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Abstract
Attenuated Salmonella typhimurium injected in the circulatory system of mammals selec-

tively targets tumors. Using weekly intraperitoneal injections of attenuated Salmonella strain
CRC2631, we tested for regression and/or inhibition of tumor development in the TRAMP

prostate tumor mouse model, which utilizes SV40 early region expression for autochtho-

nous formation of prostate tumors that progress into metastatic, poorly differentiated pros-

tatic carcinomas in an immunocompetent murine model. Thirteen weekly intraperitoneal

administrations of 105–107 CFU CRC2631 into 10 week old mice were well tolerated by the

TRAMP model. Sacrifice and histological analysis of TRAMP prostates at 22 weeks indi-

cated that Salmonellamonotherapy at administrated levels decrease visible tumor size

(>29%) but did not significantly inhibit previously described SV40 expression-driven

TRAMP tumor progression to undifferentiated carcinomas when histologically examined. In

conclusion, this work demonstrates baseline results for CRC2631 Salmonellamonotherapy

using the immunocompetent TRAMP prostate tumor model in preparation for study of com-

bination therapies that resolve autochthonously generated TRAMP prostate tumors, further

reduce tumor size, or inhibit prostate tumor progression.

Introduction
Combatting advanced and metastatic tumors is still one of the most difficult cancer treatment
challenges and new therapeutic approaches are necessary to target this heterogeneous disease
in which different cancer cells may require different treatments. Targeting the entire cancer cell
population within solid tumors is a goal that may be achievable using attenuated bacterial
strains, specifically Salmonella enterica serovar Typhimurium (Salmonella) that preferentially
target and infiltrate tumors without affecting non-cancerous cells and tissue [1–3].
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Previous research has shown the feasibility of this approach [4–8]. However, high-dosage
monotherapy with attenuated Salmonella strains proved too toxic and resulted in patients not
tolerating the high amounts of attenuated Salmonella strains used in clinical studies [9]. These
early results indicated that strain modifications as well as determining tolerable doses of Salmo-
nella are essential for utilizing this promising therapy to control cancer. Due to direct tumor
targeting by Salmonella it will also be possible to apply combination therapies by which a drug
or cancer-destroying component is directly carried into the cancer cells by Salmonella for direct
chemotherapeutic administration.

The idea of using bacteriotherapy for treatment of cancer was originally proposed more
than a century ago, when heat-killed bacteria and their components were found to have the
potential to inhibit cancer growth [10]. In the mid-1900s, it was observed that some bacteria
had the ability to survive and replicate in hypoxic tumor tissues. In the last two decades, inves-
tigation of bacterial based tumor therapy (bacteriotherapy) has progressed rapidly. Bacterial
species including Salmonella [11–14], Listeria [15, 16], and Clostridium [17, 18] have tumor
targeting and tumor-destroying phenotypes that are being actively exploited for detection of
and chemotherapeutic delivery to tumors [19].

Attenuated Salmonella candidates have been extensively studied for targeted treatment of
cancer [11]. Salmonella are gram-negative facultative anaerobic bacteria that can grow and rep-
licate inside host cells. Salmonella strains preferentially infiltrate and colonize solid tumor mas-
ses [2, 8] including autochthonous primary or implanted orthologous tumors in the prostate
[20], lymph nodes [21], pancreas [22], breast [23], lung [24] and brain tissues [25, 26].
Although the mechanism(s) of Salmonella tumor colonization have not been fully elucidated,
the Salmonella pathogenicity island 2 (SPI-2) is required for rapid amplification of Salmonella
in tumor host cells [27, 28] that leads to tumor growth suppression [29, 30]. Salmonella genetic
tools are robust and attenuated strains can be engineered to carry and/or synthesize chemo-
therapeutic payloads. Finally, Salmonella is an adjuvant that can assist in immunogenic recog-
nition [27] and subsequent destruction of tumors [31–33], especially when used in
combination with vaccines [34, 35]. The single phase I human clinical trial of a Salmonella
strain (VNP20009) in human patients had excessive toxicity when used as a cancer monother-
apy at high administration levels [9]. Subsequently, research on Salmonella as a bacteriothera-
peutic has focused on engineering Salmonella strains with lowered toxicity [36] while
preserving their unique tumor targeting and infiltration phenotypes [3, 37–39]. Delivery of
chemotherapeutic payloads is designed to further reduce the Salmonella load needed for clini-
cal effect and complete resolution of tumors.

Several Salmonella strains are being actively developed as bacteriotherapeutic vectors
including VNP20009 [1], A1-R [23], SL7207 [40], LVR01 [41], and CRC2631 [6]. We have
developed the tumor-targeting Salmonella strain model and candidate therapeutic (CRC2631)
that is derived from the Salmonella typhimurium LT2 wild type [14]. The parental strain
(CRC1674) was stored in agar stabs under nutrient-limiting conditions for more than four
decades at room temperature, generating dramatic genetic diversity including deletions, dupli-
cations, frameshifts, inversions and transpositions [42, 43]. Genetic investigation indicates
CRC1674 contains numerous mutations: originally an LT2 his-2550 strain, CRC1674 acquired
a his suppressor mutation, DIIR49B, an altered rpoS start signal (UUG), G to T mutation in
position 168 in rpoS sequence, and decreased HPI and HPII [14]. CRC1674 was further engi-
neered to disrupt aroA, thyA, and rfaH to generate an LPS-deficient strain auxotrophic for bio-
synthesis of aromatic amino acids and thymine. The resulting attenuated strain, CRC2631, did
not change its tumor targeting and tumor cell destruction phenotype but decreased its toxicity
dramatically. Co-incubation of CRC2631 and human prostate cancer cell line PC-3M results in
colonization of PC-3M and destruction of their mitochondria within one hour [6]. Up to
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1.2 × 108 CFU of CRC2631 can be tolerated in TRAMP mice (an immunocompetent autoch-
thonous prostate cancer model), showing its safety in mammalian hosts. When intraperitone-
ally injected with 1×107 CFU, the ratio of Salmonella counts were up to 100-fold greater in the
TRAMP mouse prostate tumor masses versus the usual Salmonella reservoirs of the liver and
spleen after 72 hours. We have performed morphologic and phenotypic analysis of CRC2631
species recovered from TRAMP mouse prostate tumors to evaluate the selective pressures of
cancer targeting and persistence in the novel tumor environment [44].

In order to investigate the ability of CRC2631 to serve as a chemotherapeutic carrying vec-
tor, we have explored its effect as a monotherapy in the TRAMP mouse, an autochthonous
prostate cancer model triggered by testosterone driven SV40 large and small T-antigen expres-
sion [45]. The TRAMP prostate cancer model was chosen due to its autochthonous tumor gen-
eration, well-characterized tumor progression stages, and immunocompetency [46]. Male
TRAMP mouse prostate tumor progression from 8–24 weeks of age proceeds from spontane-
ous prostatic intraepithelial neoplasia (PIN), to well-differentiated carcinomas (WDC), Phyl-
loides-like lesions (PHY), and finally poorly differentiated carcinoma (PDC) [47–49]. In
addition to testing for increased survival time and tumor size inhibition, measuring inhibition
of tumor progression of the TRAMP prostate tumor model is also possible; TRAMP prostate
tumors have been partially inhibited from progressing to the late stage WDC and PDC devel-
opment by up to 81% using plant-derived botanical compounds that have been shown to
inhibit the Hedgehog signal pathway [50] as well as limited inhibition of WDC incidence when
fed the phytoestrogen genistein [49]. This demonstrates that the TRAMP model is excellent for
relatively rapid analysis of primary tumor inhibition at varying mono- or multivalent therapy
dosages with simultaneous analysis of adverse immunological effects.

In this paper, we report the effect of weekly intraperitoneal Salmonella injections on
TRAMP mouse survival, tumor size, and progression. Groups of male TRAMP mice positive
for SV40 antigen expression were intraperitoneally injected with 105–107 of Salmonella strain
CRC2631 or a control buffer injection weekly from 10–22 weeks of age. Survival curve analysis
was performed during this injection period. After the 22nd week, surviving TRAMP models
were sacrificed and the urogenital tracts extracted to measure visible tumor volumes and per-
form histological grading of prostate and any visible tumors. Our results show that increasing
CRC2631 Salmonellamonotherapy is well tolerated in the TRAMP model and when given dur-
ing the 10–22 week tumor development window, decreases the size of visible prostate-associ-
ated tumors although under our current experimental conditions it does not prevent tumor
progression in the prostate tumor model. This study shows that the TRAMP model is excellent
for studying the effect of Salmonella-mediated cancer targeted combination therapies including
delivery of cancer-inhibiting molecules, generation of anti-cancer peptides or triggering immu-
nostimulatory reactions at the tumor site using Salmonella-mediated cancer targeting.

Materials and Methods

Bacterial Strain Culturing and Preparation
Salmonella strain CRC2631 (derived from nutrient-limited LT2 auxotroph CRC1674 [51]) was
used in this study. See Table 1 for complete strain information. All Salmonella were grown on
nutrient Luria-Bertani (LB) agar plates (25g/L LB powder (Fisher BioReagents), 15 g/L agar
(Fisher BioReagents) in deionized water) supplemented with 200 μg/mL thymine (Acros
Organics) at 37°C overnight. Strains were cultured in liquid medium by stab inoculating 10mL
LB broth (25g/L LB powder in deionized water supplemented with 200 μg/mL thymine in ster-
ile 50mL tubes (Thermo Scientific) with isolated colonies and incubating in a 37°C dry shaker
for 16–20 hours.
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Overnight cultures of Salmonella CRC2631 grown for injection into mouse models were
washed with sterile PBS, normalized to 108 colony forming units (CFU)/mL and diluted appro-
priately to administer 105, 106, and 107 CFU in 100μl of sterile PBS. Samples were loaded in
sterile 25G 1mL TB syringes (BD) and kept at 4°C until injection.

TRAMPMouse Studies
All experiments utilized the TRansgenic Adenocarcinoma of Mouse Prostate (TRAMP)
C57BL6/J-PBTag+ mouse model (Table 1), originally developed by using the prostate-specific
rat probasin promoter (PB) to drive expression of the oncogenic simian virus 40 large tumor
antigen-coding region (Tag) [45]. The autochthonous prostate tumor formation and progres-
sion in the TRAMP model is well established and considered suitable for use in prostate cancer
studies of tumor progression and prevention [46] [49].

Male TRAMPmice were raised on site at the University of Missouri (Columbia, MO) as pre-
viously described [50]. University of Missouri institutional guidelines for animal care and use
were followed. Mice were housed in pathogen-free microisolator-type cages with wood shaving
bedding at 70–75°F, 35–65% humidity with a 12 hour day/night cycle. Mice were free-fed with
5001 Laboratory Rodent diet (LabDiet) and water. Three different concentrations (105,106, and
107 CFU) of viable Salmonella (CRC2631) in 100μl PBS were intraperitoneally injected each
week for 12 weeks into one of three groups of twenty TRAMPmice from 10–22 weeks of age. A
fourth control group was intraperitoneally injected with 100μl sterile PBS as a negative control.
Animals were euthanized at the study endpoint (end of 22nd week) following University of Mis-
souri Animal Care and Use Committee standard operating protocols. After euthanasia, the
prostate and associated tumor masses were harvested, measured using a caliper, and immedi-
ately fixed in Shandon™ Formal-Fixx™ 10%Neutral Buffered Formalin (Thermo Scientific) over-
night at 4°C before harvesting tissues for histological analysis. Two cross section samples (1-
2mm) of each fixed prostate sample (or tumor mass if prostate was completely transformed)
were paraffin embedded, sectioned (4μm thick sections), mounted on glass slides and stained
with hematoxylin and eosin (H&E) for examination and tumor grading by light microscopy.

Animal Research andWelfare
All animal work was performed at the University of Missouri, Columbia, MO, USA. Experi-
mental protocols and animal husbandry were approved by the University of Missouri Animal
Care and Use Committee, Columbia, MO, USA (#7642). On injection days, mice were
observed every 2 hours for 8 hours to check for unexpected acute reactions to dosage. On non-
injection days, mice were examined daily. During observations a pain/distress evaluation was
performed for each of the mice as recommended by the University of Missouri Standard Policy
on Painful or Distressful Procedures (University of Missouri IACUC, July 2006) to detect signs
of toxicity (e.g. no interest in cage exploration, excess Harderian gland secretions, loss of

Table 1. Bacterial Strains and Animal Models.

Organism Genotype Reference

Salmonella enterica serovar Typhimurium

CRC1674 LT2 hisD2550 rpoS Sutton et al (2000)

CRC2631 CRC1674
aroA::Tn10TcΔrfaH
ΔthyA::pKD4

Zhong et al (2008)

Mus musculus

TRAMP C57BL6/J-PBTag+ Greenberg et al (1995), Sluzarz et al (2010)

doi:10.1371/journal.pone.0160926.t001
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coordination, over 10% body weight loss, loss of appetite, difficulty breathing). Mice with a
score>1.0 on the toxicity and discomfort scale or exhibiting obvious signs of distress were
taken and humanely euthanized (S1 File). Animals were euthanized (CO2 inhalation for 10
minutes followed by cervical dislocation to ensure euthanasia) at the study endpoint (end of
22nd week) following University of Missouri Animal Care and Use Committee standard oper-
ating protocols. During the study, there was one unexpected combat death between mice. The
remaining deaths in the study were due to TRAMP prostate tumor development (natural mor-
bidity of the mouse line). On-site veterinarian staff administered analgesics as needed.

Histology
Each prostate was sampled twice. One tissue section per slide was viewed and graded. The vet-
erinary pathologist was unaware of the duplicate slides or treatment groups until after grading.
Dorsal prostate tubules were graded individually and placed into one of six categories: 1) nor-
mal tissue, 2) hyperplasia (HYP), 3) prostatic intraepithelial neoplasia (PIN), 4) well differenti-
ated carcinoma (WDC), 5) phylloides-like (PHY) and 6) neuro-endocrine-like / poorly
differentiated carcinoma (PDC) phenotype as previously described [49]. Identification of neu-
roendocrine-like poorly differentiated carcinoma (PDC) lesions caused a stage of PDC to be
assigned to the animal regardless of the status of the dorsal prostate. Anterior prostate tubules
were also viewed and recorded as displaying hyperplasia or well-differentiated adenocarcinoma
but not specifically counted or graded. When appropriate, tumors were recorded as localized to
a specific section of tissue (i.e. periurethral region) or as affecting the entire tissue.

Statistical Analysis
GraphPad Prism 6 was used to perform analyses (GraphPad, La Jolla, CA). We used the
LIFETEST procedure in SAS 9.4 to compute nonparametric estimates of the survival functions
and to compare the survival curves. This procedure was used since we had a high presence of
right-censored data from terminating the experiment before many mice died in order to collect
prostate tissue for histology. To test whether Salmonella injections significantly inhibited
tumor progression, we used Fisher’s exact test.

Results and Discussion

Weekly intraperitoneal Salmonella injections are well tolerated in the
TRAMPmouse model
TRAMP mouse models of autochthonous prostate cancer groups (n = 20) were injected intra-
peritoneally with 105, 106, and 107 CFU of Salmonella strain CRC2631 in 100μl PBS. Intraperi-
toneal (IP) injections of 100μl PBS were performed in one group as a negative control. Survival
curves were plotted during the study period (Fig 1). Survival curves indicate no significant
change in survival for the TRAMP model over the study period at any injection level (S1 Fig,
S1 Table). One mouse in the 107 group died from combat-associated injuries with cage mates;
this death was excluded in the survival curve analysis because we cannot tell if the death was
due to combat injuries or tumor burden.

Average size of tumor volumes in TRAMPmodel decrease with
increased Salmonella injection levels
Prostate and prostate-associated tumors were extracted from surviving TRAMP mice at study
endpoint. Volumes of prostate-associated tumor masses were measured using calipers (Fig 2).
Mice with no visible tumor masses were not measured. Visible tumor mass mice dosed with
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Salmonella had 29.2% smaller average tumor burdens. Average volume of recovered tumors
decreased with increase in Salmonella dosage. Due to the single data point in the control group,
this data is qualitative.

Histological grading of prostate tumors in the TRAMPmouse model
Prostates along with any associated tumors were extracted from the surviving TRAMP mouse
models and fixed overnight in 10% buffered formalin at 4°C. Two cross sections of the dorsal

Fig 1. Weekly Salmonella injections tolerated by TRAMPmousemodel. Survival curve of TRAMP
mouse groups (n = 20) aged 10–22 weeks (98 days) during study period with weekly IP injection of 100μl
PBS (control) or 100μl PBS with Salmonella at indicated concentrations. Surviving mice were sacrificed at the
end of week 22.

doi:10.1371/journal.pone.0160926.g001

Fig 2. Tumor volume decreases with increasing Salmonella dosage.Caliper measurement of prostate-
associated tumor volumes extracted from TRAMPmouse groups at end of study with visible excess tumor
growth. Mean tumor volumes: PBS control (n = 1/16 with visible excess growth) 9.57 cm3, 105 injection group
(n = 5/17 with visible excess growth) 7.45 cm3, 106 injection group (n = 5/17 with visible excess growth) 6.43
cm3, 107 injection group (n = 2/13 with visible excess growth) 5.94 cm3.

doi:10.1371/journal.pone.0160926.g002
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prostate and any associated tumors were sampled by sectioning, hematoxylin and eosin stain-
ing, and grading using previously established criteria [49]. Histological grading of Salmonella-
treated prostates ranged from normal tissue to poorly differentiated carcinomas (Fig 3). Com-
paring tumor stages individually, using Chi-square test for association for PDC and Fisher’s
exact test for PHY and WD (because some cell sizes are smaller than 5), The p-values were all
non-significant: PDC p-value = 0.1725, PHY p-value = 0.3967, WD p-value = 0.4458. Overall
association between the injection groups and tumor progression is not statistically significant
(P-value = 0.3314) using Fisher’s exact test. Therefore, Salmonella injections did not signifi-
cantly inhibit tumor progression in the TRAMP prostate cancer model (Table 2). Histological
observation indicated the presence of neuroendocrine-type tumors at the periurethral region in
twelve TRAMP prostate samples (example, Fig 4). While neuroendocrine tumors in the
TRAMP model have been previously reported to invade the periurethral region, this has previ-
ously been reported as always associated with a morphologically identical large tumor arising
in the prostate [47]; we only observed large neuroendocrine tumors associated with two of the
twelve samples.

Prostate cancer is still the second-leading cause of cancer-related deaths in men [52].
Advanced cancer treatment still represents medical challenges, as effective cures are still not
yet available. While androgen deprivation therapy (ADT) is effective in treating early stages of
advanced prostate cancer most patients respond to this treatment initially but their cancers
become androgen-independent and most patients become ADT resistant [53, 54].

Furthermore, a surprising emergence of neuroendocrine prostate cancer cells (NEPC) has
resulted from androgen deprivation therapy (ADT), which presents new challenges for

Fig 3. Histology of prostate tumor development in TRAMPmice.Histologic sections of the dorsal lobes of the prostate from
transgenic mice stained with hematoxylin and eosin at 40X magnification. Pathologic grades: PIN, prostatic epithelial neoplasia; WD,
well-differentiated adenocarcinoma; PHY, phylloides-like; PDC, poorly differentiated neuroendocrine-type carcinoma. Slides: (A)
Normal tissue, (B) Hyperplastic tissue, (C) PIN, (D) WD, (E) PHY and (F) PDC (neuroendocrine-type).Observations: (C) Note tufting of
epithelial cells, increased mitoses, hyperchromatic nuclei, stratification of nuclei and cribiform structures (arrow). (D) Note neoplastic
cells with round nuclei; tumor type is characterized by increased numbers of small glands and thickening of the stroma. (E) Note
staghorn luminal patterns of neoplastic cells. (F) Note the high nuclear:cytoplasmic ratio of neoplastic cells, loss of glandular
differentiation and marked cell pleomorphism.

doi:10.1371/journal.pone.0160926.g003
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Table 2. Effect of weekly Salmonella dosages on prostate tumor development in the 5month TRAMP
prostate.

Farthest tumor progression in prostate

Salmonella Dosage n WD PHY PDC

PBS Control 16 4 5 7

105 Salmonella 17 2 3 12

106 Salmonella 17 6 5 6

107 Salmonella 13 4 1 8

Numbers indicate the farthest stage of progression for each prostate sample. n = sample size. WD, well-

differentiated adenocarcinoma; PHY, phylloides-like carcinoma; PDC, poorly differentiated neuroendocrine-

type carcinoma.

doi:10.1371/journal.pone.0160926.t002

Fig 4. Neuroendocrine-type carcinoma in the periurethral region of a TRAMPmouse.Histologic sections of the periurethral region
from a transgenic mouse stained with hematoxylin and eosin (H&E) at 4X (A), 10X (B), 40X (C) and 100X (D). (A): Note discrete tumor
(arrow) within the epithelium of the periurethral region. The outline in (A) is the magnified region shown in (C) and (D).

doi:10.1371/journal.pone.0160926.g004
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treatment. While the AR-negative neuroendocrine prostate cancers (NEPC) are rare at the
time of initial diagnosis, they can account for 5–30% of advanced prostate cancers promoted
by ADT [55].

Effective therapy for advanced stages of androgen-independent prostate cancer is still not
yet available. Although progress has been made toward identifying the problems associated
with disease progression, it has become clear that there is a need to eradicate the various sub-
populations of this heterogeneous disease including the hard-to-treat and oftentimes radia-
tion-resistant cancer stem cell (CSC) population. New therapies are critically needed to target
these subpopulations that may require different and combination treatment strategies.

While rigorous and targeted therapies for the various subpopulations of prostate cancer
might be developed in the distant future new treatment options aimed at targeting the entire
cancer tissue with all subpopulations are currently in development and actively pursued in
various laboratories using different approaches. A number of laboratories, including ours, are
utilizing attenuated bacteria for targeting and chemotherapeutic activation/delivery (“bacter-
iotherapy”) of cancers. These approaches are expected to have advantages over surgery and
radiotherapy and will also eliminate newly observed cancer stem cell populations that have pre-
sented new challenges for treatment of cancer, as the inability to provide new treatment options
is still associated with poor prognosis. The cancer stem cell subpopulation is responsible for
prostate tumor initiation, recurrence, drug-resistance and metastatic progression. Salmonella
targeting significantly reduces the weight of tumors initiated by cancer stem-like cells in several
studies [56, 57].

Salmonella have been shown to effectively target and colonize any tumors that can be
accessed by the host circulatory system, whether the Salmonella is introduced by intravenous,
intraperitoneal, or oral delivery [11, 12]. Salmonella adapted to target tumors for detection
have been predicted to colonize and detect tumor masses more than 2000-fold smaller than
current tumor detection methods utilizing tomography [19].

Evolved to survive in mammalian hosts, Salmonella has the ability to adapt host membrane
vesicles for its own use and can manipulate the placement of the membrane vesicle for replica-
tion and infiltration (invasion) of adjacent host cells [27]. As a facultative anaerobe, Salmonella
can colonize both the oxygen-rich tumor periphery and anoxic tumor mass [8, 38, 58]. Once
the entire tumor is colonized, Salmonella can deliver attached chemotherapies or synthesize
molecules including cancer-killing chemotherapeutics, enzymes for activating drugs (pro-
drugs) at the cancer site [59, 60], transfer and/or express genes to inhibit cancer oncogene
expression, or produce immune signaling molecules for cancer immunotherapy [35]. The high
infiltration rate of Salmonellamakes it superior to current nanoparticle technology that is lim-
ited in how far it can penetrate tumor tissue due to the high interstitial pressure characteristic
of tumor masses [61]. Novel combination bacteriotherapies including targeted delivery of anti-
cancer molecules (carried or synthesized), immunostimulatory peptides or vaccines, enzymes
designed to activate prodrugs at tumors, and radiation [62] combination therapies, all concen-
trated at the tumor site using Salmonella, have been and continue to be actively researched by
our laboratory and other laboratories in the field of cancer-targeting bacteriotherapy with
increasing levels of success.

The single limitation to Salmonella bacteriotherapy is concern about potential toxicity seen
in cancer patients using the VNP20009 Salmonella strain during phase I clinical testing in 2002
[9]. Since that study, efforts have been made by multiple laboratories to reduce toxicity in Sal-
monella without disrupting its cancer targeting, invasion, and tumor infiltration phenotypes.
We engineered a novel, attenuated Salmonella bacteriotherapeutic strain (CRC2631) that is
non-toxic and exhibits cancer targeting, invasion, and cancer cell destruction phenotypes [6].
Additionally, we have developed tools to facilitate Salmonella vector delivery of combination
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chemotherapies in order to increase bacteriotherapeutic effectiveness and reduce the dose of
Salmonella needed for clinical effect [63].

The effect of Salmonellamonotherapy on prostate tumor progression in an immunocompe-
tent model has not been characterized. In the present study, we examined the effect of weekly
administration of our bacteriotherapeutic Salmonella strain (CRC2631) on prostate tumor pro-
gression. We used the TRAMP mouse model of prostate cancer that utilizes testosterone-
driven expression of the SV40 large and small T-antigen [45] to generate autochthonous pri-
mary prostate tumors that eventually develop into poorly differentiated carcinomas with neu-
roendocrine carcinomas. Tumor progression in the TRAMP model is well documented [49, 50,
64] and provides an excellent model to test prostate tumor progression inhibition of Salmonella
monotherapy and combination chemotherapies in an immunocompetent mammalian model
that translates well to study prostate cancer progression in human patients.

We have shown that Salmonella CRC2631 injections in the immunocompetent TRAMP
model are well tolerated; survival curves of TRAMP mice during the 10–22 week injection
period show no significant decrease in survival in TRAMP mice during weekly IP injections of
105−107 CFUs of Salmonella versus control injections of sterile PBS. Secondly, the mean size of
visible prostate-associated tumors observed in TRAMP mice decreased when Salmonella was
administered; as more Salmonella was administered, the average size of prostate-associated
tumors also decreased. Due to the single data point in the PBS control group (Fig 2) we cannot
state with confidence that CRC2631 caused significant reduction of tumor size; however this
qualitative data in combination with the reduction of TRAMP mice at the final PDC stage of
SV40 expression-induced prostate cancer in the 106 group (Table 2) suggests that CRC2631
Salmonella monotherapy is reducing their tumor burden in the models with excess tumor
growth and increasing their quality of life. These subtle but promising results with CRC2631
Salmonella monotherapy make the immunocompetent, autochthonous TRAMP prostate can-
cer progression model an excellent candidate for evaluating combination therapies, including
but not limited to inhibitors of the Hedgehog signaling pathway which has previously shown
partial inhibition of TRAMP tumor progression [50]. The conclusion that Salmonella bacter-
iotherapy requires additional carried and/or expressed anti-cancer molecules delivered by
tumor-infiltrated Salmonella (combination therapy) is a commonly held opinion by prominent
researchers in the field of bacteriotherapy [12, 13, 36, 65].

In humans and mice the normal prostate is composed of stromal and epithelial compart-
ments. The epithelial compartment contains luminal epithelial cells, basal cells and a few
scattered neuroendocrine (NE) cells. NE cells have epithelial, neural and endocrine features.
They are not evenly distributed in the prostate and are most often found in the periurethral
region and verumontanum (colliculus seminalis) in humans [66]. NE cells can also be found
in prostate cancer, with increased numbers of these cells in tumors associated with poor
prognosis [66].

In humans, the term neuroendocrine differentiation (NED) in prostate cancer (PC) refers
to the presence of singly scattered NE cells or cells in small nests in typical prostatic adenocar-
cinomas [66]. Focal neuroendocrine differentiation is common in human prostatic adenocarci-
noma [67]. NED is seen in>30% of prostate cancer and is associated with poor prognosis
(high grade and high stage tumors) and androgen independence [68]. About 5–10% of pros-
tatic adenocarcinomas contain large numbers of NE tumor cells, however, pure NE tumors in
humans are rare as primary cancers [66].

As in human neuroendocrine PC, neuroendocrine carcinomas in TRAMP mice are associ-
ated with rapid growth and metastases and are highly lethal. However, while only a small per-
centage of human prostate tumors are primary NE cancers, TRAMP mice have a high
incidence of neuroendocrine tumors arising in the prostate, which often metastasize to the
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lymph nodes, lung and liver [67]. In mice, neuroendocrine carcinomas are similar to human
neuroendocrine carcinomas in appearance and are characterized by cells with high nuclear:
cytoplasmic ratio of neoplastic cells, granular cytoplasm, loss of glandular differentiation and
marked cell pleomorphism. They are the most widely metastatic and aggressive mouse prostate
cancer [67]. The TRAMP model is therefore also suitable to study NED.

Based on histology analysis and grading, we did not find a significant reduction in tumor
progression in the TRAMP model using Salmonellamonotherapy. However, we had an unex-
pected and novel finding. Histological observation indicated the presence of neuroendocrine-
type tumors at the periurethral region in twelve TRAMP prostate thick sections. While neuro-
endocrine tumors in the TRAMP model have been previously reported to invade the periure-
thral region, this has previously been reported as always associated with a morphologically
identical large tumor arising in the prostate [47]; we only observed large neuroendocrine
tumors associated with two of the twelve samples. We are quite confident that there are no
larger tumors in the rest of the ten prostates with neuroendocrine-type tumors at the periure-
thral region, which is a novel observation in the TRAMP model. However, we cannot eliminate
the possibility that there are small neuroendocrine-type tumors in the prostate because we did
not perform serial sections of the ten prostates that did not have visible large tumors. Invasion
of neuroendocrine type tumor cells at the periurethral region in the TRAMP model is impor-
tant, as it demonstrates the utility of this model to study neuroendocrine type tumor cells that
have become an important aspect for the treatment of aggressive prostate tumors. As indicated
above, in human prostate cancer androgen deprivation therapy (ADT) is commonly used for
treatment of prostate cancer, which is associated with promoting the progression of androgen
receptor (AR)-positive adenocarcinoma cells (AdPC) to AR negative neuroendocrine prostate
cancer (NEPC) through neuroendocrine differentiation (NED). However, treating NEPC is dif-
ficult, as no potent drugs are available for this type of cancer progression. We plan to follow up
and investigate the effect of Salmonella bacteriotherapy on neuroendocrine type tumor cells.

Conclusions
In summary, in this study we showed that weekly injections of 105−107 of bacteriotherapeutic
Salmonella strain CRC2631 in the TRAMP mouse prostate tumor progression model during
tumor development over weeks 10–22 are well tolerated and increased administration of Sal-
monella results in smaller prostate-associated tumors in the mouse groups that reached study
endpoint; however, TRAMP tumor progression was unaffected by administration of CRC2631
Salmonellamonotherapy. Additionally, we observed multiple instances of neuroendocrine-
type tumor tissue at the periurethral region in TRAMP prostate cancer mice, associating the
TRAMP prostate cancer model with more aggressive androgen receptor negative neuroendo-
crine human prostate cancers seen after androgen deprivation therapy in human patients.

Using this baseline data, investigators can now proceed to studies employing Salmonella-
delivered combination chemotherapies in the immunocompetent, autochthonous, neuroendo-
crine TRAMP prostate tumor model and look for improved tumor resolutions with different
types and concentrations of Salmonella-delivered combination chemotherapies.

Supporting Information
S1 Fig. Statistical survival curve analysis. The top graph shows the survival curves for all four
groups with 95% confidence intervals. The bottom table is the product-limit survival estimates
for the four groups without 95% confidence intervals.
(PDF)
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S1 File. Pain/distress evaluation for rodents. TRAMP mice that scored 1.0 or greater on the
pain/distress evaluation were euthanized after consultation with the attending veterinarian.
(PDF)

S1 Table. Statistical analysis of survival data between Salmonella injection groups. The
Type 3 Tests for differences between the four groups gives a Wald Chi-Square of 2.6188 with 3
degrees of freedom (DF) and corresponds with a p-value of 0.4542. This tells us that there is
not sufficient evidence to conclude that there are any differences in survival among the four
groups. Further, we can look at the Analysis of Maximum Likelihood Estimates to see the Haz-
ard Ratio (compared to the control group) and the p-values for comparison to the control
group. All p-values are greater than 0.05 so we conclude that there is not sufficient evidence to
conclude that any of the groups (10^5, 10^6, 10^7) have significantly different survival than
the control group.
(PDF)
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