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Abstract
Background

It is challenging to deal with mixture models whenmissing values occur in clustering datasets.

Methods and Results

We propose a dynamic clustering algorithm based on amultivariate Gaussian mixture model

that efficiently imputes missing values to generate a “pseudo-complete” dataset. Parameters

from different clusters and missing values are estimated according to the maximum likelihood

implemented with an expectation-maximization algorithm, and multivariate individuals are

clustered with Bayesian posterior probability. A simulation showed that our proposed method

has a fast convergence speed and it accurately estimates missing values. Our proposed algo-

rithm was further validated with Fisher’s Iris dataset, the Yeast Cell-cycle Gene-expression

dataset, and the CIFAR-10 images dataset. The results indicate that our algorithm offers highly

accurate clustering, comparable to that using a complete dataset without missing values. Fur-

thermore, our algorithm resulted in a lower misjudgment rate than both clustering algorithms

with missing data deleted and with missing-value imputation bymean replacement.

Conclusion

We demonstrate that our missing-value imputation clustering algorithm is feasible and

superior to both of these other clustering algorithms in certain situations.

Introduction
Clustering analysis, as a multivariate statistical method, refers to the process of classifying a set
of observations into subsets, called clusters, such that observations in the same cluster are simi-
lar in certain respects [1–3]. Clustering is widely used in medical sciences, for instance when
clustering diseases or gene-expression profiles. Clustering methods usually fall into two
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categories: hierarchical clustering methods [4], which are used for clustering datasets with small
size [5,6]; and dynamic clustering methods, such as K-means [7,8] and self-organizing maps [9],
which begin with an initial partitioning of the individuals and iteratively move individuals from
one cluster to another until the criterion of convergence is met. With dynamic clustering, the
number of clusters must be specified in advance [10]. Dynamic algorithms are mostly heuristi-
cally motivated, and they do not require an underlying statistical model. Nevertheless, selection
of the “correct” number of clusters and of the best clustering method remains a topic for discus-
sion. Model-based clustering methods [11–13] are a type of dynamic clustering based on the
hypothesis that the whole dataset is a finite mixture of the same type of distribution with different
sets of parameters, such as a finite mixture of a multivariate Gaussian distribution. Compared
with “heuristic” algorithms, one obvious advantage to model-based clustering is that objective
statistical criteria—such as the Akaike information criterion (AIC) or the Bayesian information
criterion (BIC) [14]—are used to determine the number of clusters.

Missing data present a problem for medical research, given that the data are often supplied ret-
rospectively and from various sources [15]. In particular, missing data are a frequent occurrence in
microarray experiments and in medical research. Missing values are especially common in large-
scale studies involving dozens of variables and hundreds of individuals. Indeed, many clustering
methods require a full set of data. Individuals with missing values are either rejected or been esti-
mated prior to the analysis. Consequently, several missing-value imputation methods have been
developed [16–20], such as mean substitution, regression imputation, fuzzy c-means (FCM) clus-
tering of incomplete data [21], and Gaussian mixture model-basedmissing-value imputation classi-
fication [22]. In this study, we propose a dynamic method for a model-based missing-value
imputation clustering algorithm.With our proposed method, missing values are estimated itera-
tively until arithmetic convergence is reached during the process of clustering individuals. We used
12 simulated datasets. Each of these datasets had two versions: a complete version and a version
where 10% of the individuals had at least one variable missing. We used these datasets to evaluate
the clustering accuracy and the accuracy and precision of cluster-parameter estimators. We com-
pared our proposed algorithm based on the missing-value imputation according to the maximum
likelihood estimation (a “pseudo-complete” dataset) with a model-based clustering algorithm using
the complete dataset and another twomodel-based clustering algorithms, one using a dataset with
missing values deleted and the other imputing the missing values by mean replacement. In addi-
tion, we compared our algorithm with the FCM clustering method using real datasets—viz., Fish-
er’s Iris dataset, the Yeast Cell-cycle Gene-expression dataset, and the CIFAR-10 images dataset.

Methods

Multivariate Gaussian mixture model
The dataset is arranged as an n × kmatrix denoted by Y, where n is the number of individuals
and k is the number of variables. Let yij be the observed value of the i-th individual in the j-th
variable, for i = 1,2,. . ., n and j = 1,2,. . ., k. Let Yi = (yi1,yi2,. . .,yik)

T be the i-th column in matrix
YT—i.e., a k × 1 vector of the data for individual i under all variables. The value of yij across all
the k variables represents the expression level of the i-th individual. Under a finite multivariate
Gaussian mixture model, each Yi is assumed to follow a k-dimensional Gaussian mixture dis-
tribution. Mathematically, the mixture distribution for c clusters is as follows:

f ðYiÞ ¼
Xc

l¼1

plflðYiÞ; ð1Þ

where flðYiÞ ¼ ð2pÞ�k=2 jSlj�1=2 exp �ð1=2ÞðYi � mlÞS�1
l ðYi � mlÞT

h i
is the probability density
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function for the l-th k-dimensional Gaussian distribution with mean vector μl = (μl1, μl2,. . ., μlk)

and variance-covariance matrix Sl ¼

s2
l1 sl12 � � � sl1k

sl21 s2
l2 � � � sl2k

..

. ..
. . .

. ..
.

slk1 slk2 � � � s2
lk

26666664

37777775, for l = 1,2,. . .,c. Moreover, pl

with
Xc

l¼1
pl ¼ 1, is the mixing proportion of cluster l. The mixing proportion pl is defined as

the proportion of individuals that belong to the l-th cluster. The joint log-likelihood function for
n independent individual vectors is defined as follows:

lnL ¼
Xn

i¼1

lnf ðYiÞ: ð2Þ

Clustering algorithm for missing values
Most reports [23–25] consider only complete datasets (without missing values) for Gaussian mix-
ture clustering. Indeed, it is challenging to estimate missing values accurately. An urgent problem
concerns how to provide the optimal number of clusters c and how to cluster n individuals into the
c clusters precisely. Therefore, we propose a missing-value imputation algorithm as follows.

Suppose that there are rmissing values in Yi. Thus, yi1, yi2,. . ., yir are missing. The Yi, μl, and
Sl are then divided into

Yi ¼ ðYið1Þ; Yið2ÞÞ; ml ¼ ðmlð1Þ; mlð2ÞÞ; and Sl ¼
Sl11 Sl12

Sl21 Sl22

" #
;

where

Yið1Þ ¼ ðyi1; yi2; . . . ; yirÞ; Yið2Þ ¼ ðyiðrþ1Þ; yiðrþ2Þ; . . . ; yikÞ;

mlð1Þ ¼ ðml1; ml2; . . . ; mlrÞ; mlð2Þ ¼ ðmlðrþ1Þ; mlðrþ2Þ; . . . ; mlkÞ;

Sl11 ¼

s2l1 sl12 � � � sl1r

sl21 s2l2 � � � sl2r

..

. ..
. . .

. ..
.

slr1 slr2 � � � s2lr

26666664

37777775; Sl12 ¼

sl1ðrþ1Þ sl1ðrþ2Þ � � � sl1k

sl2ðrþ1Þ sl2ðrþ2Þ � � � sl2k

..

. ..
. . .

. ..
.

slrðrþ1Þ slrðrþ2Þ � � � slrk

26666664

37777775;

Sl21 ¼

slðrþ1Þ1 slðrþ1Þ2 � � � slðrþ1Þr

slðrþ2Þ1 slðrþ2Þ2 � � � slðrþ2Þr

..

. ..
. . .

. ..
.

slk1 slk2 � � � slkr

26666664

37777775; and Sl22 ¼

s2lðrþ1Þ slðrþ1Þðrþ2Þ � � � slðrþ1Þk

slðrþ2Þðrþ1Þ s2lðrþ2Þ � � � slðrþ2Þk

..

. ..
. . .

. ..
.

slkðrþ1Þ slkðrþ2Þ � � � s2lk

266666664

377777775:

Suppose further that Yi is from the l-th k-dimensional Gaussian distribution and that Yi(2) is
known. The conditional expectation of Yi(1), which belongs to the l-th cluster, is derived as
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follows:

ElðYið1ÞjYið2ÞÞ ¼ mlð1Þ þ Sl12S
�1
l22ðYið2Þ � mlð2ÞÞ: ð3Þ

We provide the initial value for μl(1), Sl11, and Sl12. Then, based on the criterion of the mini-
mummean-square deviations from Eq (3), the conditional expectation El(Yi(1)|Yi(2)) can be cal-
culated, representing the best predicted function for Yi(1) [26]. Under the mixture distribution
of the individual vector Yi, the conditional expectation for Yi(1) based on Yi(2) is

EðYið1ÞjYið2ÞÞ ¼
Xc

l¼1

pl ElðYið1ÞjYið2ÞÞ; ð4Þ

where E(Yi(1)|Yi(2)) denotes the estimators for the missing values Yi(1). Subsequently, a “pseudo-complete”

dataset can be constructed.

Iterative clustering algorithm
The proposed model-based clustering algorithm for datasets with missing values assigns each
individual to one of the c clusters with a certain probability. We define this probability as pli,
which is that of the i-th individual belonging to the l-th cluster. An individual is assigned to the l-
th cluster if pli is greater than a certain pre-determined threshold. The probability can be calcu-
lated using the expectation-maximization (EM) algorithm [27] to achieve the maximum likeli-
hood for the objective function derived with Eq (2). The EM algorithm begins with some initial
parameters that are set in advance. Then, each parameter is iteratively updated in the algorithm
until convergence to a minimizer is reached. An EM iteration includes the following steps:

1. Initialize the prior probabilities of the cluster assignment and the cluster parameters:

qðtÞ ¼ ðpðtÞ1 ; . . . ; pðtÞc ; mðtÞ
1 ; . . . ;mðtÞ

c ; SðtÞ1 ; . . . ; SðtÞc Þ: ð5Þ

2. Calculate the missing values YðtÞ
ið1Þ using Eqs (3) and (4) to generate the “pseudo-complete”

dataset for YðtÞ
i .

3. Update the posterior probabilities of the cluster assignment:

pðtÞli ¼ pðtÞl f ðtÞl ðYðtÞ
i ÞXc

h¼1

pðtÞh f ðtÞh ðYðtÞ
h Þ

: ð6Þ

4. Update the cluster proportions, mean vectors, and variance-covariance matrices:

pðtþ1Þ
l ¼

Xn

i¼1

pðtÞli

�
n; ð7Þ

mðtþ1Þ
l ¼

Xn

i¼1

pðtÞli Y
ðtÞ
i

�Xn

i¼1

pðtÞli ; ð8Þ

Sðtþ1Þ
l ¼

Xn

i¼1

pðtÞli ðYðtÞ
i � mðtþ1Þ

l ÞTðYðtÞ
i � mðtþ1Þ

l Þ
h i�Xn

i¼1

pðtÞli : ð9Þ
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5. Repeat steps (1)–(4) until convergence is reached.

The number of clusters c can also be treated as an unknown parameter and inferred by the
BIC or AIC tests. The BIC is derived as follows:

BIC ¼ 2 lnLðbyÞ � qlnðnÞ; ð10Þ
where q = c(k+1)(k+2)/2−1 is the number of independent parameters to be estimated in the

model, LðbyÞ is the likelihood of by—i.e., the vector for the maximum likelihood estimation of
the parameters—and n is the size of the dataset. The number of clusters c is determined by the
maximum BIC value.

Results

Simulation analysis
A simulation was designed to evaluate the feasibility and accuracy of the proposed missing-
values imputation algorithm. The individuals belonging to each cluster were known exactly
and without subjective errors. Indeed, when analyzing real data, the misjudgment rate (MR)
may reflect confounding errors in the experiment and the subjective errors. Without loss of
generality, we simulated datasets with a two-dimensional Gaussian distribution and some
missing values. All simulations were performed using statistical SAS (version 9.3; SAS/IML)
software.

Design of the simulation. Suppose that there are 500 individuals derived from one of two
(two-dimensional) Gaussian populations, denoted byMVN (μ1,S1) andMVN (μ2,S2), from
which 10% of the individuals have at least one variable randomly removed. The entire dataset
contains 1000 individuals. Each individual has two variables, and 100 individuals have at least
one variable missing. The cluster’s mean vectors are denoted by μ1 and μ2, which were simu-
lated at three different levels: A1: μ1 = (0, 0), μ2 = (2.5, 2.5), A2: μ1 = (0, 0), μ2 = (2.0, 2.0), and
A3: μ1 = (0, 0), μ2 = (1.5, 1.5). The variance-covariance matrices are denoted by S1 and S2
(without loss of generality, supposing that S1 = S2 = S), and these were set at four levels:

B1 : S ¼ 0:25
1 0:6

0:6 1

" #
, B2 : S ¼ 0:5

1 0:6

0:6 1

" #
, B3 : S ¼ 0:75

1 0:6

0:6 1

" #
, and

B4 : S ¼ 1 0:6

0:6 1

" #
. The total number of treatment combinations (datasets) is therefore

3 × 4 = 12, that is, A1B1, A1B2, A1B3, A1B4, A2B1, A2B2, A2B3, A2B4, A3B1, A3B2, A3B3, and
A3B4. Twenty replicated simulations were conducted for each of the twelve scenarios.

Our missing-value imputation cluster algorithm (denoted by M-3, generating a “pseudo-
complete” dataset) was compared with three other cluster algorithms: a cluster algorithm using
the complete dataset (denoted by M-1, i.e., the above simulation dataset without any missing
values); a cluster algorithm using a dataset from which all individuals with missing variables
are deleted (denoted by M-2, i.e., a cropped dataset); and a cluster algorithm using missing-
value imputation by mean replacement in which the missing values are replaced by the mean
value of the whole dataset (denoted by M-4, another “pseudo-complete” dataset). Thus, we
used these four algorithms to cluster simulated datasets. These algorithms are all based on the
multivariate Gaussian mixture model, using the maximum likelihood estimation with the EM
algorithm. As such, the clustering results could be fairly compared. We evaluated M-1, M-2,
M-3, and M-4 using the following metrics: (1) the average convergence rate; (2) the accuracy
and precision of their respective parameter estimates; and (3) the total misjudgment rate (MR),
where MR is the ratio of all misjudged individuals to the total number of individuals in the 20
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replicates and MR = 1 - accuracy. A chi-square test and multiple comparisons of Scheffé’s Con-
fidence Interval were used to test the differences in MR among the four algorithms.

Simulation results. The average parameter estimates include the mean vectors (± se), vari-
ance-covariance matrices (± se), the likelihood value of the maximum-likelihood function, and
the total MR for the four clustering algorithms. The results are presented in Tables 1–3. Our
proposed missing-value imputation clustering algorithm (M-3) outperformed the other two
algorithms (M-2 and M-4) in terms of the convergence rate for most of the simulation datasets.
Indeed, its superiority was most obvious when the mean vectors of two clusters were near each

Table 1. Average parameter estimates under 4 different simulation datasets A1B1-A1B4 in 20 replicates.

Treatment Iterative time Likelihood value Probability
estimate

Mean vector estimate Covariance matrix estimate MR (%)

Pb1 Pb2 μb1 ± se μb2 ± se Sb1 ± se Sb2 ± se

A1B1 M-1 51 -1876.32 0.50 0.50 0.00±0.01 0.00±0.01 2.49±0.07 2.50±0.06 0.25±0.04 0.15±0.03 0.25±0.04 0.15±0.02 0.20a

0.15±0.03 0.26±0.04 0.15±0.02 0.25±0.04

M-2 58 -1864.94 0.50 0.50 0.00±0.01 -0.01±0.02 2.47±0.08 2.53±0.07 0.24±0.05 0.14±0.03 0.25±0.03 0.15±0.02 0.30a

0.14±0.03 0.26±0.04 0.15±0.02 0.24±0.04

M-3 64 -1897.05 0.50 0.50 0.00±0.02 0.00±0.01 2.49±0.07 2.50±0.06 0.24±0.04 0.14±0.02 0.24±0.04 0.14±0.04 0.20a

0.14±0.02 0.26±0.03 0.14±0.04 0.25±0.04

M-4 55 -1800.38 0.49 0.49 -0.01±0.03 0.00±0.02 2.46±0.08 2.46±0.09 0.22±0.07 0.13±0.04 0.23±0.06 0.14±0.05 1.50b

0.13±0.04 0.23±0.06 0.14±0.05 0.21±0.07

A1B2 M-1 70 -2578.47 0.50 0.50 0.01±0.03 0.00±0.04 2.47±0.14 2.47±0.14 0.48±0.06 0.28±0.04 0.47±0.07 0.28±0.04 2.40a

0.28±0.04 0.53±0.08 0.28±0.04 0.48±0.06

M-2 80 -2362.69 0.50 0.50 -0.01±0.04 0.01±0.04 2.52±0.15 2.48±0.16 0.48±0.07 0.32±0.04 0.47±0.07 0.26±0.06 2.80a

0.32±0.04 0.54±0.08 0.26±0.06 0.46±0.08

M-3 87 -2591.61 0.50 0.50 -0.01±0.04 0.01±0.03 2.47±0.14 2.46±0.16 0.47±0.06 0.27±0.05 0.46±0.07 0.28±0.04 2.60a

0.27±0.05 0.53±0.07 0.28±0.04 0.48±0.06

M-4 93 -2653.93 0.48 0.48 0.02±0.09 0.01±0.08 2.43±0.26 2.44±0.23 0.42±0.14 0.25±0.11 0.44±0.12 0.25±0.11 5.64b

0.25±0.11 0.43±0.13 0.25±0.11 0.44±0.12

A1B3 M-1 107 -2837.52 0.49 0.51 0.02±0.07 -0.01±0.08 2.47±0.21 2.47±0.21 0.68±0.16 0.42±0.10 0.71±0.14 0.43±0.09 5.90 ab

0.42±0.10 0.78±0.15 0.43±0.09 0.75±0.14

M-2 142 -2569.69 0.50 0.50 -0.02±0.06 0.01±0.06 2.48±0.20 2.52±0.19 0.73±0.16 0.47±0.08 0.69±0.16 0.40±0.09 5.45a

0.47±0.08 0.81±0.15 0.40±0.09 0.67±0.17

M-3 134 -2822.26 0.49 0.51 -0.01±0.07 -0.02±0.06 2.45±0.21 2.46±0.20 0.65±0.17 0.39±0.08 0.73±0.14 0.42±0.07 6.12ab

0.39±0.08 0.76±0.12 0.42±0.07 0.68±0.15

M-4 138 -2859.62 0.45 0.55 -0.05±0.15 0.04±0.12 2.40±0.37 2.43±0.32 0.63±0.21 0.40±0.16 0.70±0.19 0.39±0.11 8.94b

0.40±0.16 0.60±0.20 0.39±0.11 0.71±0.19

A1B4 M-1 180 -3211.91 0.49 0.52 -0.05±0.10 -0.03±0.12 2.40±0.25 2.42±0.28 0.86±0.24 0.51±0.17 0.94±0.24 0.59±0.15 8.50a

0.51±0.17 1.05±0.26 0.59±0.15 1.02±0.23

M-2 214 -2852.78 0.48 0.52 -0.04±0.10 -0.06±0.14 2.38±0.30 2.37±0.32 0.84±0.25 0.55±0.16 0.97±0.19 0.56±0.16 9.20a

0.55±0.16 1.05±0.26 0.56±0.16 0.94±0.25

M-3 215 -3100.00 0.48 0.52 -0.05±0.12 -0.06±0.13 2.39±0.26 2.38±0.30 0.84±0.23 0.48±0.19 0.90±0.25 0.57±0.14 8.70a

0.48±0.19 1.02±0.21 0.57±0.14 0.99±0.20

M-4 267 -3289.32 0.43 0.57 -0.07±0.20 -0.08±0.25 2.17±0.48 2.22±0.52 0.77±0.32 0.43±0.28 0.82±0.27 0.48±0.15 18.90b

0.43±0.28 1.09±0.23 0.48±0.15 1.07±0.25

M-1 indicates a complete data clustering algorithm; M-2 indicates a missing-data-deleted clustering algorithm; M-3 indicates our missing-value imputation

clustering algorithm

M-4 indicates the clustering algorithm for missing-value imputation by mean replacement. These four algorithms are based on the multivariate Gaussian

mixture model.
a,b indicates the multiple comparisons of the differences in MR among the algorithms M-1, M-2, M-3, and M-4: having the different letters indicate that there is

statistical significance between these two groups (P<0.05), and vice versa.

doi:10.1371/journal.pone.0161112.t001
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other and the variance-covariance of each cluster was more disperse, such as with datasets
A2B4, A3B3, and A3B4. Moreover, the proposed algorithm resulted in the most accurate and
precise parameter estimations, closely approximating the true values.

Thus, our proposed missing-value imputation clustering algorithm correctly clusters indi-
viduals with missing variables. The total MR resulting from the proposed algorithm (M-3) dem-
onstrates that its performance is superior to that of M-4 in all simulation trials, with significant
statistical difference (p< 0.05), and superior to that of M-2 in simulation trials A2B4, A3B3, and
A3B4, with significant statistical difference (p< 0.05). Moreover, the clustering accuracy of our

Table 2. Average parameter estimates under 4 different simulation datasets A2B1-A2B4 in 20 replicates.

Treatment Iterative time Likelihood value Probability
estimate

Mean vector estimate Covariance matrix estimate MR (%)

Pb1 Pb2 μb1 ± se μb2 ± se Sb1 ± se Sb2 ± se

A2B1 M-1 81 -1903.64 0.50 0.50 -0.01±0.04 0.00±0.03 2.00±0.12 2.00±0.13 0.25±0.05 0.15±0.04 0.24±0.04 0.14±0.04 1.64a

0.15±0.04 0.25±0.05 0.14±0.04 0.24±0.05

M-2 117 -1696.53 0.51 0.49 0.01±0.04 -0.01±0.04 2.00±0.14 1.99±0.13 0.24±0.05 0.15±0.03 0.25±0.05 0.14±0.04 1.86a

0.15±0.03 0.26±0.04 0.14±0.04 0.24±0.06

M-3 92 -1885.63 0.50 0.50 -0.01±0.04 0.01±0.04 1.99±0.14 1.99±0.12 0.23±0.05 0.14±0.04 0.23±0.06 0.15±0.04 1.60a

0.14±0.04 0.26±0.04 0.15±0.04 0.24±0.05

M-4 126 -2008.47 0.48 0.52 -0.02±0.07 0.01±0.06 1.95±0.19 1.96±0.20 0.22±0.10 0.12±0.07 0.21±0.10 0.11±0.05 2.26a

0.12±0.07 0.27±0.12 0.11±0.05 0.27±0.07

A2B2 M-1 120 -2372.14 0.50 0.50 -0.02±0.07 -0.01±0.06 2.01±0.16 1.97±0.17 0.45±0.13 0.27±0.09 0.46±0.14 0.28±0.10 5.60a

0.27±0.09 0.52±0.11 0.28±0.10 0.50±0.14

M-2 179 -2128.49 0.51 0.49 -0.02±0.08 0.02±0.06 1.95±0.18 1.96±0.18 0.48±0.11 0.27±0.08 0.47±0.14 0.25±0.09 6.30ab

0.27±0.08 0.53±0.13 0.25±0.09 0.45±0.13

M-3 135 -2462.73 0.51 0.49 0.01±0.07 0.02±0.06 1.95±0.19 1.97±0.17 0.46±0.11 0.28±0.08 0.44±0.09 0.26±0.09 5.40a

0.28±0.08 0.53±0.10 0.26±0.09 0.46±0.08

M-4 266 -2410.50 0.45 0.55 -0.03±0.10 0.02±0.11 1.91±0.28 1.92±0.29 0.44±0.17 0.25±0.10 0.44±0.18 0.24±0.11 9.00 b

0.25±0.10 0.54±0.16 0.24±0.11 0.43±0.19

A2B3 M-1 219 -2699.35 0.48 0.52 -0.05±0.08 -0.03±0.08 1.92±0.27 1.94±0.24 0.67±0.20 0.40±0.10 0.75±0.19 0.42±0.11 10.90a

0.40±0.10 0.78±0.21 0.42±0.11 0.78±0.19

M-2 387 -2489.38 0.47 0.53 -0.07±0.09 0.05±0.10 1.90±0.27 1.90±0.28 0.64±0.25 0.38±0.13 0.72±0.22 0.41±0.12 11.40a

0.38±0.13 0.73±0.24 0.41±0.12 0.79±0.21

M-3 242 -2709.34 0.47 0.53 -0.07±0.10 -0.05±0.10 1.90±0.28 1.90±0.30 0.66±0.18 0.38±0.09 0.76±0.20 0.47±0.11 11.00a

0.42±0.09 0.77±0.18 0.47±0.11 0.75±0.20

M-4 450 -2646.83 0.42 0.58 -0.14±0.20 0.12±0.18 1.89±0.41 1.88±0.45 0.64±0.29 0.38±0.17 0.72±0.27 0.40±0.15 16.96b

0.38±0.17 0.78±0.27 0.40±0.15 0.77±0.23

A2B4 M-1 360 -3014.36 0.45 0.55 -0.11±0.16 0.09±0.17 1.85±0.34 1.80±0.32 0.86±0.26 0.52±0.18 1.01±0.23 0.63±0.17 12.80a

0.52±0.18 1.04±0.25 0.63±0.17 1.05±0.23

M-2 486 -2677.25 0.43 0.57 -0.15±0.25 -0.15±0.25 1.84±0.35 1.82±0.32 0.82±0.30 0.51±0.19 1.04±0.29 0.61±0.18 18.00b

0.51±0.19 0.94±0.25 0.61±0.18 1.01±0.29

M-3 342 -2907.18 0.44 0.56 -0.10±0.17 0.08±0.14 1.86±0.34 1.82±0.32 0.87±0.27 0.53±0.18 0.92±0.28 0.62±0.17 12.30a

0.53±0.18 1.03±0.25 0.62±0.17 1.03±0.29

M-4 440 -2977.46 0.40 0.60 -0.20±0.35 0.19±0.33 1.82±0.57 1.81±0.62 0.76±0.41 0.51±0.27 1.05±0.33 0.65±0.27 21.80c

0.51±0.27 0.90±0.39 0.65±0.27 1.07±0.34

M-1 indicates a complete data clustering algorithm; M-2 indicates a missing-data-deleted clustering algorithm; M-3 indicates our missing-value imputation

clustering algorithm

M-4 indicates the clustering algorithm for missing-value imputation by mean replacement. These four algorithms are based on the multivariate Gaussian

mixture model.
a,b,c indicates the multiple comparisons of the differences in MR among the algorithms M-1, M-2, M-3, and M-4: having the different letters indicate that there

is statistical significance between these two groups (P<0.05), and vice versa.

doi:10.1371/journal.pone.0161112.t002
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proposed algorithm was comparable to that of the complete dataset (M-1) (p> 0.05). In general,
the more similar the mean vectors of two clusters or the more disperse their variance-covariance,
the higher the MR of all clustering methods and the better the performance of our proposed algo-
rithm compared to M-2 andM-4. Interestingly, however, our algorithm performed well in such
cases. For example, in scenario A3B4, the speed of convergence with M-2 andM-4 was lower in
both cases than for other scenarios and had a total MR of 48.32% and 56.00%, respectively,
whereas the total MR with our proposed algorithmM-3 was 21.30%. In fact, this result was
slightly better than M-1, which resulted in an MR of 28.00%.

Table 3. Average parameter estimates under 12 different simulation datasets A3B1-A3B4 in 20 replicates.

Treatment Iterative time Likelihood value Probability
estimate

Mean vector estimate Covariance matrix estimate MR (%)

Pb1 Pb2 μb1 ± se μb2 ± se Sb1 ± se Sb2 ± se

A3B1 M-1 129 -1816.34 0.50 0.50 0.00±0.06 0.01±0.06 1.47±0.15 1.48±0.14 0.23±0.08 0.13±0.05 0.23±0.09 0.14±0.06 4.90a

0.13±0.05 0.26±0.09 0.14±0.06 0.25±0.10

M-2 337 -1637.81 0.51 0.49 0.01±0.07 0.01±0.06 1.53±0.15 1.47±0.16 0.23±0.08 0.14±0.06 0.23±0.10 0.12±0.06 5.35a

0.14±0.06 0.27±0.10 0.12±0.06 0.22±0.09

M-3 134 -1762.64 0.50 0.50 -0.01±0.07 0.00±0.06 1.46±0.16 1.46±0.16 0.21±0.08 0.13±0.05 0.21±0.09 0.14±0.05 5.00a

0.13±0.05 0.26±0.08 0.14±0.05 0.25±0.08

M-4 359 -1800.32 0.52 0.48 -0.02±0.09 0.03±0.08 1.44±0.25 1.45±0.26 0.20±0.14 0.13±0.07 0.21±0.13 0.14±0.06 9.20b

0.13±0.07 0.24±0.13 0.14±0.06 0.25±0.13

A3B2 M-1 312 -2322.43 0.45 0.55 -0.06±0.10 -0.03±0.07 1.43±0.26 1.45±0.25 0.45±0.23 0.22±0.11 0.45±0.23 0.32±0.09 11.50a

0.22±0.11 0.55±0.23 0.32±0.09 0.53±0.22

M-2 444 -2102.31 0.45 0.55 -0.08±0.11 0.07±0.10 1.41±0.27 1.42±0.26 0.41±0.25 0.23±0.13 0.45±0.24 0.30±0.10 13.45ab

0.23±0.13 0.47±0.25 0.30±0.10 0.54±0.23

M-3 300 -2296.72 0.46 0.54 -0.06±0.10 -0.03±0.08 1.42±0.26 1.43±0.25 0.44±0.23 0.25±0.10 0.46±0.22 0.30±0.09 12.00a

0.25±0.10 0.54±0.22 0.30±0.09 0.54±0.21

M-4 489 -2358.99 0.43 0.57 -0.09±0.25 0.07±0.26 1.39±0.33 1.40±0.35 0.41±0.28 0.25±0.14 0.43±0.29 0.30±0.13 16.50 b

0.25±0.14 0.54±0.29 0.30±0.13 0.52±0.28

A3B3 M-1 584 -2586.53 0.42 0.60 -0.15±0.28 -0.14±0.26 1.38±0.46 1.40±0.47 0.68±0.32 0.49±0.18 0.80±0.31 0.49±0.16 18.00a

0.49±0.18 0.72±0.31 0.49±0.16 0.78±0.30

M-2 603 -2364.52 0.39 0.63 -0.19±0.35 -0.18±0.33 1.38±0.52 1.37±0.50 0.64±0.35 0.48±0.17 0.81±0.32 0.46±0.18 23.30 b

0.48±0.17 0.65±0.34 0.46±0.18 0.75±0.32

M-3 310 -2578.77 0.44 0.58 -0.10±0.25 -0.10±0.26 1.40±0.45 1.39±0.45 0.65±0.31 0.44±0.17 0.74±0.29 0.47±0.15 18.00a

0.44±0.17 0.78±0.32 0.47±0.15 0.78±0.29

M-4 590 -2600.62 0.37 0.63 -0.18±0.38 -0.17±0.41 1.38±0.55 1.37±0.54 0.63±0.39 0.42±0.25 0.82±0.39 0.48±0.21 25.00b

0.42±0.25 0.68±0.40 0.48±0.21 0.75±0.39

A3B4 M-1 645 -3013.37 0.35 0.65 -0.13±0.46 -0.17±0.38 1.30±0.72 1.30±0.70 0.92±0.38 0.50±0.20 1.14±0.40 0.68±0.24 28.00b

0.50±0.20 1.08±0.34 0.68±0.24 0.97±0.39

M-2 690 -2633.70 0.20 0.80 -0.22±0.74 -0.15±0.62 1.00±0.99 1.20±0.98 0.70±0.57 0.38±0.40 1.26±0.62 1.01±0.38 48.32c

0.38±0.40 0.79±0.51 1.01±0.38 1.23±0.58

M-3 520 -2892.21 0.40 0.60 -0.11±0.34 0.15±0.31 1.34±0.66 1.37±0.63 0.93±0.36 0.62±0.18 1.07±0.37 0.69±0.20 21.30a

0.62±0.18 1.07±0.39 0.69±0.20 0.96±0.41

M-4 835 -2901.33 0.10 0.90 -0.58±0.74 -0.55±0.80 0.90±1.04 0.97±1.07 0.61±0.72 0.21±0.58 1.26±0.77 0.89±0.47 56.00d

0.21±0.58 0.62±0.74 0.89±0.47 1.23±0.77

M-1 indicates a complete data clustering algorithm; M-2 indicates a missing-data-deleted clustering algorithm; M-3 indicates our missing-value imputation

clustering algorithm

M-4 indicates the clustering algorithm for missing-value imputation by mean replacement. These four algorithms are based on the multivariate Gaussian

mixture model.
a,b,c,d indicates the multiple comparisons of the differences in MR among the algorithms M-1, M-2, M-3, and M-4: having the different letters indicate that

there is statistical significance between these two groups (P<0.05), and vice versa.

doi:10.1371/journal.pone.0161112.t003
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Real data analysis
Iris dataset. Fisher’s Iris dataset (Fisher, 1936) [12] is perhaps the best-known database

for comparing clustering algorithms. The dataset contains three clusters with 50 individuals
each, where each cluster is a species of the genus Iris: namely, Iris setosa, Iris versicolor, and Iris
virginica. These three species are thus segregated. The dataset contains four variables: sepal
length, sepal width, petal length, and petal width. Fisher’s Iris dataset is available on the Inter-
net (http://archive.ics.uci.edu/ml/datasets/Iris). We randomly removed one of the four vari-
ables in 10% of the individual observations of Iris data; the resulting dataset constituted a
dataset with missing values. Table 4 lists the clustering results from five clustering algorithms:
the above four clustering algorithms [the clustering algorithm with a complete dataset (M-1),
the clustering algorithm in which individuals with missing variables are deleted (M-2), our pro-
posed missing-value imputation algorithm (M-3), and the clustering algorithm for missing-
value imputation by mean replacement (M-4)] and the FCM clustering method applied to the
dataset with data missing from 10% of the individuals. In the M-4 and FCMmethods, the miss-
ing values are replaced by the mean of the whole dataset. The superiority of our proposed
method is obvious insofar as M-3 resulted in the lowest MR of the five algorithms. Because of
Gaussian mixture distribution of the dataset, our algorithm makes full use of the known data
based on the Gaussian mixture model to estimate missing values, the accuracy of our method
was higher than those of the FCMmethod and the M-2 and M-4 algorithms, and it closely
approximated the accuracy obtained using the complete-dataset clustering algorithm (M-1).
Moreover, the model-based algorithms (M-1, M-2, M-3, and M-4) resulted in the highest BIC
values in the three clusters, validating the effectiveness of using the BIC to determine the num-
ber of clusters.

Yeast Cell-cycle dataset. The Yeast Cell-cycle dataset [28] shows the fluctuation in the
expression levels of the whole genome (6220 genes) over 17 time points taken at 10-minute
intervals, covering nearly two cell cycles. The entire raw dataset is available at http://genome-
www.stanford.edu/cellcycle/. Among the effectively expressed genes, 416 genes were found to
have consistent periodic changes in expression level. Yeung et al. picked out 384 genes over 15
time points that reached their peaks at five (C = 5) cell phases on the basis of the size of the
buds, after which five non-intersecting clusters were classified [29]. These 384 gene expres-
sions, a subset with a moderate sample size, are available at http://www.cs.washington.edu/
homes/kayee/model. All 384 genes were assigned to one of the five clusters by the original
researchers [28,29]. Therefore, we can use this dataset to test the performance of the clustering
algorithms introduced here and compare them with the performance of existing methods. We
randomly removed one of the 15 variable values in 10% of the genes to create a dataset with
missing values. Table 5 lists the clustering results from five clustering algorithms: the above
four model-based clustering algorithms (M-1, M-2, M-3, and M-4) and the FCM clustering

Table 4. The comparison among four algorithms and FCMmethod for Fisher’s Iris dataset.

Method n Misjudgment rate (MR) Iterative time BIC value in three clusters

M-1 150 3 (2.0%) 37 -307.848

M-2 135 6 (4.4%) 43 -273.539

M-3 150 3 (2.0%) 36 -305.211

M-4 150 7 (4.7%) 49 -307.382

FCM 150 5 (3.3%)

M-1 indicates the complete data clustering algorithm; M-2 indicates missing data deleted clustering algorithm; M-3 indicates our missing-value imputation

clustering algorithm; M-4 indicates clustering algorithm for missing-value imputation by mean replacement; FCM indicates Fuzzy C-Means clustering.

doi:10.1371/journal.pone.0161112.t004
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method. Further validating the results from Fisher’s Iris dataset, we found that our missing-
value imputation algorithm had the lowest MR. In addition, because our missing-value imputa-
tion based on the Gaussian mixture distribution is compatible with the Yeast Cell-cycle dataset,
the accuracy of our method was significantly higher than that of the FCMmethod, and it closely
approximated the accuracy from using the complete-dataset clustering algorithm (M-1).

CIFAR-10 images dataset. The CIFAR-10 dataset [30] contains 60,000 32 × 32 color
images (3072 variables) divided into ten classes, which represent different kinds of pictures.
The classes are designed to be completely mutually exclusive. For example, neither automobile
pictures nor truck pictures contain images of pickup trucks. Having a large sample size, each
class contains 5000 training images and 1000 test images. The entire dataset was used to test
the performance of test images according to training images in supervised classification, and it
is available at http://www.cs.toronto.edu/~kriz/cifar.html. We used the training images to test
the performance of our unsupervised clustering algorithm and compared it to existing cluster-
ing algorithms. We randomly removed 10 of the 3072 variable values in 10% of the color
images to create a dataset with missing values.

Table 6 lists the clustering results from five clustering algorithms: the above four model-
based clustering algorithms (M-1, M-2, M-3, and M-4) and the FCM clustering method. We
found that our missing-value imputation algorithm had a lower total MR than algorithms M-2
and M-4. The accuracy of our method closely approximated the accuracy obtained using the
clustering algorithm with complete data (M-1) but was lower than that of the FCMmethod. (It
should be noted that most clusters of the CIFAR-10 data have deviants from the normal distri-
bution.) Thus, the performance of our model-based algorithm does not offer clustering that is
more accurate than the FCMmethod. Moreover, the speed of computations was much lower
in algorithms M-1, M-2, M-3, and M-4.

Table 5. The comparison among four algorithms and FCMmethod for Yeast Cell-cycle dataset.

Method n Misjudgment rate (MR) Iterative time BIC value in five clusters

M-1 384 65 (16.9%) 1265 -6472.448

M-2 346 62 (17.9%) 1340 -5892.953

M-3 384 62 (16.1%) 1260 -6316.730

M-4 384 78 (20.3%) 1307 -6490.706

FCM 384 80 (20.8%)

M-1 indicates the complete data clustering algorithm; M-2 indicates missing data deleted clustering algorithm; M-3 indicates our missing-value imputation

clustering algorithm; M-4 indicates the clustering algorithm for missing-value imputation by mean replacement; FCM indicates Fuzzy C-Means clustering.

doi:10.1371/journal.pone.0161112.t005

Table 6. The comparison among four algorithms and FCMmethod for CIFAR-10 dataset.

Method MR

total Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10

M-1 39.9% 38.2% 41.4% 35.6% 43.5% 40.5% 37.9% 38.5% 42.1% 35.4% 45.6%

M-2 42.4% 42.6% 40.8% 35.2% 45.8% 42.0% 46.3% 40.4% 46.7% 38.4% 45.4%

M-3 39.8% 42.0% 41.0% 36.2% 39.6% 39.7% 38.9% 38.0% 43.2% 34.2% 45.0%

M-4 44.0% 45.3% 43.6% 37.4% 45.9% 43.7% 48.5% 42.8% 47.9% 41.3% 43.9%

FCM 35.9% 35.8% 35.6% 35.5% 36.7% 34.1% 37.6% 32.6% 37.6% 35.7% 37.8%

M-1 indicates the complete data clustering algorithm; M-2 indicates missing data deleted clustering algorithm; M-3 indicates our missing-value imputation

clustering algorithm; M-4 indicates clustering algorithm for missing-value imputation by mean replacement; FCM indicates Fuzzy C-Means clustering.

doi:10.1371/journal.pone.0161112.t006
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Discussion
Missing values are unavoidable in experimental data and data from field investigations [31].
Many imputation methods [16–20] have been proposed, such as the mean-substitution
method, the regression imputation method, the EM estimation method, and the FCMmethod.
Clustering is a widely used statistical method, especially in gene expression profiles. Most clas-
sical clustering methods, such as K-means clustering and hierarchical clustering, are unable to
deal with missing values. Therefore, we developed a model-based clustering algorithm for
imputing missing values. The proposed method utilizes information from existing data, and it
is based on the Gaussian mixture model. With our imputation algorithm, missing values are
estimated by calculating the conditional expectation, from which a “pseudo-complete” dataset
can be generated and used for clustering.

The performance of our proposed algorithm was tested and compared with other algo-
rithms using both real and simulated data. We found that our proposed method outperformed
other algorithms. In particular, our proposed method produced clustering results comparable
to an algorithm that uses a complete dataset, and it outperformed an algorithm in which sam-
ples with missing data are removed and another algorithm in which missing values are imputed
by mean replacement. The results are consistent with Hunt and Jorgensen’s reports [32]. Even
with datasets in which the boundaries of the clusters overlap, such as datasets A3B3, A2B4, and
A3B4, our algorithm performed well.

Furthermore, we found that the proposed algorithm outperformed the FCM clustering
method on Fisher’s Iris dataset and on the Yeast Cell-cycle dataset. The FCM clustering
method, a heuristic approach, has been verified as a successful missing-value clustering method
[33]. FCM clusters data based on the characteristics of the samples. The criteria for FCM clus-
tering are inconsistent, however, because the characteristics of dynamic algorithms lead to
uncertainties about the samples, degrading FCM’s ability to precisely cluster data [34–36]. Our
study shows that the proposed method is more likely to result in a low MR when the dataset is
exactly a multivariable Gaussian mixture distribution. That is, it is more accurate than other
methods with both simulated data and real data, e.g., Fisher’s Iris dataset and the Yeast Cell-
cycle dataset. One possible reason for this is that our method estimates missing values with a
conditional expectation based on the Gaussian mixture distribution and generates a “pseudo-
complete” dataset. In addition, our method combines dynamic clustering with discriminant
analysis and uses the EM algorithm to achieve a maximum-likelihood function. It can thus bet-
ter utilize the information from known data to discover the intrinsic and implicit properties of
a dataset. Usually, model-based methods are better than heuristic approaches, even though the
former are always more time consuming. Model-based methods depend on a probability
model, which is usually proposed based on the experience and feasibility of the model. The
convergence and accuracy of the EM algorithm have already been established [25]. The Gauss-
ian mixture model is both convenient and robust. Moreover, a model-based method provides
substantial information—e.g., the posterior probabilities of individuals and the parameters of
each cluster—and this information can be exploited to more accurately impute missing values
with iterative updates to the algorithm until convergence to a minimizer is reach.

Our method uses the Bayesian posterior probability to cluster individuals; individuals are
assigned to the cluster having the highest posterior probability. It is more reasonable to assign
individuals to a cluster having a high posterior probability, such as 0.8 or 0.9, and this improves
the clustering accuracy. Whereas traditional dynamic clustering methods cluster individuals
directly to a certain category, this process is difficult when the boundaries of the clusters over-
lap. Another advantage to a model-based approach is that statistical criteria, such as AIC and
BIC [14], can be used to discover the number of clusters that best suit the data. We confirmed
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the effectiveness of such criteria with results indicating three clusters for Fisher’s Iris dataset (a
dataset with exactly three species of Iris) and five clusters for the Yeast Cell-cycle Gene-expres-
sion dataset. However, the reversible-jump Markov-chain Monte Carlo (MCMC) method was
previously developed to infer the number of distributions in a mixture [37]. MCMC estimates
the optimal number of clusters from a Bayesian perspective. Our future research shall compare
MCMC with the BIC criteria used in this study. Finally, a prerequisite for raw data collected by
experimenters is that they be normalized. Indeed, our method is more sensitive to data that
have not been normalized. Therefore, either a log or some other form of data transformation
should be applied in order to distribute the data in a normal fashion. Furthermore, because our
proposal relies on the information from known individuals when imputing missing values, a
large sample size is desirable for more accuracy when estimating missing values.

Conclusions
In this paper, we have presented a model-based missing-data imputation algorithm for cluster-
ing numerical data with missing values. We achieved a high convergence rate with our algo-
rithm when it was tested on simulated and real datasets. In addition, the statistical power of
our algorithm is high, and it can accurately estimate parameters and correctly cluster individu-
als with missing variables. Moreover, the results of our evaluation show a low MR, even when
the mean vectors of two clusters are close to each other or when their variance-covariance is
disperse. The algorithm was applied successfully to datasets (both simulated and real) having
missing data. Its performance is superior to that of an algorithm in which samples with missing
data were removed and another algorithm in which missing values were imputed by mean
replacement. A comparative evaluation demonstrated that our proposed algorithm outper-
forms the FCMmethod when the data from each cluster fit a multivariate Gaussian
distribution.
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