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Abstract
A Hyperspectral (HS) image provides observational powers beyond human vision capabil-

ity but represents more than 100 times the data compared to a traditional image. To trans-

mit and store the huge volume of an HS image, we argue that a fundamental shift is

required from the existing “original pixel intensity”-based coding approaches using tradi-

tional image coders (e.g., JPEG2000) to the “residual”-based approaches using a video

coder for better compression performance. A modified video coder is required to exploit

spatial-spectral redundancy using pixel-level reflectance modelling due to the different

characteristics of HS images in their spectral and shape domain of panchromatic imagery

compared to traditional videos. In this paper a novel coding framework using Reflectance

Prediction Modelling (RPM) in the latest video coding standard High Efficiency Video Cod-

ing (HEVC) for HS images is proposed. An HS image presents a wealth of data where

every pixel is considered a vector for different spectral bands. By quantitative comparison

and analysis of pixel vector distribution along spectral bands, we conclude that modelling

can predict the distribution and correlation of the pixel vectors for different bands. To exploit

distribution of the known pixel vector, we estimate a predicted current spectral band from

the previous bands using Gaussian mixture-based modelling. The predicted band is used

as the additional reference band together with the immediate previous band when we apply

the HEVC. Every spectral band of an HS image is treated like it is an individual frame of a

video. In this paper, we compare the proposed method with mainstream encoders. The

experimental results are fully justified by three types of HS dataset with different wave-

length ranges. The proposed method outperforms the existing mainstream HS encoders in

terms of rate-distortion performance of HS image compression.

Introduction

Hyperspectral (HS) images are concernedwith the measurement, analysis, and interpretation
of spectra acquired from a given scene (or specific object) at a short, medium or long distance.
Depending on the different image collectingmethod, HS imaging systems broadly fall into two
categories: airborne and ground-based. [1]. HS images are produced by spectrometers, which

PLOS ONE | DOI:10.1371/journal.pone.0161212 October 3, 2016 1 / 16

a11111

OPENACCESS

Citation: Paul M, Xiao R, Gao J, Bossomaier T

(2016) Reflectance Prediction Modelling for

Residual-Based Hyperspectral Image Coding. PLoS

ONE 11(10): e0161212. doi:10.1371/journal.

pone.0161212

Editor: Chuan-Chin Chiao, National Tsing Hua

University, TAIWAN

Received: April 7, 2016

Accepted: August 2, 2016

Published: October 3, 2016

Copyright: © 2016 Paul et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was funded by a Charles Sturt

University PhD scholarship, Faculty of Business,

Charles Sturt University compact funding, and

Charles Sturt University RIBG grant.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0161212&domain=pdf
http://creativecommons.org/licenses/by/4.0/


divide images into many bands (i.e. wavelength images). This is different from greyscale or col-
our images (RGB) with only one or a few relatively broad wavelength bands, mostly in three
bands (red, green, and blue). HS images can provide a wealth of spectral information, usually
beyond visible wavelengths.

A HS image includes hundreds of narrow and contiguous spectral bands. Each band which
corresponds to intervals of wavelengths can range from 400nm to 2500nm or more. A HS image
with distinct reflectance-distributionin particularwavelengths [1] shows the distribution of
reflectance values in different wavelength bands for a number of different types of objects such as
soil, vegetation, and water, which provide a unique signature based on the reflectance values.
With the recent development in electronics and imaging sensor design,HS cameras are becom-
ing affordable which opens new applications in agriculture,mineralogy, physics and surveillance
around the world in laboratory and industry settings that use HS imaging.

A HS image represents 100 times more data compared to a traditional RGB (red, green, blue)
image if we consider the same resolution of a HS image with 300 bands and an RGB image with
three color channels. Thus, any processing and transmission of a HS image needs a sophisticated
compression strategy. The existing lossless (where original data can be perfectly reconstructed
from compressed data) HS image compression standard [2] only provides a very small compres-
sion ratio that limits HS applications. Moreover, there is no lossy HS compression standard in
existence as yet. We argue that a fundamental shift is required from the existing “original pixel
intensity”-based coding approaches using traditional image coders (e.g. JPEG2000) to the “resid-
ual” based approaches similar to a video coder (e.g. HEVC [3]) to achieve high compression
ratios for HS images. The system can be made analogous to video coding by treating each band
as a temporal frame. A high level of correlation exists in bands as they correspond to the same
location of objects. However, bands corresponding to different wavelengths have different
dynamic ranges, and thus do not lend themselves easily to simple residual coding [4].

Applying a video coder to the HS-residual in a straightforwardway would not provide the
expected compression due to the larger magnitude of the residual compared to traditional
video frames where motion prediction modelling is used. Thus, a significant compression gain
could be achieved if we can correctly predict a spectral band from previously encoded bands to
minimize the residual in closed loop coding.

In this paper, a novel lossy compression framework using Reflectance Prediction Modelling
(RPM) for a HS image is proposed. To take advantage of the similarity and variability among
contiguous spectral bands, we generate a common informatics wavelength (CIW) band in each
band using a Gaussian mixture modelling and a linear spectral predicted band by considering the
differences of spectral bands. The first wavelength band is encoded as intra-coded and the
remainder of wavelength bands in a HS image are coded as inter-coded (similar to video coding)
by using two reference bands: one is the immediately previous encodedwavelength band and the
other is an instant CIW band. Obviously the CIW band is updated before encoding the current
band using the spectral predicted band through Gaussian modelling. This is a new approach to
using HEVC inter-coding for HS data compression, with RPM noticeably improving the HEVC-
inter compression performance in our experiments. The results of the experiment confirm that
the proposed compression technique based on RPM outperforms the standalone HEVC and
other leading-edge compression techniques in terms of rate-distortion performance.

Background

Several types of HS image compression studies are available in literature based on spectral dec-
orrelation and spectral dimensionality reduction. One of the commonly used algorithms is
based on Principal Component Analysis (PCA) [5–7]. PCA is a dimensionality reduction
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method. The original image is projected onto the subspace based on the variance within the
data. It changes the original HS image physical data structure and also costs part of the image
data loss. Another approach is to keep HS data in the original spectral dimension. A HS image
can be encodedwithout significant loss of information, for this purpose optimal compression
cube (OCC) [8] has been introduced. It calculates the average of cross correlation of the intra-
band then determines an OCC for higher data redundancy. OCChas well-preserved transform
information and can achieve higher rate-distortion performance than PCA-based compression
techniques while applying different existing encoder techniques. Tang, Xing, Li and Wang [9]
use an adaptive band selection to reduce dimensionality. In this method, adjacent bands are
arranged into one group and compressed using the JPEG-LS standard. Other than the above-
mentioned methods, PCA-discrete cosine transform (DCT) and PCA-JPEG2000 have also been
widely applied in HS image compression fields [10–18].

Numerous 2D compression techniques are extended for specific 3D HS data structures, such as
3D discrete wavelet transform (DWT) [18–20] and 3D-DCT. In the 2D DCTof the JPEG standard,
a block size of 8 × 8 is used for block-basedcompression. In 3D DCT 8 × 8 × 8, a sub-cube is
applied. A number of improved 3D-DCTbased approaches are proposed in [21][22].Distributed
source coding (DSC) [23–25] schemes have receivedmore attention due to their low complexity
and error resiliencewhich satisfy the requirements of onboard compression systems. The context-
based adaptive lossless image coding (CALIC) is another commonly used technique for HS image
compression [26]. This article [27] extends the CALIC algorithm from 2D to 3D-CALIC.

Other popular compression algorithms for HS images using wavelets are EZW- Embedded
Zero-treesWavelet [28][29], the SPIHT (Set Partitioning in Hierarchical Trees) [30] and the
SPECK (Set Partitioning Embedded Block) [31][32]. Modified SPIHT algorithms are also intro-
duced for compressing multispectral images [30]. The SPIHT possesses a number of desirable
properties such as competitively good performance, low complexity, and embedded encoding
which make it perfectly suited for the task of compressing multispectral images. Moreover, in
the majority of cases SPIHT outperforms SPECK [33]. Hence in our experiments, we have cho-
sen to compare our algorithm with state-of-the-art 3D-SPIHT. Additionally, Wavelet difference
reduction (WDR) is another latterly proposed method for efficient embedded image coding
[34][35]. The ASWDR algorithm is a simple modification of the WDR algorithm. Raja and
Suruliandi [34] compared WDR and ASWDR in terms of parameters such as PSNR (peak sig-
nal to noise ratio) and MSE (mean square error). According to their results, the ASWDR tech-
nique performs better than the WDR.

Lossless and lossy compression ratios for HS images using the above mentioned original
pixel-based encoding techniques are around 3:1 and 80:1, whereas the lossless and lossy com-
pression of a video using the latest video coding standard—i.e. HEVC- are 3:1 and 1000:1
respectively, depending on the application requirements [36][4]. Thus, there is scope to
improve the lossy compression ratio with a large margin for a HS image if we fundamentally
shift from the existing “original pixel reflectance”-based coding approaches using traditional
image coders (e.g. JPEG200) to the “residual”-based approaches using a video coder. Moreover,
entropy analysis of HS images, based on the original pixel reflectance and residual between
adjacent bands, shows that residual-based entropy is smaller compared to the original pixel
reflectance entropy (see Fig 1). Note that smaller entropy provides more compression as it
takes fewer bits to encode. The figure reveals that the entropy using residual is only 19% to 33%
of the original pixel reflectance for five NASA HS images [10]. The figure indicates that a resid-
ual-based encoder—e.g. video coder—should provide better compression compared to the
original pixel reflectance-basedencoder (i.e. JPEG2000).

The HS image compression technique [37][38] using H.264 (predecessor of HEVC) outper-
forms a number of conventional image-basedHS image compression techniques where both
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spatial (i.e. intra) and spectral (i.e. inter) correlations are exploited. Although it is a residual-
based approach, it could not outperform existing HS compression techniques with large mar-
gins due to the relatively larger magnitude of HS-residual between adjacent bands. To achieve
better compression we need to develop a predicted band [39] similar to the current band for
smaller residual.

Recently dynamic background modelling (DBM)-based video coding [40] has attracted
more attention due to its capability of better compression and reduction of computational time
compared to its rival algorithms. The DBM technique represents background and foreground
pixel intensities over time usingGaussian Mixture distributions based on means and variances
[41]. The DBM exploits uncovered dynamic background areas through a Gaussian model to
improve the rate-distortion and computational performance for encoding. The basic idea of
DBM is to keep the pixel intensity for background frame generation, which does not change
too much over time (i.e. for a number of consecutive frames). HS image structure can be
assumed as a video if we consider different wavelength bands as different temporal frames of a
video. However, the characteristics of spectral band-images are different compared to video
frames. In the video, objects in the foreground are usually more prone to be moving and the
background remains somewhat static, so it remains almost the same over multiple frames. In a
HS image, spectral reflectance changes over the different bands and there is hardly any object
for which reflectancedoes not change in the spectral bands. Thus, we cannot use a DBM to pre-
dict the upcoming wavelength band, as spectral reflectance in each wavelength band is differ-
ent. Straightforward application of background modelling for HS image compression in the
HEVC [3] framework did not provide satisfactory results. Note that a HEVC [42] compression
and coding technique should provide comparable compression performance for a HS image
compared to other techniques such as JPEG, Wavelet-based encoders, and PCA as it can

Fig 1. Entropy analysis using original pixel reflectance and residual between adjacent bands for HS

images from NASA dataset [10].

doi:10.1371/journal.pone.0161212.g001
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exploit the residual of the adjacent wavelength bands. This is due to the magnitude of the
reflectance-residuesbetween adjacent wavelength bands usually being smaller compared to the
original reflectance.

The multiple experiments were performedusing three different HS datasets (described in Sec-
tion III) covering both airborne and ground-based types of HS images to understand the reflec-
tance in different wavelength bands and the performance of different methods including the
proposedmethod.We have compared the proposed HS image coding technique with the rele-
vant state-of-the-art scheme JPEG2000, JPEG, PCA-DCT, HEVC and other wavelet-based
encoders 3D-SPIHT, ASWDR and EZW. We observed that the spectral reflectance changes grad-
ually with different bands. Obviously the gradient of changes is varied for different objects. Thus,
besides applying DBM in the HS image compression under the HEVC coding framework in a
straightforwardway, we need to model a CIW band using predicted spectral reflectance so that
the generated CIW band is closer to the current wavelength band compared to the previous
wavelength band. Using the CIW band as an extra reference band in the HEVC video coding
framework should provide more compression while encoding the current wavelength band. This
is due to higher similarity with the current band compared to the previously encodedwavelength
bands. The results of the experiment confirm that the proposed compression technique based on
RPM outperforms the standalone HEVC and other mainstream compression techniques.

Dataset

Brimrose HS camera

Our experimental HS images were captured using a Brimrose HS camera at GriffithUniversity,
Australia, consisting of an array of spectral reflectance of size 1392×1204×61. The images were
captured of both indoor and outdoor scenes under daylight illumination. An optical tunable fil-
ter was used, capable of acquiring a HS image by sequentially tuning the filter through a series
of 61 narrow wavelength bands, each with approximately 10nm bandwidth and interval steps
at 10nm, starting from 400nm to 1000nm. Two examples of the HS images namely Pot and
Vase are shown in Fig 2. A particular 500nm wavelength band in the visual range is used to rep-
resent the HS image.

Natural scenes dataset

On top of the dataset collected from the Brimrose HS camera, another publicly available HS
dataset popularly known as natural scenes [7] was also used in the test. The natural scenes data-
set consists of a mixture of rural scenes from the Minho region of Portugal, containing rocks,
trees, leaves and grass, and urban scenes from the cities of Porto and Braga. Images were
obtained during the summers of 2002 and 2003. Particular care was taken to avoid scenes con-
taining movement. Scenes were illuminated by direct sunlight in a clear or almost clear sky.
Each HS image has wavelength bands from 400 to 720nm with 1018×1339×33 resolutions
(however, Scene 5 has 32 bands).

Airborne visible/infrared imaging spectrometer (AVIRIS)

The dataset used in this part of the experiment is from Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) reflectancedata [10]. AVIRIS data are mainly collected for identifying,mea-
suring, and monitoring constituents of the earth's surface and atmosphere based on molecular
absorption and particle scattering signatures. It delivers calibrated images with 224 contiguous
spectral bands and approximately 10nm spectral resolutions covering the 0.4–2.5μm spectral
range. Data was collected from mineral mapping at Cuprite, Nevada.
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Reflectance Prediction Modelling

An RGB image cube has three (Red Green and Blue) colour components, along with wave-
length axis. In this aspect a HS image can be considered as an image cube where the wavelength
axis is represented by hundreds of contiguous spectral bands. A pixel in a HS image is actually
a vector with a dimension equal to the number of spectral bands. Such inter-band spectral
information can be used for spectral prediction. In this paper we propose the RPM technique
to improve the compression capability of a HS image and Gaussian mixture-basedCIW band
modelling into the HEVC video-coding framework. Note that we have converted a 16-bit HS
image into an 8-bit HS image before applying different encoders.

Motivation of multispectral data prediction

If we consider spectral information of a HS image, we can easily find the existence of spectral
correlation between adjacent bands. The similarity and variability among contiguous bands
can be presented preferably by RPM. Fig 3(A) and 3(B) show a graphical representation of the
spectral reflectance of randomly selected 20 pixels in 61 wavelength bands ranging from
400nm to 1000nm using two HS images. Fig 3(C) shows similar reflectance tendency over the
different bands using the AVIRIS HS image; the dataset comprises 220 bands with a spectral
coverage from 0.4 to 2.5 μm. Five pixels representing ‘soybean’, ‘hay’, ‘corn’, ‘wheat’ and ‘wood’
were selected to plot the reflectance.A given HS matrix for a band can be presented as:

HS ¼

xð1;1Þ xð1;2Þ . . . xð1;jÞ
xð2;1Þ xð2;2Þ . . . xð2;jÞ

..

. ..
. . .

.
xð1;1Þ

xði;1Þ xði;2Þ . . . xði;jÞ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

2 Ri�j

Each pixel x along spectral bands n is a vector. Fig 3A & 3B show different reflectance
against different wavelengths for two HS images, namely ‘Soil’ and ‘Strawberry’ captured by

Fig 2. Two examples of Hyperspectral images (for a particular wavelength 500nm) used in the

experiments, the images are generated from the raw data provided by Griffith University.

doi:10.1371/journal.pone.0161212.g002
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Brimrose HS camera at Griffith University. They are mapped into 8-bit reflectance. The reflec-
tance of images with a different range of bands/wavelengths, scene and intensity also demon-
strates that probability distribution and correlation of the pixel vector x are measureable and
predictable. Thus, prediction modelling can be developed through quantitative comparison via
spectral similarity measures, allowing for a HS image to present as a single slice key band with
spectral shape information.

The observed spectral reflectance in different HS data shows varying degrees of correlation
although the rate of increase or decreasemight vary depending on the content of the objects in
a HS image. The differences in spectral information between two adjacent wavelength bands is
typically very small and therefore includes a large amount of data redundancy. For a particular
material and a small range of wavelengths the shape of the reflectance/radiance in different
bands follow Gaussian distribution. Thus, it is possible to generate a CIW using the existing
Gaussian mixture-basedmodelling [40][41] by customizing the modellingmechanism.

Customized gaussian mixture modelling for a HS image

A customizedDBM based on Gaussian Mixture Modelling (GMM) is introduced in this paper.
GMM is a weighted sum of KGaussian models to characterize pixels’ intensity of the HS
image. When each new slice acquires at the current nth band, the value of a pixel reflectance is
used to match with the GMM models. If a match is found, the pixel intensity is included in the
model and updates its parameters based on the newly satisfied pixel intensity. If a match is not
found then a new model is introduced where mean is assigned as the new pixel intensity and
weight is assigned an arbitrarily high value. If the maximum number of KGaussian models is
reached, it is replaced by a new model. Normally the replaced model selected is based on the
lowest ratio of weight and standard deviation amongst all models. The model, which provides
the highest value of weight and lowest value of standard deviation, is normally classified as the
background pixel.

If we assume that the k-th Gaussian representing a pixel reflectancewith mean μk, variance
s2
k , and weightwk, then

X

8k

ok ¼ 1 The Gaussians are always ordered based on ω/σ in descend-

ing order, with the top Gaussian modelling the most stable reflectance. The system starts with an
empty set of models and then for every new observationXn at the current band n is first matched
against the existing models in order to find one (say the kth model) such that jXn � mn� 1

k j �

2:5sn� 1
k : If such a model exists, its associated parameters, μk, s2

k , and ωk, are updated. Otherwise,

Fig 3. The distribution of spectral reflectance in different bands: (a) and (b) the effective spectral reflectance of 20 pixels randomly selected in the

range of 61 bands (400nm to 1000nm) of two HS images namely ‘Soil’ and ‘Strawberry’ captured by the Brimrose HS camera at Griffith University.

doi:10.1371/journal.pone.0161212.g003
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a new Gaussian is introducedwith μK = Xn, arbitrarily high σ, and arbitrarily low ω by evicting
the last model if it exists (based on ω/σ in descending order). A pseudo code for the CIW genera-
tion steps is given in Fig 4.

1. If the current pixel Xnmeets the condition jXn � mn� 1
k j � 2:5sn� 1

k ; we consider Xn satisfies
with one of the Gaussians models, i.e. a match is found and then updates all relevant
parameters.

2. If no match is found with any of the KGaussians; the pixel might be a new background or
foreground. Another Gaussian model needs to be introduced with an initial parameter set-
ting [40][41].

3. If the number of the Gaussian models has already reached the maximum number, we need
to evict an existing model based on the ratio of weight and standard deviation.

The parameters are updated as follows where α is the learning parameter:

mnk ¼ ð1 � aÞsn� 1

k þ aXn; ð1Þ

Fig 4. Pseudo code of CIW generation algorithm.

doi:10.1371/journal.pone.0161212.g004
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sn
2

k ¼ ð1 � aÞs
ðn� 1Þ2

k þ aðXn � mnkÞ
T
ðXn � mnkÞ; ð2Þ

on
k ¼ ð1 � aÞsn� 1

k þ a: ð3Þ

A mixture of KGaussian distribution models is used to model each pixel reflectance inde-
pendently. The pseudo code to generate a CIW band (i.e. ψ) uses pixel reflectance of different
bands, which is very similar to the pseudo code described in [39][41]. The main difference is
that we use a predicted band pixel reflectance instead of the previously encoded band. The
other difference is that we use the mean reflectance value of the maximum weighted model to
generate a CIW band rather than the most recent pixel reflectance. A pseudo code of CIW gen-
eration is given in Fig 4.

The CIW is an approximation of the current trend of the band based on previously encoded
bands. It represents the average trend of the pixel reflectance over different bands. Thus, it is a
good approximation of the common informatics of pixel reflectance. The CIW band is very
close to the current band, it is used as an extra reference band to encode the current band.
Sometimes, the CIW might provide a large residue compared to the current band due to a sud-
den change of the reflectance of material in a wavelength. To tackle this phenomenon we also
use the immediate previous band as another reference band for encoding the current band.
The Lagrangianmultiplier [43–45] is used to select an appropriate reference image between the
CIW and the immediate previous band based on the bit requirements and distortion in block
level. Instead of providing each encodedwavelength band into the DBM we use a spectral pre-
dicted wavelength band. For example when we are encoding nth wavelength band, (n-1)th and
other previously encodedwavelength bands are used to generate a spectral predicted band,
based on the correlation of previous bands, then sending the predicted band to the CIW model-
ling. Subsequently we use the generated nth CIW as an additional reference band to encode the
nth wavelength band.

Spectral predictor and compression

The above-mentioned Gaussian models determine the CIW band using a number of wave-
length bands. Our proposed method predicts the current nth band by using gradients of two
immediate previous encoded bands, i.e. (n-1)th and (n-2)th bands and previous trend of gradi-
ents for creating a reference band. The current gradient is calculated as follows:

Dn ¼ wDn� 1 þ ðPn� 1 � Pn� 2Þð1 � wÞ ð4Þ

whereDn is the weighted gradient for nth band using the previous weighted gradientDn-1, the
weighted gradient between two recently encoded bands Pn-1 and Pn-2. We usew = 0.3 to bal-
ance between the previous gradient and the most recent gradient. To generate a CIW we need
to provide a spectral predicted band which is generated by Bn = Pn−1 + Dn. The rationality of
adding the gradient with the previous encoded band to obtain the predicted band is that we
assume the variation of the reflectance in the next wavelength follows the same tendency of
gradient that it experienced recently. If we assume that the CIW modelling function is F, then
we can obtain the CIW, P0n ¼ FðBnÞ: P

0

n and Pn-1 are used as reference bands to encode the cur-
rent Pn wavelength band. The whole prediction process is presented in Fig 5.
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Experiment Result

The RPM algorithm is implemented by using GMM under the HEVC video coding framework.
In the proposed method we use dual reference frames where the predicted band is used as the
second reference frame and the immediately previous band is used as the first reference frame.
In HEVC we use two immediately previous bands as the reference frames. We evaluate RPM
with other state-of-the-art image encoders JPEG2000, JPG, HEVC-intra and PCA-DCT at the
first set of tests, then by a performance review of RPM with wavelet transform-based encoders,
conducted in the next section.

As mentioned in Section III, experiments were performed on test images taken from three
sets of images: Flower and Vase, Scene5 and Scene6 and AVIRIS data from Cuprite_1 to
Cuprite_4 and Indian_Pine. To evaluate the RPM encoder we present compression perfor-
mance in Fig 6. It is clear that the proposed RPM scheme outperforms other encoders from the
results. The observeddifference in PSNR is between 0 to 5.0 dB. Furthermore, JPEG2000 and
HEVC are two competitive encoders according to the content of HS sample images. PCA-DCT
could not obtain high PSNR because it reconstructs the values of physical bands by eigenvec-
tors. PCA selectively discards part of the energy of a HS image signal since only a subset of the
eigenvectors has been selected. It is noteworthy that RPM has the most visible superiority for
the Nature Scene and AVIRIS datasets. The reason we reach this conclusion is that the Brim-
rose HS camera collects Flower and Vase in the laboratory environment with a small portion of
objects and a large portion of black background, where almost all encoders perform in a similar
way. The other two datasets Scene and AVIRIS, were collected from complicated outdoor envi-
ronments, particularly the Cuprite set. Consequently, RPM can acquire great prediction results
for images of a complicated scene. The performance of the RPM is better compared to other

Fig 5. Block diagram of the spectral prediction and referencing technique for the proposed method.

doi:10.1371/journal.pone.0161212.g005
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encoders except JPEG2000 for the Indian_Pine HS image. Probable reasons for this would be
the different entropy and resolution of the Indian_Pine image compared to the Cuprite HS
images. The entropy of the Indian_Pine image based on the residual is 40% larger compared to
the Cuprite HS images, and the original resolution of the Indian_Pine HS image is smaller
compared to the Cuprite HS images.

As the encoded bands are used in the predicted and CIW generation process in both
encoder and decoder, we do not need to encode the CIW band to transmit for the decoder.
We use a dual reference band and IPPP format (i.e. the first wavelength band is intra-coded
and other bands are predicted as inter-coded) for both standalone HEVC and the proposed
RPM algorithm in the HEVC platform. We do not use any motion estimation, as unlike
video, each wavelength band has no motion compared to its previous image. However, we
use HEVC tree-structured block partitioning to get the best-matched block to minimize
residual error.

Fig 6. Rate distortion performance of nine HS images using the proposed RPM method, JPEG2000, JPEG, PCA-DCT, and HEVC encoder

techniques.

doi:10.1371/journal.pone.0161212.g006
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We know that less prediction error variance always leads to less residual noise, less predic-
tion distortion and higher compression efficiency. Since no scene change happens, CIW-based
prediction provides smaller residue compared to the inter-bands’ residue in some cases, and
this results in a better compression ratio compared to the HEVC. Moreover, the proposed tech-
nique provides better rate-distortion performance compared to some wavelet-based encoders
due to its better ability to exploit the correlation between inter-band similarities.

Fig 7 shows computational time comparison and amount of references used by the second
reference band between the proposed RPM scheme and the HEVC scheme. Fig 7 shows that
the proposed scheme requires 3~4% extra computational time compared to HEVC, as the pro-
posed scheme needs some computational time for generating the predicted band and the CIW
band, through DBM modelling. The figure also reveals that the proposed scheme provides
almost constant reference areas using the second reference band, i.e. the CIW band, which is
around 10% for different bit rates and quality. On the other hand, the HEVC provides very
high reference at the low bit rates and very low reference at high bit rates. This indicates the
worthiness of the CIW band as the reference band for a wider range of bit rates.

For the purpose of comprehensive comparisons to a variety of encoders, in this sectionwe
have compared RPM with a few standard wavelet based image coders: 3D-SPIHT, ASWDR

Fig 7. Computational time requirement of the proposed RPM scheme with respect to HEVC (left) and the percentage of reference from the

predicted spectral band i.e. CIW band and the 2nd reference band by the proposed scheme and the HEVC respectively.

doi:10.1371/journal.pone.0161212.g007

Table 1. Rate distortion performance of four HS images using the proposed RPM method, 3D_SPIHT, EZW, and ASWDR.

Images Low Bit rates 0.5bpppb (35 PSNR or more)

EZW ASWDR 3D-SPIHT RPM

Cuprite_1 39.39 39.51 39.57 39.62

Cuprite_2 35.34 38.41 40.33 40.45

Cuprite_3 38.99 39.64 39.85 40.04

Cuprite_4 31.36 29.87 31.24 31.66

High bit rate 1 bpppb

Cuprite_1 45.70 49.13 48.01 49.23

Cuprite_2 44.87 43.65 45.98 47.0

Cuprite_3 43.93 45.08 44.85 45.43

Cuprite_4 42.46 44.72 47.51 48.19

doi:10.1371/journal.pone.0161212.t001
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and EZW. According to the experimental results published in [46], it was demonstrated that
3D-SPIHT can obtain a better compression result; bit per pixel per band (bpppb) is lower than
3D-EZW at the same level of PSNR. Therefore, we compare 3D-SPIHT with our method. Fur-
thermore, it is worthy of mention that one of the most recent image compression algorithms is
the adaptively scanned wavelet difference reduction (ASWDR) algorithm. ASWDR is another
benchmark encoder based on wavelets to compare with distortion performance and compres-
sion ratio (refer to [34]). The scanning order of ASWDR is different with WDR. It dynamically
adapts to the location of edge details in an image and this enhances the resolution of these

Fig 8. Comparison of predicted reflectance and original reflectance for two sample HS images.

doi:10.1371/journal.pone.0161212.g008
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edges in compressed images. Accordingly, ASWDR exhibits better perceptual qualities, espe-
cially at low bit rates.

The rate-distortion results are summarized into two categories, low bit rates (0.5bpppb) and
high bit rates (1 bpppb) in Table 1. It can be observed that RPM has presented excellent perfor-
mance compared to other wavelet-based encoders in most of cases. Particularly outstanding
performance is shown in the high bit-rate range, and 3D-SPIHT techniques also provide com-
petitive results.

We have conducted some experiments to validate prediction error between a CIW band
and the original reference band. For clear comparison we have calculated average pixel reflec-
tance of a randomly selected 16×16 pixel block from the middle of the HS image for both the
original bands and the predicted bands. Fig 8 illustrates the comparison results of predicted
reflectance and original reflectance for two images. The figure confirms that the predicted pixel
reflectance is very close to the original pixel reflectance over the different bands. This indicates
that in a number of cases the CIW band is selected against the immediate previous band as a
reference band to encode the current band.

Conclusion

In this paper, HEVC-inter encoding is used for HS data compression under the Reflectance Pre-
diction Modelling technique to improve compression capability. We extract an instant spectral
band of the HS image using Gaussian mixture-basedmodelling. The generated instant common
informatics wavelength is used as the additional reference band for encoding the current band
under the latest video coding standard HEVC framework. A HEVC framework is used by con-
sidering different bands of a HS image as a different frame or picture of a video.

The proposed HS image coding technique outperforms the relevant state-of-the-art scheme
JPEG2000, JPEG, PCA-DCT, HEVC and other wavelet-based encoders 3D-SPIHT, ASWDR
and EZW. Overall, the proposed method generates a higher compression rate while maintain-
ing the quality of the image with comparable computational time so that it covers a wide range
of applications.
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