, and the hybrid traffic flow prediction model (SSA-KELM) is introduced.
In Section 3, empirical analysis is performed, the prediction results of several different predic-
tion models are given and discussed. In Section 4, conclusions and recommendations for future
study are presented.

2. Methodology
In this setction, the basic methods related to the SSA-KELMmodel are briefly introduced,
including Singular Spectrum Analysis (SSA), Kernel Extreme Learning Machine (KELM),
Phase Space Reconstruction (PSR) and Gravitational Search Algorithm (GSA). Then the main
steps of SSA-KELMmodel are given. In the SSA-KELMmodel, KELM is the basic prediction
method, SSA is used to filter the noise components from the original traffic data, PSR is used to
determine the optimal input form of KELM and the GSA is used to optimized the paramenters
of the KELM.

2.1 Singular spectrum analysis (SSA)
SSA performs four steps including embedding, singular value decomposition, grouping and
diagonal averaging. The first two steps are usually named decomposition of time series, while
the third step and fourth step called reconstruction of time series. A brief review of SSA is as
follows (more information can be obtained in Ref. [52]).

Step 1: Embedding. This step is to transform the original series into a sequence of multi-
dimensional vector. For one dimensional series vector with length N as X = (x1, � � �, xN). Given
a window length L(1< L< N), the initial series is mapped into K lagged vectors:

Xi ¼ ðxi; xiþ1; � � � ; xiþL�1ÞT ; i ¼ 1; 2; � � � ;K ¼ N � Lþ 1 ð1Þ

Then, the trajectory matrix is expressed as Eq (2). The matrix T is a Hankel matrix with size
of L × K, which has equal elements xij along the anti-diagonals where i + j = const,

T ¼ ½X1;X2; � � � ;XK � ¼

x1 x2 � � � xK

x2 x3 � � � xKþ1

� � � � � � � � � � � �
xL xLþ1 � � � xN

2
66664

3
77775 ð2Þ

Step 2: Singular Value Decomposition (SVD). Let S = TTT, the eigenvalues of S are calcu-
lated and arranged in decreasing order, denoted as λ1 � � � � �λL � 0. The eigenvectors of
matrix S corresponding to these eigenvalues are denoted as U1, � � � UL. Then the SVD of trajec-
tory matrix X is defined as Eq (3):

T ¼ T1 þ � � � þTd ð3Þ

where d is the rank of T,Ti ¼
ffiffiffiffi
li

p
UiV

T
i ði ¼ 1; � � � ; dÞ are elementary matrix (rank is 1),

Vi ¼ TTUi=
ffiffiffiffi
li

p
are principal components of matrix T. The collection ð ffiffiffiffi

li
p

;Ui;ViÞ is
termed as ith eigen triple of SVD. The contribution of Ti can be measured by ratio of
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eigenvalues and given by Eq (4),

Zi ¼ li=
Xd

i¼1

li ð4Þ

Step 3: Grouping. Indices set {1, � � �, d} is divided intom disjointed subsets I1, � � �, Im. Let
I = {i1, � � �, ip} and the resultant trajectory matrix TI corresponding to the group I is defined as
TI ¼ Ti1

þ � � � þTip
. The resultant trajectory matrices are calculated for every group I = I1, � � �,

Im and the expansion of Eq (3) leads to the decomposition as follows.

T ¼ TI1
þ � � � þTIm

ð5Þ

Step 4: Diagonal averaging: the grouped decomposition in Eq (5) is transformed a new series
with length N. Let Y1 = (y1, � � �, yN) be the transformed one dimensional series ofTI1

, elements

of Y1 is calculated by Eq (6).

yk ¼

1

k

Xk

j¼1

y�j;k�jþ1; 1 � k � L�

1

L�

XL�
j¼1

y�j;k�jþ1; L
� � k � K�

1

N � kþ 1

XN�K�þ1

j¼k�Kþ1

y�j;k�jþ1;K
� � k � N

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6Þ

where L� = min(L, K), K� = max(L, K); if L< K, y�j;k�jþ1 ¼ yj;k�jþ1 and if L� K, y�j;k�jþ1 ¼ yk�jþ1;j.

Thus the original series X = (x1, � � �, xN) is decomposed intom series:

Y ¼ Y1 þ � � � þYm ð7Þ

2.2 Kernel extreme learning machine (KELM)
A brief description of ELM and KELM is given in this section. Interested readers can refer to
Refs. [18, 26] for more details. The output function of ELM for generalized SLFN is

fLðxÞ ¼
XL

i¼1

bihiðxjÞ ¼
XL

i¼1

bigiðwi; bi; xjÞ ¼ hðxÞβ; j ¼ 1; � � � ;N ð8Þ

where gi(�) denotes the output of the i-th hidden node with respect to the input x, i.e., activation
function, such as “Sigmoid” function. wi 2 Rn is the weight vector connecting the ith hidden
layer neuron and the input layer neurons, bi the bias of the ith hidden layer neuron, βi 2 R is
the weight connecting the ith hidden neuron and the output neuron, and fL(x) is the output of
the SLFN. wi and bi are randomly assigned before learning.

If SLFN can approximate theses N samples with zero error, there exists βi, wi and bi such thatXL

i¼1

bigðwi; bi; xjÞ ¼ tj; j ¼ 1; 2; . . . ;N ð9Þ

Thus Eq (9) is expressed compactly as

Hβ ¼ T ð10Þ

Short-Term Traffic Flow Prediction Model Based on SSA and KELM
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Where

H ¼
h x1ð Þ
..
.

h xNð Þ

0
BB@

1
CCA ¼

hðw1; b1; x1Þ � � � hðwL; bL; x1Þ
..
. . .

. ..
.

hðw1; b1; xNÞ � � � hðwL; bL; xNÞ

2
664

3
775

N�L

ð11Þ

β ¼
bT
1

..

.

bT
L

0
BBB@

1
CCCA

L�m

andT ¼
tT1

..

.

tTN

0
BB@

1
CCA

N�m

ð12Þ

WhereH is the hidden layer output matrix, β is output weight matrix, and T is the target
matrix. In the ELM, β is the only parameter that needs to be calculated and can be easily
achieved by Least Squares Estimate (LSE)

β ¼ HyT ð13Þ

WhereH† is Moore-Penrose generalized inverse of matrixH. one of the methods for calculat-
ingH† is the orthogonal projection method:

Hy ¼ HT HHT
� ��1 ð14Þ

According to the ridge regression theory, the diagonal ofHHT can be add a positive value
for regularization, then we have

f xð Þ ¼ h xð Þβ ¼ h xð ÞHT I

C
HHT

� ��1

T ð15Þ

Where I is a unit matrix, C is penalty parameter. When the hidden feature mapping function h
(x) is unknown, a kernel matrix for ELM is used according to the following equation:

OELM ¼ HHT : OELMi;j
¼ h xið Þ � h xj

� �
¼ K xi; xj

� �
ð16Þ

where K(xi, xj) is a kernel function. Thus, the output function of ELM is denoted compactly as

f xð Þ ¼
K x; x1ð Þ

..

.

K x; xNð Þ

2
664

3
775

T

I

C
þ OELM

� ��1

T ð17Þ

Because of the application of kernel function in ELM, this novel learning algorithm is
named KELM. In KELM, weight vector wi, bias bi, the feature mapping function h(x) and the
number of hidden layer neurons L are not taken into consideration. Instead, KELM only
focuses on the kernel functions K(xi, xj) and the training data set. Many kernel functions can be
used for KELM, such as linear, polynomial and Gaussian radial basis function (RBF). We
choose the Gaussian RBF kernel K(u, v) = exp(−ku − vk2 / 2σ2) to construct KELMmodel
because of its superior performance [26, 30]. In the KELM with Gaussian RBF kernel, the are
two key parameters (penalty parameter C and kernel parameter σ) need to be determined.

Short-Term Traffic Flow Prediction Model Based on SSA and KELM
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2.3 Phase space reconstruction (PSR)
According to Takens’ Embedding Theorem [53], as enough delayed coordinates are used, sca-
lar time series is sufficient to reconstruct the dynamic of the underlying systems. For a time
series {x(i), i = 1, 2, � � �, N}, the phase space can be reconstructed according to

X ið Þ ¼ fx ið Þ; x iþ tð Þ; � � � ; x iþ ðm� 1Þt½ �g ð18Þ

Where τ is delay time,m is embedding dimension. According to phase space reconstruction.
Input of the model is [xi, xi+τ, � � �, xi+(m−1)τ] and output of the model is xi+(m−1)τ+1.

The C-C method is used to determine delay time τ the embedding dimensionm. According
to Ref. [39], the basic principle of C-C method is as follows.

The correlation integral is defined as

C m;N; r; tð Þ ¼ 2

M M � 1ð Þ
X
1�i�j�M

H r � dij
� �

ð19Þ

where r is the search radius,M = N–(m– 1)τ is the number of embedded points inm-dimen-
sional space, N is the data number of the time series. dij = kXi−Xjk is Euclidean distance
between two points, H(z) is a Heaviside function

H zð Þ ¼ 1 z > 0ð Þ
0 z � 0ð Þ

(
ð20Þ

The correlation integral is a cumulative distribution function and denotes the probability of
distance that between any pairs of points in the phase space is not greater than r.

The time series {x(i), i = 1, 2, � � �, N} is divided into t disjoint time series:

fx 1ð Þ; x t þ 1ð Þ; x 2t þ 1ð Þ; � � �g
fx 2ð Þ; x t þ 2ð Þ; x 2t þ 2ð Þ; � � �g

..

.

fx 3ð Þ; x t þ 3ð Þ; x 2t þ 3ð Þ; � � �g

ð21Þ

The test statistics is

S m;N; r; tð Þ ¼
Xt

l¼1

1

t
ClðM;

N
r
; r; tÞ � Cm

l 1;
N
r
; r; t

� �	 

ð22Þ

As N!1, the Eq (22) can be expressed as

S m; r; tð Þ ¼
Xt

l¼1

1

t
ClðM; r; tÞ � Cm

l 1; r; tð Þ� � ð23Þ

The maximum deviation ΔS(m, t) of S(m, r, t) ~ t with r is defined as

DS m; tð Þ ¼ fmaxS m; ri; tð Þ �minS m; rj; t
� �

g ð24Þ

According to the BDS statistical results obtained by Brock et al. [54],m = 2, 3, 4, 5, ri = iσ / 2
and i = 1, 2, 3, 4 is selected in general, where σ is standard deviation of time seires. Calculate the
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following variables,

�SðtÞ ¼ 1

16

X5

m¼2

X4

j¼1

Sðm; rj; tÞ ð25Þ

D�SðtÞ ¼ 1

4

X5

m¼2

DS m; tð Þ ð26Þ

ScorðtÞ ¼ D�SðtÞ þ j�SðtÞj ð27Þ

where �SðtÞ is the mean of S(m, r, t) for all subsequence. Let t equal or be smaller than 200, the
first local minimum point of D�SðtÞ 	 t is the delay time τ. The global minimum point of Scor
(t) ~ t is the delay time window τw. The embedding dimensionm is calculated according to
τw = (m − 1)τ.

2.4 Gravitational search algorithm (GSA)
In GSA, a set of agents has been given to find optimum solution based on Newtonian gravity
law. Assume agents with number N in the dimension of n, and the position of ith agent is
defined as:

Xi ¼ x1i ; � � � ; xdi ; � � � ; xni
� �

; i ¼ 1; 2; � � � ;N ð28Þ

Where xdi is the position of ith agent in the dth dimension. The main steps of GSA are as
follows:

Step 1: Initialize velocity and positon of each agent.
Step 2: Evaluate the fitness of each agent.
Step 3: Update gravitational constant G(t) according to the following equation:

G tð Þ ¼ G0 � e�a=T ð29Þ

where G0 is the initial gravitational constant, α is decay rate (some arbitrary constant) and T is
the maximum number of iterations.

Step 4: Calculate the gravitational (inertia) mass of each agent using the following equation:

mi tð Þ ¼
fiti tð Þ � worst tð Þ
best tð Þ � worst tð Þ

Mi tð Þ ¼
mi tð ÞXN

j¼1
mj tð Þ

8>>>><
>>>>:

ð30Þ

WhereMi(t) and fiti(t) are the mass and the fitness value of the agent i at time t, respectively.
worst(t) and best(t) are the worst fitness value of agent and the best fitness value of agent,
respectively.

Step 5: Calculate the resultant force of agents according to the law of universal gravitation.

Fd
ij tð Þ ¼ G tð ÞMi tð Þ �Mj tð Þ

Rij tð Þ þ ε
� xdi tð Þ � xdj tð Þ
� �

ð31Þ

where Fd
ij tð Þ is the gravitation between the agent i in the d dimension and agent j at time t;

Mi(t) andMj(t) are the passive gravitational mass of agent i and agent j respectively; ε is the
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small constant for avoiding the divisor equal to zero; xdi tð Þ is the position of agent i in d dimen-
sion and xdj tð Þ is the position of agent j at time t; Rij(t) = kxi(t), xj(t)k2 is the Euclidean distance

between agent i and agent j.
Step 6: Calculate accelerated velocity of agent. Accelerated velocity adi tð Þ at time t in d

dimension is expressed as follows.

adi tð Þ ¼
XN

i¼1;j6¼1
rand � Fd

ij tð Þ
Mi tð Þ

ð32Þ

where rand is a random number in the interval [0, 1].
Step 7: Update the positon and velocity of each agent according to Eqs (33) and (34) respec-

tively.

vdi t þ 1ð Þ ¼ rand � vdi tð Þ þ adi tð Þ ð33Þ

xdi t þ 1ð Þ ¼ xdi tð Þ þ vdi t þ 1ð Þ ð34Þ

Step 8: If the stopping criterion is satisfied, output optimal parameters, else proceed to Step 2.

2.5 SSA-KELMmodel
The overall flowchart of SSA-KELMmodel is illustrated as Fig 1. And the main steps of SSA-
KELMmodel are as follows.

Step 1: The original traffic flow time series is filtered by SSA and get a reconstruction time
series without nosie components.

Fig 1. The flowchart of SSA-KELMModel.

doi:10.1371/journal.pone.0161259.g001
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Step 2: The optimal input form of the KELM is determined by PSR. The filtered traffic flow
time series is used to train the KELMmodel, while the original traffic flow time series is used to
test the KELMmodel.

Step 3: The parameters of KELMmodel are optimized by GSA.

(3.1) Initialize the parameters of the KELMmodel and GSA.

(3.2) Train the KELMmodel and evaluate the fitness value of each agent.

(3.3) Update G(t), best(t) and worst(t) of the population.

(3.4) CalculateMi(t) and adi tð Þ for each agent.

(3.5) Update the positon and velocity of each agent.

(3.6) Judge whether the terminated conditions are reached (usually the default calculation
accuracy or iterations). If reached, continue to step 3.7; otherwise, go to step 3.2 and con-
tinue to search.

(3.7) Output the optimal parameters of KELMmodel.

3 Empirical research
In this section, the measured data is used to validate the performance of SSA-KELMmodel.
First, a detailed description of the data source is given. Then, the traffic data is used to illustrate
how to construct and optimize the SSA-KELMmodel. Finally, the performance of the SSA-
KELMmodel is compared to that of several prediction models on multiple data sets. Besides
the traditional statistical indices are employed to evaluate the performances of all the predic-
tion models, non-parametric tests are used to analyze the results of the contrast experiment.

3.1 Data Source
All the experimental traffic volume data is obtained from two loop detectors (No. DC00004965
and No. DC00004966) installed on an expressway named Lianqian W Rd in Xiamen, China.
The two detectors’ locations are approximately shown in Fig 2, where No. DC00004965 detec-
tor locates in the westbound direction while No. DC00004966 detector locates in the eastbound
direction. The traffic data is collected every 5 min in five consecutive working days (January 5,
2015 to January 9, 2015). Although average speed is also available, only traffic volume is con-
sidered in this study. The original traffic volume data is shown in Fig 3. The traffic volume data
of the first four days is used to construct the SSA-KELMmodel, while the traffic volume data
of the fifth day is used to test the KELMmodel. In the following several subsections, traffic vol-
ume data from No. DC00004966 detector is used as an example to illustrate how to build and
optimize the SSA-KELMmodel in detail, while traffic volume data from the two detectors is all
used to evaluate the performance of the SSA-KELMmodel.

3.2 SSA decomposition and reconstruction
As mentioned in subsection 2.1, the window length L is the only parameter in the decomposi-
tion process. If the time series has a periodic component, the window length is taken propor-
tional to that period to get better separability [55]. Therefore, L = 288 is assumed here, which
corresponds to daily variations of traffic volume time series. This window length results in 288
Eigen triples. Each Eigen triples corresponds to a singular value. Fig 4 depicts the curve of lead-
ing 72 singular values in descending order (take the base-10 logarithm). As shown in Fig 4, the
leading 31 singular values decrease rapidly while the remaining singular values decrease slowly,
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Fig 2. The two detectors’ locations on the LianqianWRd.

doi:10.1371/journal.pone.0161259.g002

Fig 3. The traffic volume data in five consecutive working days: (a) DC00004965 and (b) DC00004966.

doi:10.1371/journal.pone.0161259.g003
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which means that the remaining eigen triples correspond to the noise components and can be
ignored in the reconstruction process. Moreover, the singular value pairs with same or similar
singular value, such as {2, 3}, {4, 5}, {6, 7} and . . ., which correspond to oscillatory components.

Fig 5 shows the reconstruction traffic volume time series and contribution ratio corre-
sponding to the leading 9 Eigen triples. The first Eigen triple almost represents the whole
trend of the original traffic volume series, which has a share (contribution) of 75.812% of orig-
inal traffic volume series. Every oscillatory component produces two Eigen triples with close
singular values, such as {2, 3}, {4, 5}, {6, 7}, {8, 9}, which have a close frequency and a close
contribution ratio.

According to the above analysis, the traffic volume series is reconstructed by using the lead-
ing 31 Eigen triples. Fig 6 shows the reconstruction series with a share of 98.27% of original
traffic volume series. Fig 7 shows the noise (residual) series with a share of 1.73% of original
traffic volume series. As shown in Fig 7, we can see it clearly that the reconstruction series has a
satisfactory residual.

3.3 Determination of the optimal input form
The C-C method is used to implement phase space reconstruction for determining the

optimal input form of the proposed model. Fig 8 shows the D�S tð Þ 	 t curve. The variable t

Fig 4. Singular values curve (in descending order).

doi:10.1371/journal.pone.0161259.g004

Fig 5. The reconstruction series and contribution ratio corresponding to the leading 9 Eigen triples.

doi:10.1371/journal.pone.0161259.g005
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corresponding to the first local minimum value of D�SðtÞ is the time delay τ and we can get τ =
9. Fig 9 shows Scor(t) ~ t curve. The variable t corresponding to the global minimum value of
Scor(t) is the embedding window width τw of the time series and we can get τw = 125. Thus, the
embedding dimensionm = 15 according to τw = (m − 1)τ. Based on phase space reconstruction,
input and output of the training set are as follows.

input ¼

x1 x1þ9 x1þ2�9 � � � x1þð15�1Þ�9

x2 x2þ9 x2þ2�9 � � � x2þð15�1Þ�9

x3 x3þ9 x3þ2�9 � � � x3þð15�1Þ�9

..

. ..
. ..

. . .
. ..

.

x1025 x1025þ9 x1025þ2�9 � � � x1025þð15�1Þ�9

2
6666666664

3
7777777775

output ¼

x1þð15�1Þ�9þ1

x2þð15�1Þ�9þ1

x3þð15�1Þ�9þ1

..

.

x1025þð15�1Þ�9þ1

2
6666666664

3
7777777775

Fig 6. The reconstruction series.

doi:10.1371/journal.pone.0161259.g006

Fig 7. The noise (residual) series.

doi:10.1371/journal.pone.0161259.g007
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3.4 Parameter Optimization
GSA is employed to optimize the two parameters of the KELMmodel. In order to ensure the
algorithm efficiency, the mean absolute percentage error is taken as fitness function. Then the
fitness function is calculated as follows.

fitness ¼ 1

n

Xn

i¼1

j yi � ~yi

yi
j ð35Þ

Where yi is the real value in time interval i, ~yi is the prediction value for time interval i and n is
the total number in the time series.

The specific parameters of GSA are as follows: population size is set to 20, the initial gravita-
tional constant G0 = 100, the attenuation rate α = 10, the maximum number of iteration is set
to 100, the value range of parameter C is set to [0.1, 1000] and the value range of kernel param-
eter σ is set to [0.01, 100].

In the process of parameter optimization, the k-cross validation method [56] is used to train
the model. Because this method can make full use of the information in the sample and avoid
over-fitting and under-fitting. In other words, it can improve the generalization ability of the
model under the premise of ensuring good prediction accuracy. In k-cross validation, the train-
ing data set is randomly divided into k subsets. The k − 1 subsets are used as training set for
building the model and the kth subset is used as a validation set for verifying model perfor-
mance. Each subset is used as a validation set and the verifying is repeated k times in total. The
average value of the results of k times verifying is used to evaluate the model performance. Fig 10
shows the fitness curves (include the best fitness and the average fitness). As shown in Fig 10,

Fig 8. The DSðtÞ 	 t curve.

doi:10.1371/journal.pone.0161259.g008

Fig 9. The Scor(t) ~ t curve.

doi:10.1371/journal.pone.0161259.g009
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with the increase of the number of iterations, the fitness curve is gradually convergent. When the
number of iterations is 96, both the best fitness and average fitness are 0.0135 (MAPE = 1.35%).
And the corresponding optimal parameter combination of the model is C = 7.28 and σ = 0.15.

3.5 Performance Evaluation Index
In order to evaluate the performance of the proposed model, two statistical indices are utilized
to measure the prediction accuracy. These indices are the MAE (mean absolute error) and
MAPE (mean absolute percent error). The smaller values of MAE and MAPE, the more accu-
rate prediction results are. The calculation formulas for the MAE and MAPE are as follows:

MAE ¼ 1

n

Xn

i¼1

jyi � ~yij ð36Þ

MAPE ¼ 1

n

Xn

i¼1

j yi � ~yi

yi
j ð37Þ

where yi is the real value in time interval i, ~yi is the prediction value for time interval i and n is
the total number of the time series.

3.6 Model Performance and Analysis
Traffic volume data from the fifth day is used as test set to evaluate the performance of the pro-
posed model. For illustrating the model performance intuitively, Figs 11 and 12 show predic-
tion results of the proposed model using NO. DC00004965 detector’s data and NO.
DC00004966 detector’s data, respectively. Figs 11(a) and 12(a) present the curves of prediction
data and measured data. The prediction curves can fit the measured curves well. Figs 11(b) and
12(b) present the scatterplots between the predicted data and the measured data. It is clear that
these scatter points distribute near the measured line (the red line) without large deviation.
Figs 11(c) and 12(c) show APE (absolute percent error) of the predicted data. The APE are
mostly within 15%. However, the APE from 24 to 48 (correspond to 2:00–4:00) is larger, and
the reason is that the actual traffic volume data is too small during that period.

To illustrate the superiority of the SSA-KELMmodel, contrast experiment is carried out. In
this paper, the related models for comparsion are as follows: the single model (KELM), the

Fig 10. Fitness curves of GSA.

doi:10.1371/journal.pone.0161259.g010
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hybrid model (SSA-SVM) based on SSA and SVM, and the hybrid model (SSA-ELM) based on
SSA and ELM. The optimal input forms of all models are determined by PSR, and the training
sets of SSA-SVMmodel and SSA-ELM model are the same as the SSA-KELMmodel. However,
the original traffic volume data without being filtered by SSA is used to train the KELMmodel.
The parameters of the related models are optimized by GSA, shown in Table 2.

Besides related models (SSA-SVM, KELM and SSA-ELM) mentioned above, two state-of-
the-art traffic flow prediction models are used for comparison, that are Hybrid Particle Swarm
Optimization Support Vector Regression (HPSO-SVR) model [57] and Long Short-Term
Memory Neural Network (LSTM-NN) model [58]. In the contrast experiment, we implement
the two state-of-the-art models according to detail steps of the corresponding references.

Fig 13(a) describes the prediction results of the related models based on NO. DC00004965
detector’s data, Fig 13(b), 13(c) and 13(d) are specific parts of the prediction results. Fig 14(a)
describes the prediction results of the state-of-the-art models based on NO. DC00004965
detector’s data. Fig 14(b), 14(c) and 14(d) are specific parts of the prediction results. Fig 15(a)
describes the prediction results of related models based on NO. DC00004966 detector’s data.
Fig 15(b) is a specific part of the comparison results. Fig 16(a) describes the prediction results
of state-of-the-art models based on NO. DC00004966 detector’s data. Fig 16(b) is a specific
part of the comparison results. As shown in Figs 13(a), 14(a), 15(a) and 16(a), it is clearly that
the SSA-KELMmodel have the best fitting performance, especially when the traffic volume
changes greatly (it is clearly shown in Figs 13(b), 13(c), 13(d), 14(b), 14(c), 14(d), 15(b) and 16
(b)). Fig 17(a) and 17(b) present the frequency of absolute error distribution for all models
based on NO. DC00004965 detector’s data and NO. DC00004966 detector’s data, respectively.

Fig 11. The prediction performance of the proposedmethod based on NO. DC00004965 detector’s
data: (a) Curves of predicted data andmeasured data; (b) Scatterplot of predicted data andmeasured
data; (c) Absolute percent error of predicted data.

doi:10.1371/journal.pone.0161259.g011

Fig 12. The prediction performance of the proposedmethod based on NO. DC00004966 detector’s
data: (a) Curves of predicted data andmeasured data; (b) Scatterplot of predicted data andmeasured
data; (c) Absolute percent error of predicted data.

doi:10.1371/journal.pone.0161259.g012

Short-Term Traffic Flow Prediction Model Based on SSA and KELM

PLOSONE | DOI:10.1371/journal.pone.0161259 August 23, 2016 16 / 25



For the SSA-KELMmodel, we can clearly see that frequency distribution of absolute errors in
the interval [0,5) is the highest, and almost all the absolute errors of SSA-KELMmodel are less
than 25, which illustrates the prediction model has better stability.

Table 3 gives the prediction accuracy by using two statistical indices (MAE and MAPE).
The prediction accuracy of the SSA-KELMmodel is improved significantly compared with the

Table 2. Parameters of the related models.

Model parameters

KELM penalty parameter is 18.5

RBF kernel parameter is 0.41

SSA-SVM penalty parameter is 53.6

RBF kernel parameter is 0.02

SSA-ELM the number of hidden layer neurons is 27

doi:10.1371/journal.pone.0161259.t002

Fig 13. Prediction results of related models based on NO. DC00004965 detector’s data (a) and its
parts specific prediction results (b), (c), (d).

doi:10.1371/journal.pone.0161259.g013

Fig 14. Prediction results of state-of-the-art models based on NO. DC00004965 detector’s data (a) and
its parts specific prediction results (b), (c), (d).

doi:10.1371/journal.pone.0161259.g014
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other three models. More precisely, in the aspect of MAE, the SSA-KELMmodel gets an extra
28.13% improvement over the SSA-ELMmodel, an extra 38.53% improvement over the
SSA-SVMmodel, an extra 40.46% improvement over the KELMmodel, an extra 26.08%
improvement over the HPSO-SVR model, and an extra 22.94% improvement over the
LSTM-NN model. In the aspect of MAPE, the SSA-KELMmodel gets an extra 27.55%
improvement over the SSA-ELMmodel, an extra 36.58% improvement over the SSA-SVM
model, an extra 38.32% improvement over the KELMmodel, an extra 29.37% improvement
over the HPSO-SVR model, and an extra 24.62% improvement over the LSTM-NNmodel.
The traffic volume time series shown in Figs 13(b), 13(c), 13(d) and 15(b) are denoted as sub-
case 1, 2, 3 and 4 respectively, because of their great changing during the period (include traffic
state transitional period). The performance indices for these four subcases are shown in
Table 4, which illustrate that performance of the SSA-KELMmodel is also better than the
other models, when traffic volume changes greatly.

Fig 15. Prediction results of related models based on NO. DC00004966 detector’s data (a) and its
parts specific prediction results (b).

doi:10.1371/journal.pone.0161259.g015

Fig 16. Prediction results of state-of-the-art models based on NO. DC00004966 detector’s data (a) and
its parts specific prediction results (b).

doi:10.1371/journal.pone.0161259.g016
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Comparison results of the SSA-KELMmodel, the SSA-ELM model and the SSA-SVM
model show that the performance of KELM is better than ELM and SVM in this case. Compar-
ison results of the SSA-KELMmodel and the KELMmodel show that using SSA to filter noise
of the original traffic volume time series can improve the model’s performance effectively.
Moreover, the experimental results also demonstrate that the SSA-KELMmodel achieves good
prediction performance using both NO. DC00004965 detector’s data and NO. DC00004966
detector’s data, which illustrate that SSA-KELMmodel has a robust generalization ability.
Comparison results of the SSA-KELMmodel, HPSO-SVR model and LSTM-NN model show
that the SSA-KELMmodel can further improve the accuracy of short-term traffic flow
prediction.

3.7 Non-parametric tests for multiple comparisons of different models
In order to find significant differences among the results obtained by the studied models, statis-
tical analysis should be performed. In this paper, non-parametric tests are used as suggested in
Refs. [59–61]. The parametric statistical analysis loses its credibility because the initial condi-
tions guaranteeing its reliability may not be satisfied [59]. They can offer safe and reliable pro-
cedures to contrast the differences between different techniques, especially in multiple-
problem analysis.

To compare the performance of multiple models on the multiple data sets, Friedman
aligned-ranks test is conducted according to the suggestions of Ref. [60]. Table 5 shows the
average ranking of all models. In terms of both MAE and MAPE, the performances of all mod-
els can be sorted by average ranking into the following order: SSA-KELM, LSTM-NN,

Fig 17. The frequency of absolute error distribution for all models using (a) NO. DC00004965
detector’s data and (b) NO. DC00004966 detector’s data.

doi:10.1371/journal.pone.0161259.g017

Table 3. Performance indices for different models.

Model Detector (DC00004965) Detector (DC00004966) Mean of the two detectors

MAE MAPE MAE MAPE MAE MAPE

SSA-ELM 6.78 8.80% 6.93 8.61% 6.86 8.71%

SSA-SVM 7.66 10.00% 8.38 9.89% 8.02 9.95%

KELM 8.64 10.95% 7.92 9.51% 8.28 10.23%

SSA-KELM 4.68 6.44% 5.18 6.18% 4.93 6.31%

HPSO-SVR 6.82 8.98% 7.13 8.36% 6.98 8.67%

LSRM-RNN 6.34 8.54% 6.73 8.02% 6.54 8.28%

doi:10.1371/journal.pone.0161259.t003
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HPSO-SVR, SSA-ELM, SSA-SVM and KELM. It means that SSA-KELM and KELM are the
best and worst ones among the six models, respectively. Then, if significant differences are
found, we will check whether the control model (the best one) significantly outperformed the
others (that is, 1×n comparison) using post hoc tests (such as Holm, Hochberg, Hommel and
Finner). In this study, we choose the best performing model, SSA-KELM, as the control model
for being compared with the rest of models. Under the null hypothesis, the two models are
equivalent. If the null hypothesis is rejected, then the performances of these two models are sig-
nificantly different. In this paper, we only discuss whether the hypotheses are rejected at the
0.05 level of significance. Tables 6 and 7 show the results of adjusted p values in terms of MAE
and MAPE respectively, where the p values below 0.05 are shown in bold. In terms of MAE,
Holm, Hochberg and Hommel tests reject hypotheses 1–3, while Finnner test rejects hypothe-
ses 1–4. In terms of MAPE, all the post hoc tests reject hypotheses 1–4. All the results of post
hoc tests show that the performance of SSA-KELM is significantly better than that of
SSA-ELM, SSA-SVM and EKLM. Partial results of post hoc tests show that the performance of
SSA-KELM is significantly better than that of HPSO-SVR. Though SSA-KELM is not statisti-
cally better than LSTM-NN, SSA-KELM outperforms LSTM-NN according to the results of
the average ranking.

Table 4. Performance indices of different models for the four subcases.

Model MAE MAPE

Subcase 1 Subcase 2 Subcase 3 Subcase 4 Subcase 1 Subcase 2 Subcase 3 Subcase 4

SSA-ELM 8.16 9.8 8.04 8.98 8.91% 7.92% 8.92% 8.96%

SSA-SVM 9.92 11.20 8.76 10.84 11.05% 9.35% 10.03% 10.20%

KELM 9.78 11.64 10.69 9.65 10.56% 9.64% 12.17% 9.80%

SSA-KELM 6.30 5.36 5.00 6.59 6.62% 4.37% 5.71% 6.41%

HPSO-SVR 6.86 8.84 8.71 8.65 8.54% 7.92% 9.75% 8.39%

LSTM-RNN 8.78 8.72 7.45 8.08 8.97% 7.34% 8.59% 7.56%

doi:10.1371/journal.pone.0161259.t004

Table 5. Average Rankings of the models using Aligned Friedman.

Model Ranking (MAE) Ranking (MAPE)

SSA-KELM 3.5 3.5

KELM 31.3333 31.3333

SSA-SVM 29.6667 29.6667

SSA-ELM 18.3333 18.0833

HPSO-SVR 16 17.5833

LSTM-NN 12.1667 10.8333

doi:10.1371/journal.pone.0161259.t005

Table 6. Adjusted p-values of the models in terms of MAE.

i Model unadjusted p pHolm pHochberg pHommel pFinner

1 KELM 0.000005 0.000024 0.000024 0.000024 0.000024

2 SSA-SVM 0.000017 0.000068 0.000068 0.000068 0.000042

3 SSA-ELM 0.014745 0.044235 0.044235 0.044235 0.024454

4 HPSO-SVR 0.03988 0.07976 0.07976 0.07976 0.049599

5 LSTM-NN 0.154218 0.154218 0.154218 0.154218 0.154218

doi:10.1371/journal.pone.0161259.t006
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4 Conclusions
A novel short-term traffic flow prediction model (SSA-KELM) is proposed based on SSA and
KELM. The prediction accuracy of SSA-KELMmodel compares with that of SSA-ELM model,
SSA-SVMmodel and single KELMmodel using the same real-world traffic volume data. The
prediction results are encouraging, especially at the period that traffic volume changes greatly.
The main contributions of this paper are not only the introduction of KELMmethod for traffic
flow prediction and how to optimize the model parameters based on GSA, but also considering
the chaotic characteristics of short-term traffic flow and determining the model’s optimal input
form based on PSR. It is worth noting that filtering original traffic volume data in the prepro-
cessing stage is important. The new time series reconstructed by SSA retains the main charac-
teristics of the original traffic volume time series (the contribution ratio is 98.27%), but has
filtered the main noise components. A conclusion can be got that the proposed model is an
effective and accurate method for short-time traffic flow prediction, which can provide satisfac-
tory prediction results. Although the experimental results presented here are promising and
the SSA-KELMmodel can be successfully applied to predict traffic flow, this model suffers
from weak interpretability like other ANN-based models. In future work, the model with well
interpretability can be introduced into the proposed model, such as fuzzy system and its
improvement [62–64]. It is difficult to improve the interpretability of the model while keeping
the accuracy of the model. And it is a difficulty that how to reflect the characteristics of traffic
flow in the model.

To obtain more general and robust conclusions, traffic flow data from different roadways
and more complicated traffic conditions should be used to test the proposed model. Moreover,
it is required that the other data sets of traffic flow parameters (such as travel time, average traf-
fic speed and average occupancy, this study chooses the traffic volume as the demonstration)
are applied to test the model. Furthermore, traffic flow parameters data set with different time
intervals (such as 1 min, 2 min and 10 min) should be used to test the proposed model for fur-
ther study. Other advanced optimization algorithms should be further studied to search for
more appropriate parameter combinations of the model and to obtain more accurate results of
short-term traffic flow prediction.
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S1 Dataset. The traffic volume data from the two detectors.
(XLSX)
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