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Abstract

Exploring the interplay between information spreading and epidemic spreading is a topic that
has been receiving increasing attention. As an efficient means of depicting the spreading of
information, which manifests as a cascade phenomenon, awareness cascading is utilized to
investigate this coupled transmission. Because in reality, different individuals facing the
same epidemic will exhibit distinct behaviors according to their own experiences and attri-
butes, it is important for us to consider the heterogeneity of individuals. Consequently, we
propose a heterogeneous spreading model. To describe the heterogeneity, two of the most
important but radically different methods for this purpose, the degree and k-core measures,
are studied in this paper through three models based on different assumptions. Adopting a
Markov chain approach, we succeed in predicting the epidemic threshold trend. Furthermore,
we find that when the k-core measure is used to classify individuals, the spreading process is
robust to these models, meaning that regardless of the model used, the spreading process is
nearly identical at the macroscopic level. In addition, the k-core measure leads to a much
larger final epidemic size than the degree measure. These results are cross-checked through
numerous simulations, not only of a synthetic network but also of a real multiplex network.
The presented findings provide a better understanding of k-core individuals and reveal the
importance of considering network structure when investigating various dynamic processes.

Introduction

As one of the most important dynamic processes in complex networks, the diffusion process
[1, 2], especially the spreading of epidemics [3-9], has been receiving increasing interest for
decades. Various models have been developed to describe the diffusion of epidemics [10],
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rumors [11], innovation [12] and so on. Different factors [13-15], such as the frequency of con-
tact between individuals, the disease duration, and the immunity of particular individuals, have
been considered in these models to provide a realistic and comprehensive understanding of the
spreading process. In particular, as an important representation of the spread of information
about epidemics, awareness spreading [16-20] has attracted increasing interest. A pioneering
step in this direction was taken by Funk et al. [16], who studied the spreading of epidemics
while accounting for the spread of awareness. Their results show that the final epidemic size can
be markedly reduced, whereas the epidemic threshold can be reduced only when the awareness
is sufficiently strong. At the same time, due to the different spreading paths of awareness and
epidemics, considering the spreading of the coupled dynamic process only on the same single-
layer network makes it difficult to obtain a comprehensive understanding of the process as a
whole. As a result, as a natural means of describing mixed complex systems, methods based on
multiplex networks [21-30] have recently found success in revealing abundant features of vari-
ous dynamic processes, including epidemic spreading. Within the framework of multiplex net-
works, Clara et al. [31, 32] developed a UAU-SIS model and found that a metacritical point
exists from which an epidemic can be delayed and contained. Guo et al. [33] proposed a local
awareness-controlled contagion spreading model in which the awareness layer is a threshold
model and also used the same framework as a UAU-SIS model to analyze the problem. The ana-
lytical results showed high accuracy compared with Monte Carlo simulations.

However, in these studies, there exists a hidden assumption that all individuals are treated
equally. In fact, because of the complex topological structures of networks, the discrepancies
among different individuals have a significant influence on the epidemic spreading process
[34], as in other spreading processes [35, 36]. The large heterogeneity of the resulting network
strongly determines the efficiency and speed of spreading [37-41]. For instance, if a node is a
hub with a large number of neighbors, then even if the corresponding individual is aware of the
epidemics, it is still relatively easy for that individual to become infected; therefore, the reduc-
tive effect of awareness on the infection rate is not as strong for these individuals. Conse-
quently, it is essential to consider the heterogeneity of different individuals in the epidemic
spreading process. Moreover, because the spreading of awareness, which can always be mod-
eled as a threshold model [42], has a significant influence on epidemic spreading, there is also a
need to introduce a heterogeneous threshold model instead of a homogeneous threshold
model [33]. Therefore, as shown in Fig 1(a), the purpose of this paper is to develop a heteroge-
neous spreading model, on both the awareness layer and the contagion layer, to integrate these
two issues so as to gain a deeper understanding of the interplay between the spreading of
awareness and epidemics.

Here, to account for the heterogeneity of individuals, we must first introduce the measures
that can be used to classify individuals into different groups. A number of different measures
aimed at ranking the importance of individuals have been suggested in recent years [43-45], of
which the most direct and widely used topological measure is the node degree [3, 36]. In a com-
plex network with a broad degree distribution, the hubs (individuals with the most connec-
tions) are usually believed to be responsible for the largest spreading processes [3, 36, 45].
Furthermore, as a global measure (in contrast to the local degree measure), k-core (also called
k-shell) decomposition analysis has recently revealed abundant details concerning the impor-
tance of individuals to spreading processes in social networks [45-47]. The k-core measure is
used to describe the location of an individual by assigning an integer index k, and pruning all
individuals with k < k,. Peripheral individuals have small k, values, whereas a large k, corre-
sponds to the core of the network [46]. This measure shows that there are plausible circum-
stances in which the true “hubs” of the network do not correspond to the most highly
connected nodes; instead, the individuals located within the core of the network may be the
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Fig 1. lllustration of the heterogeneous LACS model. (a) A schematic illustration of a two-layer multiplex network in which the upper layer represents the
spreading of awareness and the lower layer is the contagion layer. The spreading models and topological structures of these two layers are different from
each other. A threshold model is used on the awareness layer, whereas an SIS model is used on the contagion layer. Red nodes represent individuals that
are aware or infected. (b-c) Diagrammatic representations of a simple network under the k-core decomposition and the degree decomposition, respectively.
Itis clear that the degree decomposition is considerably different from the k-core decomposition. The two nodes of degree k = 3 in the network are in
different locations: one is in the innermost core of the network, whereas the other lies at the periphery. (d-f) Toy models of the linear positive correlation
model, the linear negative correlation model and the random model, respectively, for the local awareness threshold a. The values on the awareness layer
correspond to the local awareness threshold a, whereas the values on the contagion layer correspond to the reduction rate y. Here, we use the k-core index
as the measure of the heterogeneity of individuals on the awareness layer, whereas the degree is the measure used on the contagion layer.

doi:10.1371/journal.pone.0161037.g001

true “hubs”. Schematic representations of a network in terms of the degree and k-core mea-
sures are shown in Fig 1(b) and 1(c).

In this paper, for simplicity and completeness, we use the degree and k-core indexes as mea-
sures of individual heterogeneity to explore its effects on epidemic spreading. With the hetero-
geneity taken into account, we find that in epidemic spreading, the k-core measure is robust to
the awareness heterogeneity of the nodes, meaning that the epidemic spreading process
remains nearly identical under different awareness heterogeneity models. In addition, the het-
erogeneity of individuals as indicated by the k-core measure can also promote the spreading of
epidemics, with an especially strong influence on the final epidemic size. The results are estab-
lished through analytical methods based on extensive numerical simulations of correlated and
uncorrelated multiplex networks. Moreover, as an application example, we apply our model to
the human HIV1 multiplex network [48, 49] and obtain the same findings, thus providing a
better understanding of the effects of the heterogeneity of individuals on the spreading of epi-
demics. Last but not least, the results also provide a route toward an efficient strategy for sup-
pressing the spread of epidemics.

Results

To clearly present our results, we first describe our two-layer multiplex network model of epi-
demic spreading considering the cascading of awareness. For simplicity, we assume that the
multiplex network is unweighted and undirected.
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The local awareness controlled contagion spreading model on a
multiplex network

The local awareness controlled contagion spreading (LACS) model consists of two layers, of
which the upper layer represents the awareness states of the individuals and the lower layer
corresponds to the physical epidemic states of the individuals. Each individual in the awareness
layer has a one-to-one correspondence with its counterpart on the contagion layer. The struc-
tures of the two layers can, in general, be quite different, because the upper layer represents the
spreading of information, whereas the spreading of the epidemic occurs on the lower layer. On
the awareness layer, if an individual is aware of the epidemic, it is in the aware (A) state; other-
wise, it is in the unaware (U) state. Correspondingly, on the contagion layer, if an individual is
infected, it is in the infected (I) state; otherwise, its state is susceptible (S). Individuals on the
awareness layer spread awareness of the epidemic while the contagion process proceeds on the
contagion layer; the awareness layer is a threshold model, and the contagion layer is a classical
SIS model. Specifically, the evolution of the dynamic awareness process is defined as follows.
On the one hand, two cases exist in which an unaware individual can become aware: (1) the
individual becomes infected, or (2) the ratio between the number of its neighbors that are
aware and its degree (the number of links connected to it) surpasses the critical point, which
we call the local awareness threshold a. On the other hand, an aware individual can revert to
the unaware state with a probability 5. Additionally, on the contagion layer, a susceptible indi-
vidual can be infected by an infectious neighbor with probability 5, whereas an infected indi-
vidual can recover to the susceptible state with probability u. We use 8* or Y to denote the
infection rate when an individual is aware or unaware, respectively. These rates are different
because if an individual is aware of the epidemic, it may take measures to protect itself, thereby
leading to a reduced infectivity, 8* = y8". Each individual can only be in one of three states:
unaware and susceptible (US), aware and infected (AI), or aware and susceptible (AS).

The heterogeneous LACS model on a multiplex network

As defined above, to account for the heterogeneity of individuals on both the contagion layer
and the awareness layer, we should investigate the details of the coupled dynamic process. The
two diffusion processes are coupled through the reduction of the infection rate § on the conta-
gion layer if an individual is aware on the awareness layer. However, the reduction rate 1 — y
should differ among different individuals because of their heterogeneity, which means that the
contagion layer should be a heterogeneous SIS model. In reality, it is more difficult for a more
important individual to remain unaffected by an epidemic, which suggests that the reduction
rate 1 — y for such individuals should be smaller. This is easy to understand based on the fact
that the entire system depends predominantly on certain key individuals. If an individual is a
key player, then in some sense, the connections with that individual are more important than
those with others. Therefore, the characteristic of high activity leads to a smaller reduction 1 —
y in the infection rate. Here, we propose a linear model, one of the simplest possible
approaches, to assign each individual a value of y according to that individual’s importance.
Because we use the degree and k-core measures in this paper to quantify the importance of
individuals, the linear model of the reduction rate is defined as follows:

k. —k,
Vi = k 1 ;:m or Y,
max ~ “min

i min
— ks — ks
k:nux _ k:mn

where k,,,,, and k,,;, represent the maximum and minimum degrees, respectively, of individu-
als on the contagion layer. Equivalently, k™ and k" are the maximum and minimum k-core
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indexes, respectively, of individuals on the contagion layer. The degree and k-core indexes of
an individual i are k; and ki, respectively.

On the awareness layer, to account for the heterogeneity of individuals, different values of
the local awareness threshold o are assigned to each individual. For completeness and simplic-
ity, we propose three models, including a random model, a linear positive correlation and a lin-
ear negative correlation, for the assignment of a local awareness threshold ¢; to individual i:

1. Linear positive correlation model
This model assumes that the local awareness threshold « and the degree or k-core index of
an individual on the awareness layer have a linear positive correlation. This assumption
implies that an individual with a larger degree or k-core index has a larger local awareness
threshold a, which makes it more difficult for the individual to become aware:

k _ ki _ kmin

o i min _ s s
%= k — k. or o; = Jemax __ Jemin

where Ky Kpmins KSP%, kI, k;, and k% have the same meanings as those on the contagion

layer but are based on the topological structure of the awareness layer.

2. Linear negative correlation model
In contrast with the linear positive correlation model, this model assumes that on the aware-
ness layer, the local awareness threshold ¢ and the degree or k-core index of an individual
have a linear negative correlation, which means that an individual with a larger degree or k-
core index has a smaller local awareness threshold ¢. In other words, an individual can
more easily become aware if its degree or k-core index is large:
Kyax — ki k™ —k,

where Kpa Kiins KXP9%, KTk, and kL also have the same meanings as for the linear posi-
tive correlation model.

3. Random model
In the random model, we randomly assign different values of & in the range [0, 1] to differ-
ent individuals on the awareness layer. Note that individuals with the same degree or k-core
index may have different local awareness thresholds:

o, = random [0, 1]

We use a toy model to illustrate these three models on the awareness layer in Fig 1(d), 1(e)
and 1(f). Because the reduction rate is simply related to the topological structure of the conta-
gion layer, it is clear that regardless of the model used on the awareness layer, the reduction
rate for individuals on the contagion layer remains the same.

The coupled dynamic process in the heterogeneous LACS model

For describing an epidemic, the epidemic threshold and the final epidemic size are two key
quantities. Hence, we develop a simple method of calculating epidemic thresholds using differ-
ent heterogeneity models. In particular, we adopt the MMCA method [31] (see the Methods
section for details) to analyze these models. So as to help readers have a clear understanding of
our model, in Table 1, we list the meanings of some key parameters used in our model.
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Table 1. The details of some key parameters.

parameter description
a; local awareness threshold for node i
9 transition probability from aware to unaware
Jixd infection rate for unaware individual
e infection rate for aware individual
u recovery rate for infected individual
Vi reduced infection rate of aware node i
ki degree of node i
KL k-core index of node i
P'(s) average infection probability of nodes with degree s or k-core index
PA(s) average awareness probability of nodes with degree s or k-core index

doi:10.1371/journal.pone.0161037.t001

According to the heterogeneous LACS model defined above, let A = {a;}x « yand B = {b;}n « n
be the adjacency matrices of the awareness layer and the contagion layer, respectively, where N
is the number of individuals on each layer. Then, the probability that individual i will not change
from state U to state A is r;, and the probability that it will not be infected by any neighbor is ¢,
if it is aware, or g, if it is unaware. For these probabilities with respect to time, we have

Zjajip? ()

ri(t) =H|o— T (1)
q'(t) = TI(1 = bp (1) B;) (2)
g/ (t) = TI(1 = byp"(1)B") (3)

where pf(t) and p}'/(t) represent the probabilities that individual j is aware or infected, respec-
tively, at time ¢. In addition, H(x) is a Heaviside step function, i.e., if x > 0, then H(x) = 1, and
otherwise, H(x) = 0. In other words, r(t) can only take a value of 1 or 0, depending on the
awareness states of its neighbors. These equations are obtained by supposing that the contribu-
tions from all neighbors are independent of each other, which is the only approximation
adopted in the MMCA method [31, 32].
As a result of the MMCA method, we obtain the epidemic threshold ﬁf’, which is
U H
b=

max

The calculation of the epidemic threshold " reduces to the solution of an eigenvalue prob-
lem. Specifically, let S be the matrix whose elements are s; = [1 — (1 — 7,)p;']b;; then, A, ,q is
the maximal eigenvalue of S.

Simulations on different synthetic networks

To examine the effects of the heterogeneity of individuals on the coupled dynamic process,
simulations performed on different synthetic networks are presented below. Because our
model consists of two layers and each layer has its own measure of individual heterogeneity,
either the degree or the k-core measure, four cases of the heterogeneity measures used in the
multiplex network exist: (1) the degree measure versus the degree measure, (2) the degree
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measure versus the k-core measure, (3) the k-core measure versus the degree measure, and (4)
the k-core measure versus the k-core measure. Recent works have shown that interlayer corre-
lations can have a significant impact on the dynamic process in a multiplex network [50-52].
In reality, a positive interlayer correlation is more common than a negative correlation [22,
53]; for example, an individual who is important or has many links in one type of social net-
work tends to also have many links in other types of networks. Therefore, in this paper, we
study only positively correlated and uncorrelated multiplex networks.

Dynamic spreading process on a positively correlated multiplex network. Fig 2 shows
the results obtained on an SF multiplex network. The two layers have the same SF network
structure with 10* nodes, which was generated using the configuration model [54] with an
exponent equal to 3. Because the topological structure of both layers is the same, the multi-
plex network has the maximal positive correlation [50, 51], which is the simplest case for a
correlated multiplex network. Meanwhile, the average degree (k) of the network is 6. To initi-
ate an epidemic spreading process, 20% of the nodes on the contagion layer were set as
infected, with their counterparts on the awareness layer consequently aware of the epidemic.
In the heterogeneous LACS model, each node on the contagion layer has a fixed reduction
rate y according to its degree or k-core measure on the contagion layer, whereas on the
awareness layer, each node has a different value of the local awareness threshold o under dif-
ferent heterogeneity models. The rules governing the coupled dynamic process were iterated
with parallel updating until the total percentage of infected nodes p’ reached a steady state.
As seen from Fig 2(a), 2(c), 2(e) and 2(g), the spreading process strongly depends on the het-
erogeneity measure on the contagion layer. In particular, when the k-core measure is used on
the contagion layer, the measure on the awareness layer and the heterogeneity model have lit-
tle effect on the epidemic spreading behavior. However, when the heterogeneity measure
used on the contagion layer is the degree measure, the use of different measures on the aware-
ness layer results in significantly different spreading process for the same models, in terms of
not only the epidemic threshold but also the final epidemic size. For instance, in Fig 2(a), the
degree measure is used on the awareness layer and the spreading process in the negative
model is more rapid than in the other models, which means that the epidemic threshold is
smaller and the final epidemic size is larger; meanwhile, the opposite occurs when the k-core
measure is used on the awareness layer, as seen from Fig 2(e). These phenomena indicate
that the spreading process is ‘robust’ when the infection rate of each node is assigned accord-
ing to the k-core measure on the contagion layer, regardless of the heterogeneity model used
on the awareness layer. In other words, as a representation of information spreading, because
the awareness heterogeneity has little effect on the epidemic spreading behavior when we
classify the contagion characteristics of the nodes according to their k-core indexes, the k-
core index is an epidemic spreading structure that is ‘robust’ to the cascading of awareness.
Moreover, it is also clear that when the k-core measure is used on the contagion layer, the
final epidemic size is significantly larger than that obtained for the degree measure. In our
model, according to the definition of the reduction rate ¥, regardless of whether the degree
measure or the k-core measure is used, a more important node can more easily become
infected. Therefore, the larger final epidemic size obtained when the k-core measure is used
on the contagion layer reveals that this measure, in some sense, reflects the role of a node as
an influential spreader [45].

Moreover, to gain a better understanding of the effects induced by the coupled dynamic
process on the awareness layer, it is also interesting for us to investigate the spreading of aware-
ness. In the insets of Fig 2(a), 2(c), 2(e) and 2(g), we observe that the spreading of awareness
also relies primarily on the awareness layer. It is clear that the stationary fraction of aware
nodes, p*, exhibits two different spreading processes with increasing f regardless of the
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Fig 2. For SF-SF networks, the effects of the three heterogeneity models on the coupled dynamic process
and epidemic threshold calculations in the MMCA method. The four cases of the heterogeneity measures used
in the multiplex network are as follows: (a) and (b) degree measure versus degree measure, (c) and (d) degree
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measure versus k-core measure, (e) and (f) k-core measure versus degree measure, and (g) and (h) k-core
measure versus k-core measure. In (a), (c), (e), and (g), each panel shows the stationary fractions of infected
individuals (0') and aware individuals (0*; the insets) obtained from Monte Carlo simulations as a function of the
infectivity 8 under the random model (red dotted line), the linear positive correlation model (blue dotted line) and the
linear negative correlation model (green dotted line). The other parameters are set as follows: y=0.8and 6=0.3. In
(b), (d), (f), and (h), comparisons of the epidemic thresholds between the Monte Carlo simulations (solid line) and the
MMCA method (dotted line) are presented. Note that 6 = 0.1 for all curves in these four panels.

doi:10.1371/journal.pone.0161037.9002

heterogeneity model used on the awareness layer. In the first spreading process, when g is
small, different models appear to have different p* values, but the differences become smaller
as B increases. This suggests the necessity of examining the coupled dynamic process at differ-
ent ff values. Additionally, we also compare the MMCA method with Monte Carlo simulations
for calculating the epidemic thresholds, as shown in Fig 2(b), 2(d), 2(f) and 2(h). When the k-
core measure is used on the contagion layer, the MMCA method exhibits good accuracy; how-
ever, when the degree measure is used on the contagion layer, the epidemic thresholds obtained
using the MMCA method are smaller than those obtained in the Monte Carlo simulations,
although the discrepancy is smaller for small epidemic thresholds. For example, in Fig 2(b), the
epidemic threshold for the positive model is larger than that for the negative model, and the
MMCA method does not agree as well with the Monte Carlo simulations for the negative
model. The reason is as follows: since we assume that the contributions from all neighbors are
independent in the MMCA method [31], in our heterogeneous LACS model when the hetero-
geneity measure of the contagion layer is degree, the value of r;, the probability that an unaware
individual 7 will remain unaware, is smaller than that in the Monte Carlo simulations in many
cases; thus, it is much easier for an outbreak to occur. This phenomenon also indicates that in
the coupled spreading process, compared with degree measure, k-core measure is a better way
to classify the heterogeneity of nodes.

To explain why the different models yield remarkably diverse results, we classify the nodes
into two groups for simplicity. The first group contains nodes with larger degree or k-core
indexes, whereas the other includes nodes with smaller degree or k-core indexes, as seen in
Fig 3. Because the multiplex network is positively correlated, a hub’ on one layer is also a ‘hub’
on the other layer. Therefore, in the following, by considering the occasions when the measures
on the two layers are the same, we qualitatively analyze the coupled dynamic process. When
the degree measure is used on both layers and the positive model is used on the awareness
layer, nodes with larger degrees tend to more easily become infected and enter the IA state,
whereas it is easier for nodes with smaller degrees to be in the SA state. However, if the negative
model is used on the awareness layer, nodes with smaller degrees are more likely to be in the
SU state. Because awareness can reduce infectivity, epidemic outbreaks can more easily occur
in the negative model. In the case of the k-core measure, according to the calculation of the k-
core index, nodes with larger indexes may not have as many links because the distribution of
the k-core index is not as broad as the degree distribution [46]. Therefore, unlike the case of
the degree measure, it is easier for some nodes with larger k-core indexes to be in the SU state
when the positive model is used on the awareness layer. This factor accelerates epidemic
spreading, resulting in a much smaller discrepancy between the positive model and the nega-
tive model than in the case of the degree measure. Thus, the robustness of the k-core measure
to different models arises because of the balance of these factors.

Because the process of awareness spreading is distinct from that of epidemic spreading, to
explore the details of these spreading processes, we consider the average infection (awareness)
probability P’ (P*) of nodes with a given degree or k-core index. The infection (awareness)
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probability of infection is larger. Meanwhile, the awareness probability is smaller under the positive model and larger under the
negative model. The opposite situation arises for the lower group of nodes: the infection probability and awareness probability are
smaller under the negative model, whereas under the positive model, the awareness probability is larger.

doi:10.1371/journal.pone.0161037.g003

probability is averaged over all nodes with the same degree or k-core index as follows:

P! (k)(P*(k)) = Z;I((;?) (Z f;é;i;)

where P!(i) (PA(i)) is the probability that node i is infected (aware) in the epidemic (awareness)
spreading process and M(k) represents the number of nodes for which the degree or k-core
index is equal to k. In Fig 4, we illustrate the analysis of P!(k) (P*(k)) in the four cases of differ-
ent combinations of heterogeneity measures on the same multiplex network defined above.
Considering that different values of 8 have obvious effects on the stationary fraction of aware
nodes, we investigate two scenarios: = 0.2 and = 0.8. Many interesting findings are revealed
in the figure, not only with respect to epidemic spreading but also with respect to awareness
spreading. Let us first consider the scenario of # = 0.2. We find that when the degree measure is
used on the contagion layer, the infection probability P'(k) has a wide range, which means that
P!(k) is not a monotonic function of the degree. However, when the k-core measure is used on
the contagion layer, P'(k) increases monotonically as the k-core index increases. Moreover, on
the awareness layer, the opposite situation is observed. The results show that for the k-core
measure, P*(k) is not a monotonic function, whereas it is very similar to one for the degree
measure. Therefore, this indicates that because of the coupled dynamic process, when S is
small, hubs are not always ‘hubs’ in the spreading of epidemics and nodes with larger k-core
indexes are also not always ‘hubs’ in awareness spreading. By contrast, the k-core measure
exhibits a stable monotonicity on both layers when f is large, for instance, = 0.8. These phe-
nomena suggest that for the contagion layer, the k-core measure is a suitable heterogeneity
measure for classifying nodes into different groups in the heterogeneous model. At the same

PLOS ONE | DOI:10.1371/journal.pone.0161037 August 12,2016 10/19



@’PLOS ‘ ONE

The Role of Node Heterogeneity in the Coupled Spreading of Epidemics and Awareness

degree VS degree

degree VS k-core k-core VS degree k-core VS k-core

1 10 50 100 150 20!9 3 41 1
fgoed B8 o g Wﬁwugessa 8 g ° .
~ onegaveanare | o~ | ~
< H o g < DT e by
o8 0 ° positive-aware O N =" posttive-aware
fenlie L e
° negative-aware P -+ negative-aware o " posmve—wr_ﬂected
* postive-infected RS > positve-infected -+ negalive-infected .-+
E . . ° negative-infected P ) 0 0 ‘ ‘ > negafive-infected g A? ‘
0 50 100 150 200 2 3 50 100 150 200 1 2 3 4
degree k-core(degree) k-core(degree) k-core
1 T T 10 50 100 150 20p 11 2 3 41 1 ‘
Pt gy 80 8 5 ° 8 8 AR B D0 g 8 6 . (RTRES S
< <
N SN ) e R e
© positive-aware = et o positive-aware -onegative-aware | — -o-positive-aware
© negative-aware o ) © negative-aware -e-positive-aware o - -negative-aware
= positive-infected -=positive-infected o negative-infected -=-positive-infected
) ) > negative-infected b ‘negative—inlected « positive-infected -=-negative-infected
0 50 100 150 200 1 2 3 4 0 50 100 150 200 01 2 3 4
degree k-core(degree) degree(k-core) k-core

Fig 4. The average infection (awareness) probability P' (P*) as a function of the degree or k-core index. The results for the four cases of different
combinations of heterogeneity measures are shown for both the positive and negative models: (1) degree versus degree, (2) degree versus k-core, (3) k-
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doi:10.1371/journal.pone.0161037.9004

time, Fig 4 also helps us understand the differences between p’ and p* in different models. For
example, the spreading of epidemics is robust to the heterogeneity model when the k-core mea-
sure is used on the contagion layer because in this case, the infection probability P' is nearly
identical for every k-core index.

Dynamic spreading process on an uncorrelated multiplex network. To ensure that we
obtained uncorrelated multiplex networks, we generated different types of networks to use as
the two layers, including SF networks and ER networks [50]. Through many simulations of
these multiplex networks, we obtained consistent results regarding the spreading process. As
shown in Fig 5, when the k-core measure is used on the contagion layer, the epidemic spread-
ing process is robust to the heterogeneity model and the final epidemic size is larger. In addi-
tion, the awareness spreading process reaches a steady state as 8 becomes sufficiently large, for
example, = 0.8. Although various studies have shown that interlayer correlations can have a
large impact on multiplex networks, these findings demonstrate that the robust spreading pro-
cess is also ‘robust’ to interlayer correlations.

Below, to illustrate the different effects of the k-core measure and the degree measure, we
consider a human HIV1 multiplex network as a realistic example [48, 49]. The multiplex net-
work has five layers, each representing an interaction between genetic and protein-related fac-
tors in humans; to simulate our coupled dynamic process, we chose only two layers of this
network, as shown in Fig 6. Because this multiplex network is neither a maximally positively
correlated network nor an uncorrelated network, exploring it can help us to gain a more com-
prehensive understanding of the effects of the different measures.

Because in the heterogeneous LACS model, the interactions between nodes on the two lay-
ers are one-to-one in nature, we made some changes to the original multiplex network (for
more details regarding the data, see the Methods section). Then, we simulated the spreading
process on the multiplex network under the four cases of different combinations of heterogene-
ity measures. Consistent with the results for the synthetic networks, the results for the HIV1
multiplex network, which are shown in Fig 7, present empirical evidence that when the k-core
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Fig 5. The effects of three heterogeneity models on the coupled dynamic process. Two multiplex networks with 10*
nodes on each layer were generated, one with an ER layer+ER layer structure and one with an ER layer+SF layer
structure. The results for the four cases of different combinations of heterogeneity measures are shown as follows for each
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phyzical _azsociation

multiplex network and for the three different heterogeneity models, namely, a positive relationship (blue), a negative
relationship (green) and a random relationship (red): (a) (b) degree versus degree, (c) (d) degree versus k-core, (e) (f) k-
core versus degree, and (g) (h) k-core versus k-core. Each line represents the average of 50 independent Monte Carlo

doi:10.1371/journal.pone.0161037.g005

measure is used on both layers, the spreading process is robust to different models. At the same
time, the final percentage of infected nodes is larger when the k-core measure is used on the
contagion layer, as also observed for the synthetic networks.

Discussion

In summary, in this paper, we explored the effects of node heterogeneity on epidemic spreading
considering an awareness cascade in a multiplex network. Using the k-core measure and the
degree measure, we classified the nodes into different groups. Members in the same group were
assigned the same infectivity or local awareness threshold values. To gain a comprehensive
understanding of the coupled dynamic process, three models were proposed to determine the
local awareness thresholds, namely, a linear positive correlation model, a linear negative corre-
lation model and a random correlation model. We found that when the k-core measure is used
on the contagion layer, the spreading process is ‘robust’ to different models and the final num-
ber of infected nodes is larger, whereas when the degree measure is used on the contagion
layer, the use of different models results in significantly different affects on the spreading pro-
cess. In particular, when the degree measure is used on both the contagion layer and the aware-
ness layer, epidemic outbreaks occur more quickly in the negative model than in the other
models. By contrast, when the degree measure is used on the contagion layer and the k-core
measure is used on the awareness layer, outbreaks occur most rapidly in the positive model.
Furthermore, these results were crosschecked using correlated and uncorrelated multiplex net-
works. The findings indicate the importance of accounting for the heterogeneity of nodes when

direct_interaction

Aggregate

Fig 6. The HIV1 multiplex network. From left to right, the layers are the physical_association layer, the
direct_interaction layer and the aggregated network of the two layers, respectively. We treat the physical_association
layer as the contagion layer and the direct_interaction layer as the awareness layer.

doi:10.1371/journal.pone.0161037.g006
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studying a coupled dynamic process. Moreover, using the MMCA approach, the calculation of
the epidemic thresholds can be converted into an eigenvalue problem. The results show that
this method demonstrates good performance in predicting the trends of the epidemic thresh-
olds and that the accuracy is especially high when the k-core measure is used on the contagion
layer.

Because of the ‘robustness’ of the k-core measure on the contagion layer, our findings
obtained based on multiplex networks also help us to gain a better understanding of the effects
of k-core nodes. The results show that when the k-core measure is used on both layers, the het-
erogeneity of the awareness thresholds has little effect on the epidemic spreading process.
Moreover, because of the coupled information-disease spreading process, when we use the k-
core measure, nodes on the contagion layer with higher k-core indexes have a larger probability
of becoming infected, whereas this is not always true for nodes on the awareness layer. These
findings indicate that when studying the spread of epidemics, because of the robustness phe-
nomenon, different epidemic control strategies should be applied to cope with different net-
work structures.
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Methods
The MMCA method

In Fig 8, we use a probability tree to illustrate the MMCA method [31]. Because there are only
three possible states for every node, namely, US, Al and AS, the probabilities for these states
are represented by pU°, p*', and p™°, respectively. According to the probability tree, the evolu-

tion equations for these three states for node i can be described as follows:

Pt +1) = pi(t)ou + p(0)ri(6)g; (t) + pi*oq; (1)

PPt +1) = pP()u(l = 0) +p}”[1 — ri(1)lqi (8) + p°(1 = 9)q (1)
Pt +1) = p()(1 = ) + pP(O{0[1 — g7 ()] + (1 = O)[1 — g7 (D)]}

+Pi”s( NI = @I =g/ (O] + ()1 — g7 ()]}

Therefore, we can obtain the epidemic threshold . by letting t — oo such that the dynamic
process reaches a steady state, which means that the coupled equations can be reduced to
P+ 1), = p(0), = PP+ 1), = p5(0), . = pSand plS(t+1), . =
p%(t), ... = p. Note that near the epidemic threshold /3, the probability that node i will
become infected is p?' = ¢,<1. In addition, we obtain the probabilities g/ and q" that node i
will not be infected, which are described by Eqs (2) and (3), respectively, in accordance with
the assumptions above as follows:

Q;‘q =1II,_ ( PAI ~(1- ﬁ?zbjiej)
j

g/ =T, (1 - bjip]{u(t)ﬁiU) ~ (1 - ﬁiuzbjiej)
j

Al AS Us
1N%W¢NA
AS  As Al uUs

ul

us Al

Fig 8. Transition probability trees for the three possible node states. The possible node states are Al (aware and infected), US (unaware and
susceptible), and AS (aware and susceptible). Note that i represents the probability of the transition from infected to susceptible, 6 represents the
probability of the transition from aware to unaware, ¢* represents the probability that a node will not be infected by its neighbors when it is aware, g
represents the probability that a node will not be infected by its neighbors if it is unaware, and r represents the transition probability for an individual changing
from unaware to aware.

doi:10.1371/journal.pone.0161037.9008
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Hence, with respect to Eqs (4) and (5), the stationary probabilities p*S and p™ are given by
p = pPr, + pi¥o
P = (1= 1) 4+ pS(1 = 9) »
e, = (P58 + pPBY)D by
J

Because p' + p* + p”S = 1, where p' + p* = p#, we find that p/* ~ p?; then, the proba-
bility p' can be written as

ue; = ﬁu [1 —(1- Vi)P?]Jijiﬁj (7)

which means that the epidemic threshold ! is written as

p= (8)

max

where A, is the maximal eigenvalue of the matrix S, whose elements are
S;i = 1—(1- Vi)Pﬂbji'

The k-core decomposition

As a result of k-core decomposition, each node is assigned a k-core index value of k,, which repre-
sents its location. We can obtain the k-core index through the following steps: Initially, all nodes
of degree 1 are assigned the same k-core value, k, = 1. After successive pruning of these nodes,
some nodes with only one link may exist, and upon iterating the process until the degree of each
node is greater than 1, these removed nodes are all assigned to a k-core with an index of k; = 1. In
a similar way, we can find the other k-cores with higher indexes k; by iteratively pruning all
nodes in the network with k < k,. The process is terminated when all nodes have been pruned.

The details of the HIV1 multiplex network

The full multiplex network consists of five layers and includes 1005 nodes and 1355 edges in
total. In our analysis, we used only two layers, namely, the physical_association layer (conta-
gion layer) and the direct_interaction layer (awareness layer). To ensure one-to-one interac-
tions between the two layers, meaning that the nodes in each of the two layers are the same, we
compared the two layers, and upon finding any node that was present in only one layer, we
added this node and its connections in that layer to the other layer. After this process, the con-
tagion layer contained 939 edges and the awareness layer contained 1043 edges. Because the
awareness layer contained more links than the contagion layer, it was suitable for simulating
the spread of information.
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