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Abstract
To enhance the triangle quality of a reconstructed triangle mesh, a novel triangle mesh stan-

dardization method based on particle swarm optimization (PSO) is proposed. First, each

vertex of the mesh and its first order vertices are fitted to a cubic curve surface by using

least square method. Additionally, based on the condition that the local fitted surface is the

searching region of PSO and the best average quality of the local triangles is the goal, the

vertex position of the mesh is regulated. Finally, the threshold of the normal angle between

the original vertex and regulated vertex is used to determine whether the vertex needs to be

adjusted to preserve the detailed features of the mesh. Compared with existing methods,

experimental results show that the proposed method can effectively improve the triangle

quality of the mesh while preserving the geometric features and details of the original mesh.

Introduction
Triangle mesh reconstruction based on physical measurement data is one of important
researches in reverse engineering. There are often some non-standardization mesh cells in a
reconstructed triangle mesh because of the complexities of the physical measurement data and
the shortages of a mesh reconstruction algorithm, such as long-narrow triangles, holes, redun-
dancy triangles and T-vertex triangles. When the finite element analysis is carried out on the
physical model, the non-standardization mesh directly influences the precision, efficiency and
convergence of the calculation result. In addition, the efficiency and stability of rapid prototyp-
ing manufacturing are also reduced because of the existence of the non-standardization mesh.
Therefore, to obtain a high-quality mesh, it is necessary to standardize the mesh reconstructed
by industrial computed tomography (ICT) images.

Because it is relatively easy to standardize a redundancy triangle and a T-vertex triangle,
existing research on mesh standardization is based on two aspects, hole repairing and long-nar-
row triangle processing.

Hole repairing standardizes the mesh by filling the holes of the reconstructed triangle mesh.
There are two main categories for the hole repairing method, repairing based on the mesh and
repairing based on the volume data. Repairing based on the mesh partially fills the holes of the
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mesh without changing the original mesh topology, such as the algorithms of Zhao [1], Attene
[2], Jun [3] and Panchetti [4]. Repairing based on the volume data [5–7] is divided into the fol-
lowing 3 steps: (1) converting the mesh reconstructed to the volume mesh; (2) filling the holes;
and (3) reconstructing the triangle mesh by the extracting iso-surface for the volume mesh.
The central contributions of the above-mentioned methods are triangulation of the holes and
making a new triangle coordinate with the triangle area around the hole. Hence, the quality of
the repaired triangle is not a serious consideration.

The standardization of a long-narrow triangle aims to achieve a regular triangle as much as
possible by relocating the position of the triangle vertices. The Laplace standardization algo-
rithm [8, 9] is popular and the most widely employed, and its key idea is to adjust the vertex
position at a certain rate along the direction of the Laplace operator. The algorithm generally
works quite well for improving the quality of the triangles. However, it can result in some
shrinkage in the size of the mesh. Taubin [10] constructed a low-pass filter to effectively
restrain the noise and mesh shrinkage, but it brought some disturbances. Vollmer [11]
employed volume normalization for inhibiting the mesh shrinkage, yet the quality of the result-
ing mesh was general. Duguet [12] proposed an optimization algorithm combining the advan-
tages of bilateral filtering and image filtering, and good mesh standardization was obtained.
However, the error is bigger on the vertex curvature calculation. Chen [13] modified bilateral
filtering and combined a quasi-Laplacian operator to relocate the vertex position. The algo-
rithm can effectively make a uniform mesh while preserving the geometric detailed features of
the original mesh. However, many parameters need to be set in the algorithm. There are many
other methods for the long-narrow triangle standardization, such as those proposed by Zhu
[14], Zheng [15], Wei [16], Gao [17], etc. These approaches of standardization improved the
triangle quality of the mesh to some extent. However, the main considerations of the several
approaches above preserved the geometric feature, reduced the volume shrinkage and
improved the efficiency of the algorithm.

Each of the above-mentioned methods can only obtain good results in a specific aspect of
mesh standardization. Some methods for mesh standardization are employed to obtain the
uniform mesh, which can avoid the errors of finite element analysis. Some methods for mesh
standardization are applied to get smaller error between standardized mesh and original mesh,
which can reduce the reconstructed errors of CAD model. Some methods for mesh standardi-
zation are used to preserve the geometric features and details of the original mesh, which can
improve the precision of finite element analysis. Some methods for mesh standardization are
adopted to obtain the smoothed mesh, which can avoid stress concentration. However, meth-
ods described above cannot effectively improve the triangle quality of the mesh while preserv-
ing the geometric features and details of the original mesh, reducing the errors between
standardized mesh and original mesh.

Because of the shortcoming of above-mentioned methods for mesh standardization, in this
paper, we present a novel method for mesh standardization. First, a local curve surface for the
vertex and its first-order adjacent vertices of the mesh is fitted using the least square method.
Additionally, to improve the triangle quality of the mesh, we modify the PSO and apply it to
achieve the optimum vertex on the fitted surface. Finally, threshold of the normal angle is used
to determine whether the vertex needs to be regulated. The presented method can effectively
improve the triangle quality of the mesh while preserving the geometric features and details of
the original mesh.

The remainder of this paper is organized as follows. Section 2 describes a cubic curve surface
fitting method for the vertex of the mesh and its adjacent vertices. Section 3 presents our PSO
algorithm. Section 4 discusses the proposed method for mesh standardization. Section 5 shows
some experimental results and analysis. The final section presents our conclusion.

Mesh Standardization Based on PSO
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Local Curve Surface Fitting of the Mesh
Although the reconstructed triangle mesh is discrete, the mesh can be considered as continuous
from a local perspective. Therefore, any one of the local meshes can be regarded as a local
curve surface, and the vertices of the mesh are distributed on the surface. Hence, the standardi-
zation of the triangle is a procedure in which the triangle vertices of the mesh are regulated on
the local surface.

References [18,19] provided an approach in which a vertex’s local surface is denoted by a
cubic polynomial that fits the vertex of the mesh and its first-order adjacent vertices. Inspired
by the method, in this paper, we employ the least squares to fit a cubic surface for the vertex
and its adjacent vertices of the triangle mesh. To avoid geometry deformation and volume
shrinkage of the reconstructed triangle mesh, the fitted surface is used for the constraint to the
vertex adjustment. We regard vertex Vi as the origin of the coordinates. Consider the normal ni
of Vi as the positive of the z axis, and create a local coordinate system to fit vertex Vi and its
first-order adjacent vertices N(Vi) into a cubic surface. The fitting curve surface is defined
under the new coordinate system as:

f ðx; yÞ ¼ Ax3 þ By3 þ Cx2y þ Dxy2 þ Ex2 þ Fy2 þ Gxy þ Hx þ Iy þ J ð1Þ

The specific steps for solving the coefficient of the local surface equation (Eq 1) are as
follows:

Step 1 Solve the partial derivative of the curve surface equation f(x,y) and obtain the normal
equation, N(x,y) of f(x,y):

Nðx; yÞ ¼ ð3Ax2 þ 2Cxy þ Dy2 þ 2Ex þ Gy þ H;

3By2 þ Cx2 þ 2Dxy þ 2Fy þ Gx þ I;�1Þ ð2Þ

Step 2 Set the normal vector of point (xi,yi,zi) as (ai,bi,ci). The normal (ai,bi,ci) is rewritten as
(−ai/ci,−bi/ci,−1) in to be consistent with the form of Eq 2.

Step 3Write those coefficients of Eq 1 as a column vector, that is:

x ¼ ðA B C D E F G H I JÞT ð3Þ

Step 4 List the following equation for each point (xi,yi,zi) under the local coordinate system:

ðx3i y3i x2i yi xiy
2
i x2i y2i xiyi xi yi 1Þx ¼ zi ð4Þ

ð3x2i 0 2xiyi y
2
i 2xi 0 yi 1 0 0Þx ¼ �ai=ci ð5Þ

ð0 3y2i x2i 2xiyi 0 yi xi 0 1 0Þx ¼ �bi=ci ð6Þ

Step 5 Combine Eqs 4, 5 and 6, and form a linear system of equations, that is:

Mx ¼ b ð7Þ

M 2 R3n×10 is a matrix, b 2 R3n×1 is a column vector, and n represents the number of vertices
N(Vi). If n is less than 4, the nearer second-order adjacent vertices to Vi can be used.

Step 6 Solve Eq 7, and obtain a feasible solution of the least square method, that is, the coef-
ficients of the fitting surface equation f(x,y).

In mesh standardization of this paper, the fitted surface is used for the region constraint of
PSO.

Mesh Standardization Based on PSO

PLOSONE | DOI:10.1371/journal.pone.0160657 August 10, 2016 3 / 14



Our PSO

3.1 Introduction of standard PSO
PSO [20,21] has been widely used in all types of engineering optimization problems because it
is simple, easy to realize and has fewer adjustable parameters. The key idea of PSO is to find the
optimal solution according to collaboration and information sharing between individuals in
the group. The mathematical principle of PSO can be described as follows. In solution space, N
particles present N possible solutions. The moving process of the particles is the searching pro-
cess of the solution, rate of the particle stands for the searching direction, and each particle can
determine the speed and position according to their own previous information and social
information. The iterative formula for the speed and position of each particle can be defined as:

Vtþ1
i ¼ oVt

i þ c1r1ðPt
i � Xt

i Þ þ c2r2ðPt
g � Xt

i Þ ð8Þ

Xtþ1
i ¼ Xt

i þ Vtþ1
i ð9Þ

The constraint of the particle speed can be presented as:

jVtþ1
i j � Vmax ð10Þ

The individual previous optimal position of a particle can be calculated according to Eq 11:

Ptþ1
i ¼

(
Xtþ1

i ; f ðXtþ1
i Þ � f ðPt

iÞ
Pt
i ; f ðXtþ1

i Þ > f ðPt
i Þ

ð11Þ

where Pt
i and Pt

g are defined as:

Pt
i ¼ fXn

i jminff ðX1
i Þ; f ðX2

i Þ; � � � ; f ðXt
i Þgg ð12Þ

Pt
g ¼ fPt

i jminff ðPt
1Þ; f ðPt

2Þ; � � � ; f ðPt
mÞgg ð13Þ

where Vtþ1
i and Xtþ1

i represent the speed and position of the i-th particle carried out t+1 times,
respectively;Vt

i and X
t
i stand for the speed and position of the i-th particle carried out t times,

respectively; Pt
i and P

tþ1
i denote the individual previous optimal solution of the i-th and the

(i+1)-th iteration, respectively; Pt
g is the group optimal solution after t times; c1 and c2 are learning

factors;m is the population size; ω is a weight factor; r1 2 (0,1) and r2 2 (0,1) are the random distri-
butions; Vmax indicates the maximum limit speed of the particle; and f(�) is a fitness function.

3.2 Modified PSO
Since PSO was proposed, it gains significant popularity and improvement. Shi et al. [22] intro-
duced the inertia weight factor to constrict the velocity and better regulate the capability of
search. Clerc et al. [23] presented an improved PSO with a constraint factor by analyzing the
speed iterative equation of classical PSO. Clerc et al. found that introduction of constraint fac-
tor can prevent oscillation of particles, ensure the convergence of the algorithm, and analyzed
it from the algebraic point of view (discrete time) and the analytical view (continuous time)
respectively. Nowadays, the PSO with constraint factor becomes the canonical PSO algorithm
because of good performance. Mendes et al. [24] proposed a fully informed PSO (FI-PSO) to
improve the optimization performance. Liu et al. [25] addressed a novel PSO with the scale-
free topologies and gave rise to a better balance between the convergence speed and the opti-
mum quality. Motivated by the shortcoming of FI-PSO, Du et al. [26] proposed a PSO with
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limited information (LI-PSO), which provides adequate information of each particle yet avoids
the waste of information. Liang et al. [27] presented a comprehensive learning PSO (CLPSO),
which employs all other particles’ historical best information to update a particle’s velocity.
This strategy preserves the diversity of the swarm and discourages premature convergence.
Besides, there have been many improved PSO which focus on the model coefficients and the
population structure [28–33].

However, Most of the existing PSO algorithms use the inertia factor depending on itera-
tions, which thus ignores the effect of the error between fitness and the optimal solution.
Besides, in most of PSO algorithms, each particle is usually influenced by the best particle
among its neighborhood, which thus neglects some useful information from other neighbors.
Promoted by above works, especially FI-PSO, LI-PSO, CLPSO and canonical PSO, we modify
the PSO by introducing the center of particles and modifying the inertia factor.

First, standard PSO often falls into the local optimum, especially in high order optimization.
To avoid the shortcomings of standard PSO, inspired by references [24, 26], we append a dis-
turbance to the speed iteration formula (8) in this paper. The center of the current iterative par-
ticles is regarded as the disturbance, which indicates the influence of the most particles. The
disturbance can effectively increase the information for particle searching optimization and
disperse the appeal of the excellent particle to the whole particle swarm. The center of particles
can be calculated by Eq 14.

Pt
c ¼ fXt

i jMedff ðXt
1Þ; f ðXt

2Þ; � � � ; f ðXt
mÞgg ð14Þ

where Pt
c is the center of the particle swarm in the t-th iteration, Xt

i is the position of i-th parti-
cle carrying out the t-th iteration, f(�) is a fitness function,Med(�) is a median filtering function,
andm represents the population size.

Second, to adjust the searching region in real-time, we modify the inertia factor of PSO,
which reflects the extent of inheritance to the speed of the particle itself. The search capability
of PSO can be dynamically regulated by changing the value of ω. If ω is large, the PSO has
strong global search capability; otherwise, the PSO has strong local search ability [22]. Linearly
decreasing inertia weight (LDIW), as proposed by Shi [22,34], and its variants are widely
employed at present. However, the value of ω depends only on the iterations under the strategy
of LDIW, and the searching region of PSO cannot be adjusted according to the result of each
calculation in real-time. To achieve a balance between global search and local search in PSO, in
this paper, we apply the error between particle fitness and the optimal solution of the objective
function to define an inertia factor, ot

i which can be adaptively regulated, that is:

ot
i ¼ omin þ ðomax � ominÞðEt

iðxÞ � EðxÞminÞ=ðEðxÞmax � EðxÞminÞ ð15Þ

where ωmin and ωmax indicate the minimum and maximum of the inertia factor, respectively.
After many experiments and calculations, Shi [34] found that the convergence speed and preci-
sion of the PSO are higher when ωmin = 0.4 and ωmax = 0.9. In this paper, the values of these
two parameters are the same as the verified values by Shi. E(x)max and E(x)min represent,
respectively, the maximum and minimum of the errors between the fitness of each particle and
the optimal solution of the objective function in the process of iteration. Et

iðxÞ denotes the
error between the fitness of the current particle carrying out the t-th iteration and the optimal
solution of the objective function. Eq 15 shows that the value of the inertia factor, ot

i , is propor-
tional to the distance between the particle’s current position and the objective position. The
global search ability and local search ability of the algorithm can be adjusted in real time in
terms of the current position of the particle. Then, the solving precision of PSO is improved.

Mesh Standardization Based on PSO
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Finally, inspired by reference [23], to speed up the convergence rate, reduce the particle
oscillation amplitude and avoid ineffective iteration, we introduce a constraint factor ξ. Because
of the center of particles is added to the speed iterative equation described by Eq 17, the con-
straint factor is redefined as:

x ¼ 3=j3� φ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2 � 6φ

p
j ð16Þ

where φ = c1 + c2 + c3 and φ> 6, c1, c2 and c3 are learning factors.
To sum up, PSO is modified by introducing the disturbance of the particles’ center, the con-

straint factor and the adaptive inertia factor. The speed formula and position formula of the
modified PSO can be rewritten as:

Vtþ1
i ¼ ot

iV
t
i þ c1r1ðPt

i � Xt
i Þ þ c2r2ðPt

g � Xt
i Þ þ c3r3ðPt

c � Xt
i Þ ð17Þ

Xtþ1
i ¼ Xt

i þ xVtþ1
i ð18Þ

where Pt
c is the center of the particle swarm in the t-th iteration, c3 is a center learning factor,

and r3 2 (0,1) is a random distribution.
The performance comparisons among the modified PSO, classical PSO [22], canonical PSO

[23] and comprehensive learning PSO [27] are particularly described in S1 Appendix.
In mesh standardization of this paper, the modified PSO is used to regulate the vertices of

triangles on the fitted local curve surface and more triangles with good quality can be obtained.
Here, the particles of PSO stand for various possible positions of the target vertex. Movements
of the particles represent optimization process of the target vertex. And the best particle
obtained by the PSO is the final position of the target vertex.

Our Approach for Mesh Standardization
To quantitatively analyze the triangular standardization of the mesh, we have to determine an
evaluation standard. In this paper, the triangle average quality [35] of the local mesh is used for
the standard to evaluate the standardization of the mesh. The triangle average quality of the
local mesh is defined as:

Qave ¼
PTsum

k¼1 Qk=Tsum ð19Þ

Qk ¼ 4
ffiffiffi
3

p
Sk=ðl2k1 þ l2k2 þ l2k3Þ ð20Þ

Tsum represents the number of triangles in the mesh;Qk stands for the k-th triangle quality of
the mesh; Sk denotes the k-th triangle area of the mesh; lk1, lk2, and lk3 indicate the edge lengths of
the k-th triangle; andQk 2 (0,1) describes the quality of a triangle. WhenQk = 1, the triangle is
an equilateral triangle, whereas for smaller values of Qk, the triangle is longer-narrower in shape.

Therefore, the objective function of the proposed algorithm can be defined as:

minQ NVið Þ ¼ 1� Qave N
Við Þ ¼ 1� PTsum

k¼1

4
ffiffiffi
3

p
Sk

l2k1 þ l2k2 þ l2k3

� �
=Tsum ð21Þ

where NVi is a first-order neighborhood triangle set of vertex Vi.
The constraints of vertex Vi(xi,yi,zi) are:

Dx ¼ maxfjxij � jxVi
1 j; jxij � jxVi

2 j; � � � ; jxij � jxVi
Vsum

jg ð22Þ

Mesh Standardization Based on PSO
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Dy ¼ maxfjyij � jyVi
1 j; jyij � jyVi

2 j; � � � ; jyij � jyVi
Vsum

jg ð23Þ

~xi 2 fxi � Dx; xi þ Dxg ð24Þ

~yi 2 fyi � Dy; yi þ Dyg ð25Þ

~zi ¼ f ð~xi; ~yiÞ ¼ A~x3 þ B~y3 þ C~x2~y þ D~x~y2 þ E~x2 þ F~y2 þ G~x~y þ H~x þ I~y þ J ð26Þ
where ~xi; ~yi; ~zi are the new coordinate values of the vertex Vi; Vsum indicates the number of the

Vi first-order adjacent vertices; x
Vi
k ; y

Vi
k ðk ¼ 1; 2; � � � ;VsumÞ denote the x-value and y-value of

the k-th vertex in the first-order adjacent vertices of Vi, respectively; Δx,Δy stand for the range
of the x-value and y-value when vertex Vi is regulated, respectively.

Eq 26 is a cubic surface equation, which is fitted by vertex Vi and its first-order adjacent ver-
tices. The fitted surface is set as the constraint of Vi to ensure that the geometry size of the
mesh does not shrink. In addition, to better preserve the detailed features of the mesh, the nor-
mal angle between the original vertex and the regulated vertex is used to determine whether
the vertex needs to be adjusted when we have obtained the new position of the vertex using the
improved PSO.

According to the above analyses, the presented approach about triangle mesh standardiza-
tion can be implemented by the following steps.

Step 1 Use Eq 1 to fit a local cubic surface for vertex Vi and its first-order adjacent vertices
at the first.

Step 2 Initialize the particles, and set the current position of the particles as individual previ-
ous optimal values. Determine the group’s optimal value using Eq 13, and calculate the center
of particles according to Eq 14.

Step 3 If the constraints of Eqs 24, 25 and 26 are satisfied, update the speed and position of
each particle according to Eqs 17 and 18. Otherwise, x or y coordinate of the particle is assigned
the boundary value according to Eqs 24 or 25, the opposite direction of the speed is set, and
then calculate z coordinate of the particle according to Eq 26, and then update speed and posi-
tion of the particle according to Eqs 17 and 18.

Step 4 Calculate the fitness of each particle using Eq 21. Update the individual previous
optimal positions and the group’s previous optimal position according to Eqs 12 and 13, and
recalculate the center of particles using Eq 14.

Step 5 If the end of the iteration or the error threshold meets the condition, go to the next
step; otherwise, jump to step 3.

Step 6 Store the new coordinate value of the vertex, and calculate and store the normal
angle/ni

between the original vertex and the regulated vertex.

Step 7 If/ni
is within the threshold range, update the vertex position and vertex normal

vector information; otherwise, maintain the original position of the vertex.
Step 8 If all vertices of mesh have been traveled, finish the mesh standardization; otherwise,

go to step 1.

Experimental Results and Discussions
The proposed algorithm is implemented in Visual C++6.0 and tested on a PC with an Intel
Core2 2.2G Processor and 3G RAM. The parameter settings of the algorithm are shown in
Table 1. We compare the standardization performance of the proposed method with several

Mesh Standardization Based on PSO
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traditional methods, such as Laplace, Taubin, Vollmer and the state-of-the-art method of
Chen, by making use of the triangle mesh reconstructed by ICT serial images. The values of the
parameter of the compared methods are the same as the original references.

When the error of adjacent iterations is set to 1.0e-4, we can find the optimal position of the
vertex after about 40 iterations according to the experimental results. Hence, the iterations of
the proposed method can be set to 50. The population size,m, of PSO is generally set as 20~40,
but it is worth noting that a larger value ofm gives a lower efficiency of PSO. Furthermore,m is
set as 11 because of the smaller region of the fitted surface. Here,m is set as an odd number to
conveniently calculate the center of the particles. c1 is an individual learning factor denoting
the cognitive ability of the particle itself; c2 is a global learning factor, which is used to indicate
the information sharing cooperation ability of all particles; and c3 is a central learning factor
standing for the balance ability of the center of the particles. Here, c1 = 2.05 and c2 = 2.05 are
set empirically. c3 is also set as 2.05 to balance the influence among the center of the particles,

Table 1. Parameter settings of our algorithm.

Name Value

iterations 50

population size 11

c1, c2, c3 2.05

error threshold 1.0e-4

normal angle threshold 8°

doi:10.1371/journal.pone.0160657.t001

Fig 1. Comparison of the standardization algorithms on the wheel hubmodel. (A) original model; (B) standardization result by Laplace; (C)
standardization result by Taubin; (D) standardization result by Vollmer; (E) standardization result by Chen; (F) standardization result by our
method.

doi:10.1371/journal.pone.0160657.g001

Mesh Standardization Based on PSO
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the individual optimum and the global optimum. Reference [36] showed that the smaller the
error threshold of the normal angle is, the better the preserving feature of mesh is and the
worse the triangle quality of the mesh is. The error of the angle is commonly set as 5°*15°, so
we set the error threshold of the normal angle as 8° to strike a balance between the features and
the triangle quality of mesh.

The experimental results are shown in Figs 1–3. The comparisons of the standardization
algorithms on the wheel hub model are shown in Fig 1. The quality of the mesh is better after
Laplace standardization. However, some features of the mesh are lost, and the mesh is distorted
(see Fig 1B). To some extent, the standardization results by Taubin and Vollmer preserve the
feature of the mesh, whereas the triangle quality of the mesh is worse (see Fig 1C and 1D). The

Fig 2. Comparison of the standardization algorithms on the cylinder headmodel. (A) original model; (B) standardization result by Laplace;
(C) standardization result by Taubin; (D) standardization result by Vollmer; (E) standardization result by Chen; (F) standardization result by our
method.

doi:10.1371/journal.pone.0160657.g002

Mesh Standardization Based on PSO
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standardized mesh by Chen can nicely preserve the feature of the mesh, but the triangle quality
of the mesh is general (see Fig 1E). The result of the proposed method shows that not only
detailed features (e.g., wheel edges) of the mesh can be well preserved but that the triangle qual-
ity of the mesh is also better (see Fig 1F). Fig 2 shows the standardization results on the cylinder
head model. The results of Taubin in Fig 2C, Chen in Fig 2E and the proposed method in Fig
2F can better preserve the feature of the mesh. However, the results of Laplace and Vollmer are
greater distorted on the edge profile of the mesh (see Fig 2B and 2D). The results of the local
zoomed region are as shown in Fig 3. The triangle is uniform, and the quality of the triangle is
good after that the reconstructed mesh is standardized by the proposed method and the
method of Laplace (see Fig 3B and 3F). However, many detailed features of the mesh standard-
ized by Laplace’s method are lost (see Fig 3B), and the triangle quality of the mesh standardized
by other methods are worse (see Fig 3C, 3D and 3E). Therefore, the proposed method can well
standardize the mesh reconstructed by ICT serial images compared with existing methods.

To precisely compare the performances of the proposed and existing methods, the informa-
tion of the mesh standardized by different methods is counted. Table 2 shows the related infor-
mation of the original mesh. The bounding box size, surface area, volume, maximum error,
average error of the meshes standardized by different methods and the consuming time of the

Fig 3. Zoomed region of the cylinder headmodel. (A) original model; (B) standardization result by Laplace; (C) standardization result by Taubin;
(D) standardization result by Vollmer; (E) standardization result by Chen; (F) standardization result by our method.

doi:10.1371/journal.pone.0160657.g003

Mesh Standardization Based on PSO
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different methods are shown in Table 3. Table 4 shows the triangle quality distribution of the
different mesh standardization methods.

According to the data in Tables 2 and 3, for the wheel model, the error of bounding
box size, surface area error and volume error of mesh standardized by Laplace are maximal.
Error of bounding box size, surface area error and volume error of mesh standardized by Chen
are much closer to original mesh. And our method nearly keeps the bounding box size, surface
area and volume consistent with the original mesh’s. The maximum error and mean error of
mesh standardized by Laplace are maximal. For the maximum error of the standardized mesh,
Chen’s method is slightly less than the proposed method. However, the mean error of mesh
standardized by the proposed method is minimal. For the cylinder head model, the errors of
mesh standardized by Laplace are maximal, which contains the error of bounding box size, sur-
face area error, volume error, maximum error and mean error. The errors of mesh standard-
ized by Chen and Taubin are smaller than other methods except our method. According to the
data in Table 4, compared with existing methods, the proposed method can obtain the largest
number of triangles with good quality (0.6< Q� 1.0) and the least number of triangles with
poor quality (Q� 0.3). Where, the triangles with good quality on the wheel model is 84.41%,
the triangles with good quality on the cylinder head model is 88.23%, the triangles with poor

Table 4. Triangle quality distribution of the different triangle mesh standardization methods.

method Q� 0.3 0.3 < Q� 0.6 0.6 <Q� 1.0

wheel hub cylinder head wheel hub cylinder head wheel hub cylinder head

Original model 9.55% 7.78% 22.24% 15.89 68.21% 76.33%

Laplace 4.24% 3.82% 18.39% 14.45% 77.37% 81.73%

Taubin 10.84% 8.21% 26.53% 17.06% 62.62% 74.73%

Vollmer 12.62% 8.71% 23.88% 15.84% 63.50% 75.45%

Chen 6.76% 4.23% 20.13% 16.41% 73.11% 79.36%

Our 2.32% 1.01% 13.27% 10.76% 84.41% 88.23%

doi:10.1371/journal.pone.0160657.t004

Table 3. Performance comparison of different triangle mesh standardization methods.

model method bounding box size /mm×mm×mm area/mm2 volume/mm3 maximum error/mm average error/mm time/s

wheel hub Laplace 412.89×413.01×197.48 650562.44 3202049.75 7.1472 1.1144 0.235

Taubin 417.67×417.98×198.00 722916.88 3732466.50 2.5570 0.1997 0.320

Vollmer 416.59×416.84×197.87 703634.44 3546184.00 2.2813 0.3111 0.227

Chen 417.90×418.31×198.05 730036.75 3731800.25 0.7679 0.0474 1.761

Our 417.78×418.12×198.04 733668.25 3732216.28 0.8636 0.0372 2.746

cylinder head Laplace 140.29×196.50×108.44 214356.06 1245656.00 2.6513 0.4138 0.718

Taubin 140.90×198.21×108.74 233626.00 1255631.13 0.6379 0.0428 0.632

Vollmer 140.52×197.55×108.50 228606.08 1228658.50 0.8444 0.1063 0.522

Chen 141.03×198.30×108.84 234546.19 1253254.13 0.6460 0.0733 3.324

Our 141.23×198.05×108.38 235146.37 1255243.26 0.5269 0.02956 5.643

doi:10.1371/journal.pone.0160657.t003

Table 2. Original data.

model number of triangles number of vertices bounding box size /mm×mm×mm area/mm2 volume/mm3

wheel hub 39355 19998 417.83×418.06×198.05 735373.81 3734234.00

cylinder head 1000084 50000 141.16×198.15×108.52 235250.42 1255598.13

doi:10.1371/journal.pone.0160657.t002
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quality on the wheel model is 2.32%, the triangles with poor quality on the cylinder head model
is 1.01%.

In conclusion, our method nearly keeps the bounding box size, the volume and the surface
area of the mesh consistent with the original mesh’s, and better preserves the geometric fea-
tures of the mesh. More importantly, the proposed method can sharply decrease the number of
long-narrow triangles and greatly improve the quality of the triangles. However, we have to fit
the curve surface according to the vertex and its first-order adjacent vertices in advance, and
then search the optimal vertex. As a result, the consuming time of our method is relatively
long.

Conclusions
In this paper, we present a novel method for triangle mesh standardization based on the PSO.
The proposed method can effectively improve the triangle quality of the mesh while preserving
the geometric features and details of the original mesh. The PSO is modified by introducing the
center of the particles, the constraint factor and the inertia factor, which can effectively avoid
the local optimal, accelerate the convergence speed and adjust the searching region in real time.
The fitted surface is used for the searching region of the PSO, which solves the volume shrink-
age of the mesh standardized by most of existing algorithms. The threshold of the normal
angle between the original vertex and the regulated vertex is used to determine whether the ver-
tex needs to be regulated, to ensure that the detailed features of the triangle mesh are not lost.
However, how to set the threshold of the normal angle in terms of the geometric feature of the
triangle mesh and how to further shorten the consuming time of the proposed method are still
problems worth considering.

Supporting Information
S1 Appendix. Performance comparisons of between the proposed PSO and the other PSO.
(DOCX)
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