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Abstract
Thrombosis-associated pathologies, such as myocardial infarction and stroke, are major

causes of morbidity and mortality worldwide. Because platelets are necessary for hemosta-

sis and thrombosis, platelet directed therapies must balance inhibiting platelet function with

bleeding risk. Glutamate receptor interacting protein 1 (GRIP1) is a large scaffolding protein

that localizes and organizes interacting proteins in other cells, such as neurons. We have

investigated the role of GRIP1 in platelet function to determine its role as a molecular scaf-

fold in thrombus formation. Platelet-specific GRIP1-/- mice were used to determine the role

of GRIP1 in platelets. GRIP1-/- mice had normal platelet counts, but a prolonged bleeding

time and delayed thrombus formation in a FeCl3-induced vessel injury model. In vitro stimu-

lation of WT and GRIP1-/- platelets with multiple agonists showed no difference in platelet

activation. However, in vivo platelet rolling velocity after endothelial stimulation was signifi-

cantly greater in GRIP1-/- platelets compared to WT platelets, indicating a potential platelet

adhesion defect. Mass spectrometry analysis of GRIP1 platelet immunoprecipitation

revealed enrichment of GRIP1 binding to GPIb-IX complex proteins. Western blots con-

firmed the mass spectrometry findings that GRIP1 interacts with GPIbα, GPIbβ, and 14-3-3.

Additionally, in resting GRIP1-/- platelets, GPIbα and 14-3-3 have increased interaction

compared to WT platelets. GRIP1 interactions with the GPIb-IX binding complex are neces-

sary for normal platelet adhesion to a stimulated endothelium.

Introduction
Platelets contain many molecules and proteins most identified with neurons such as N-ethyl-
maleimide factor [1,2], serotonin [3,4], glutamate, and glutamate receptors [5–8]. Our previous
studies demonstrated that platelet glutamate receptor signaling increases platelet activation
and thrombus formation [5–6]. Glutamate receptors are trafficked and assembled into func-
tional complexes by multiple accessory proteins including glutamate receptor interacting pro-
tein 1 (GRIP1) [9]. GRIP1 binds to and regulates the surface expression of the AMPA receptor
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GluR2 subunit [10,11]. GRIP1 is a multi-PDZ domain scaffolding protein that forms homodi-
mers that can bind and simultaneously organize and assemble protein complexes via PDZ
(Post-synaptic density 95, discs large, and zonula occludens 1) domains [11]. Complete GRIP1
knockout (GRIP1-/-) mice have multi-organ developmental abnormalities and die due to hem-
orrhage and hypovolemia in the embryonic or early post-natal period [12]. Immunofluores-
cence of serous and hemorrhagic blisters for PECAM-1 (platelet and endothelial cell adhesion
molecule-1) in GRIP1 null mice were negative, suggesting that the blisters did not arise from
an endothelial defect [12]. Similar multi-organ defects have been reported in humans with
GRIP1 mutations consistent with Fraser syndrome, a syndrome found with deletion of specific
GRIP1 interacting proteins including Frem1 (Fras1 related extracellular matrix 1) and Fras1
(Fraser syndrome 1) [13–15]. Reported point mutations in GRIP1 result in a gain-of-function
phenotype and are associated with autism, while neuronal-specific loss-of-function mice have
prosocial behavior [16]. Other GRIP1 mutations have been implicated in schizophrenia [17].
Despite the multi-organ defects and hemorrhage in complete GRIP1-/- mice, GRIP1 expression
and function has not been studied in most other cell types, including platelets.

GRIP1 and 14-3-3 immunoprecipitation studies in HEK293 cells [18] and neurons [19]
have suggested GRIP1 binds to 14-3-3. 14-3-3 is a member of the platelet GPIb-IX adhesion
complex [20] and 14-3-3 binds to GRIP1 through a linker region which does not contain a
PDZ domain [19]. Platelet adhesion to a damaged or activated endothelium is the first step in
stable thrombus formation necessary for effective hemostasis. Platelet adhesion is mediated by
GPIb-IX complex binding to vonWillebrand factor (vWF) released from stimulated or dam-
aged endothelial cells. While 14-3-3 has been shown to bind both GPIbα and GPIbβ and inter-
act with the actin cytoskeleton [20], its mechanistic role in platelets remains unclear.

In this study, we report that GRIP1 binds to the GPIb-IX complex and that deletion of
GRIP1 from platelets causes altered platelet rolling behavior and decreased thrombosis.

Materials and Methods

Mouse Colony Generation
Platelet factor 4 (PF4) Cre recombinase mice on a C57BL/6J background were purchased from
Jackson Labs (#008535) and bred with GRIP1fl/fl mice provided by Dr. Richard Huganir from
The Johns Hopkins University. Male PF4-Cre+ GRIP1fl/fl mice and WT littermates (PF4-Cre-

GRIP1-/-, PF4-Cre+GRIP1+/+, PF4-Cre-GRIP1+/+) were used in all studies. Mice of 3–5 weeks
of age were used in bleeding time and thrombosis studies and mice from 5–16 weeks of age
were used for all other experiments.

Mouse Tail Bleeding
Mice were anesthetized with ketamine/xylazine (IP at 80 and 12 mg/kg respectively) and 3 mm
of the distal tip of the tail amputated with a #10 scalpel blade. Timing began and the tails were
submerged in 37°C PBS until visual cessation of bleeding for at least 30 seconds without a re-
bleed or until 15 minutes total time elapsed.

Mouse Mesenteric Artery Thrombosis
Mice were anesthetized with ketamine/xylazine (IM at 80 and 12 mg/kg respectively) and
injected with anti-GPIbβ (#X488, Emfret Analytics) in vivo platelet labeling antibody. Using a
midline incision, the mesenteric vasculature was exposed for live imaging and kept on a 37°C
stage warmer. Freshly prepared 15% FeCl3 (#157740, Sigma) was applied to the exposed vessel
for 45 seconds using Whatman paper. Vessels were imaged for 20 minutes on an inverted
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fluorescence microscope (Eclipse Ti, Nikon) at 30 frames per second using an electron-multi-
plying CCD video camera (512SC, Quantem). Surface area of thrombi and total vessel surface
area were measured at 10, 15, and 20 minutes after starting the video using NIS Elements soft-
ware (Nikon). Images were obtained from videos.

Platelet Preparation
Retro-orbital blood from anesthetized WT and GRIP1-/- mice was collected into heparinized
Tyrodes buffer (134 mMNaCl; 2.9 mM KCl; 12 mM NaHCO3; 0.34 mM Na2HPO4; 20 mM
HEPES, pH 7.0; 5 mM glucose; and 0.35% bovine serum albumin). Washed platelets were pre-
pared as described [5]. Expired human platelets obtained from the blood bank at the University
of Rochester Medical Center were pelleted for lysates using PGI2 (#18220, Cayman Chemical).

Platelet Rolling and Adhesion
For in vivo rolling experiments, washed platelets were labeled with 10 μM calcein green-AM
(#C34852, Thermo Fisher Scientific) for 10 minutes, centrifuged for 5 min. at 2600 rpm at
25°C with PGI2, and resuspended in Tyrodes. GPIbα blocking antibody (#M040-0, Emfret
Analytics) was added to the platelets in specified experiments. Platelets were injected retro-
orbitally and calcium ionophore (A23186, #C5722, Sigma) was added to the vessel surface 2
min. after beginning video recording. Video commenced at 10 minutes. Platelet velocity was
determined using NIS-Elements software (Nikon). Images were obtained from videos.

In Vitro Platelet Activation
For flow cytometry activation experiments, washed platelets were stimulated with thrombin
(#13188, Cayman Chemicals), 2-meADP (#1624, Tocris), and convulxin (#sc-202554, Santa
Cruz) for 10 min. and then CD62P antibody (#553774, BD Biosciences) and the activated
GPIIb/IIIa antibody JON/A (#M023-2, Emfret) were added. Washed platelets were activated
with 0.5 μg/mL botrocetin (#V5625, Sigma) and 10 μg/mL human von Willebrand factor
(#HCVWF-0190, Haematologic Technologies Inc.). For platelet aggregation, whole mouse
blood was centrifuged for 15 minutes at 1000 rpm, platelet rich plasma (PRP) was incubated in
a 1:100 dilution of CD9-APC or CD9-PE (Abcam) for 15 minutes after samples were washed
and resuspended in plasma to a concentration of 50 × 106 platelets/mL. Labeled platelets were
mixed 1:1 and agonist-stimulated at 37°C while shaking similar to published by others [21].

Flow Cytometry
Median fluorescence intensity was measured on a BD Accuri C6 flow cytometer and analyzed
by FlowJo software (TreeStar Inc.).

Immunoprecipitation andWestern blots
Platelet lysates were prepared using 1X NP-40 lysis buffer added to washed platelets. GRIP1
(#AB5547, Millipore), 14-3-3 (#sc-629, Santa Cruz), GPIbα (#M040-0, Emfret Analytics), or
GPIbβ (#M050-0, Emfret Analytics) antibodies were added to WT and GRIP1-/- platelet lysates
and incubated overnight at 4°C. Protein A/G beads (#sc-2003, Santa Cruz) were added for a
minimum of 2 hours. Bead-antibody complexes were washed once with PBS and Laemmli run-
ning buffer was added. Tris-Glycine gels (4–15%, Bio-Rad) were used for Western blots with
nitrocellulose membrane transfer. All primary antibodies (GRIP1 (#611318, BD), 14-3-3 (#sc-
629, Santa Cruz), 14-3-3z (#sc-1019), GPIbα (#M040-0, Emfret Analytics), or GPIbβ (#M050-
0, Emfret Analytics) were incubated overnight at 4°C. Infrared fluorescent secondary
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antibodies (anti-mouse Alexa Fluor 750, #A-21109, Thermo Fisher Scientific and anti-rabbit
Alexa Fluor 680, #A-21037, Thermo Fisher Scientific) were added for detection on Licor
(Licor).

Mass Spectrometry
GRIP1 was immunoprecipitated (#sc-29834, Santa Cruz) fromWT and GRIP1-/- platelets and
the immunoprecipitate was given to the Proteomics Core at the University of Rochester for
band excision, trypsin digestion, and LTQ LC/MS Linear Ion Trap mass spectrometer analysis.
Protein identities were assigned to GO categories by Panther (Protein Analysis Through Evolu-
tionary Relationships) [22].

Animal Care
All experiments involving animal procedures were approved by the University of Rochester
Institutional Animal Care and Use Committee.

Statistics
Mean and S.E.M. was calculated for all graphs. � 0.05> p, �� 0.01> p, ��� 0.001 by two-tailed
students T test for all analysis unless using Kaplan-Meier survival curves as indicated. Graphs
were created with Prism Graphpad 4.0 (Graphpad).

Results

GRIP1 is expressed in platelets
GRIP1 is a large multi-PDZ domain protein that has multiple isoforms [11, 23, 24]. Using
mouse brain and human platelet lysates we found that human platelets express GRIP1 protein
that is consistent in size with the lowest molecular weight isoform (Fig 1A). Complete GRIP1-/-

mice are embryonic lethal or have severe developmental defects in multiple organ systems at
birth [12]. To determine a functional role for GRIP1 in platelets, GRIP1flox mice were crossed
with PF4 (platelet factor 4) Cre+ mice to generate platelet-specific GRIP1-/- mice. Platelets from
PF4-Cre+GRIP1flox/flox mice (platelet GRIP1-/-) have reduced GRIP1 protein compared to
platelets from wild-type (WT) mice (Fig 1B). This was confirmed by intracellular flow cytome-
try for GRIP1 that also demonstrated reduced expression in GRIP1-/- platelets (Fig 1C). The
GRIP1-/- mice retain some GRIP1 protein expression, but represent about a 75% reduction
based on the intracellular flow cytometry. This may indicate that GRIP1 is an early expressed
protein in megakaryocyte differentiation, prior to PF4 expression. Platelet GRIP1-/- and WT
mice had similar complete blood counts (not shown), including similar platelet counts (Fig
1D). Platelet morphology was also unchanged in platelet GRIP1-/- mice as assessed by electron
microscopy (Fig 1E).

GRIP1-/- mice have thrombosis deficits
To determine whether platelet GRIP1-/- mice have a change in in vivo platelet function we per-
formed a tail bleeding time assay. The distal tail of WT and platelet GRIP1-/- mice was ampu-
tated and placed in saline. The time until visual cessation of bleeding was recorded. There was
a significant increase in the number of platelet GRIP1-/- mice still bleeding 15 minutes after tail
tip removal compared to WTmice (Fig 2A). To examine platelet thrombosis we utilized a ferric
chloride vessel injury model. Ferric chloride was applied to mesenteric arterioles of WT and
platelet GRIP1-/- mice and platelet accumulation and thrombus formation was recorded. Plate-
let GRIP1-/- mice had significantly decreased thrombus size after vessel injury (Fig 2B and 2C).
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Fig 1. Platelets express GRIP1. A) Human platelets express GRIP1 (representative immunoblot with mouse brain as positive control). B)
PF4-Cre+ GRIP1fl/fl mice have reduced platelet GRIP1 expression. Immunoprecipitation of WT and GRIP1-/- mouse platelets using anti-GRIP1
antibody and immunoblot for GRIP1. C) Representative histogram of GRIP1 expression in WT and GRIP1-/- mouse platelets by intracellular flow
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Together these data demonstrate that mice lacking GRIP1 have prolonged bleeding and
delayed time to thrombus formation.

GRIP1-/- platelets have normal agonist activation but deficient adhesion
in vivo
After determining that platelet GRIP1-/- mice have defective thrombosis, we next examined
whether GRIP1 has a role in platelet activation. Washed WT and GRIP1-/- platelets were iso-
lated and stimulated with agonists, including convulxin (collagen receptor agonist) or throm-
bin, and platelet activation was determined by measuring surface P-selectin expression. WT
and GRIP1-/- platelets had similar P-selectin external membrane translocation in response to
both agonists (Fig 3A). As further confirmation of similar platelet α-granule release, PF4 secre-
tion from activated WT and GRIP1-/- platelets was assessed. Thrombin and meADP induced
similar PF4 secretion fromWT and GRIP1-/- platelets (Fig 3B). The dense granule constituent,
ATP, was measured from thrombin-activated WT and GRIP1-/- platelets and was unchanged
between the two groups (Fig 3C). To examine GPIIb/IIIa activation, platelets were stimulated
with thrombin and meADP and activated GPIIb/IIIa was assessed using JON/A antibody. WT
and GRIP1-/- platelets showed no difference in agonist-induced integrin activation (Fig 3D).
These data indicate that GRIP1-/- platelets have no changes in agonist activation.

We also assessed platelet aggregation using a flow cytometry-based method.21 Platelet rich
plasma (PRP) fromWT or GRIP1-/- mice was incubated with either a PE or APC labeled anti-
CD9 antibody. PE and APC-labeled PRP from mice of the same genotype was then mixed in
an equal ratio. Platelets were activated with either thrombin or 2-meADP (P2Y12 agonist) and
double labeled platelet aggregates measured by flow cytometry. GRIP1-/- platelets had a trend
to fewer platelet aggregates at low dose thrombin stimulation (Fig 3E). WT and GRIP1-/- plate-
lets had similar platelet aggregation at higher thrombin concentrations and with ADP stimula-
tion (Fig 3E).

Because platelet activation was normal in GRIP1-/- platelets, but mice had a thrombosis
defect, we next sought to determine whether GRIP1-/- platelets have altered adhesion to stimu-
lated endothelial cells using an in vivo platelet rolling assay. Platelets isolated fromWT or
platelet GRIP1-/- mice were fluorescently labeled and injected into control WT mice so that
only the fluorescent platelet genotype differed. Fluorescent platelets were visualized in the ear
or externalized mesenteric venules and endothelial cell stimulation and vWF release was
induced by surface application of calcium ionophore (A23187). Platelets were imaged both
before and after ionophore application and the change in platelet velocity was measured. As
expected, WT platelets exhibited decreased velocity post-ionophore in both the ear and mesen-
teric venules (Fig 4A and 4C). However, GRIP1-/- platelets did not have a decrease in post-ion-
ophore velocity (Fig 4A and 4C). To ensure the specificity of GPIb-mediated rolling, WT or
GRIP1-/- platelets were pre-treated with blocking antibody to the vWF adhesion site of GPIbα.
With the blocking antibody, WT mice had similar rolling velocity as GRIP1-/- platelets (Fig
4A). Representative images show rolling and adhered WT platelets after ionophore addition
with no changes in the GRIP1-/- platelets (Fig 4B and 4D). We recapitulated these adhesion
data in vitro. Platelets were fluorescently labeled in whole blood and pumped through a mouse
vWF coated flow chamber. WT platelets had a trend toward greater adhesion than GRIP1-/-

platelets at earlier time points (Fig 4E). WT and GRIP1-/- platelets had no difference in

cytometry. D) WT and GRIP1-/- mouse platelets have similar platelet counts. (± S.E.M., NS by students T-test). E) WT and GRIP1-/- platelets have
similar morphology (representative electron microscopy of resting platelets).

doi:10.1371/journal.pone.0160638.g001
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Fig 2. GRIP1-/- mice have hemostasis and thrombosis defects. A) WT and platelet GRIP1-/- mouse
bleeding time. Percentage of patent vessels after 3 mm tail tip amputation (N = 25–37; P < 0.05 for Kaplan-
Meier curve). B) Platelet GRIP1-/- mice have reduced thrombus size. FeCl3-induced mesenteric artery
thrombosis. Fluorescent thrombus burden expressed as percentage of vessel area (N = 11–17; ± S.E.M.,
*P < 0.05 by students T-test). C) Representative image of thrombus formation in WT and platelet GRIP1-/-

mice 10 min. after injury (dashed lines represent vessel edges, magnification 20X).

doi:10.1371/journal.pone.0160638.g002
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Fig 3. In vitro platelet activation is normal in GRIP1-/- platelets. A) WT and GRIP1-/- platelets have similar
agonist-induced activation. Washed platelets were incubated with control buffer, 50 ng/mL convulxin, or
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adhesion when pumped through a collagen coated chamber (not shown). These data indicate
that GRIP1-/- platelets have reduced interactions with a stimulated endothelium in vivo.

GRIP1 interacts with the GPIb complex
To begin to define a mechanism for why GRIP1-/- platelets have decreased interactions with a
stimulated or damaged endothelium, we identified potential platelet GRIP1 interacting pro-
teins. GRIP1 is a large multi-PDZ domain protein with many potential intracellular interac-
tions. We immunoprecipitated GRIP1 fromWT platelets, or as a negative control, GRIP1-/-

platelets, and performed mass spectrometry on the precipitate. Numerous GRIP1 interacting
proteins were greatly enriched in the WT platelet immunoprecipitation compared to GRIP1-/-

platelets. GRIP1 interacting proteins were analyzed by GO analysis using Panther software
[21] including multiple members of the GPIb-IX adhesion complex, including GPIbα, GPIbβ,
and 14-3-3 (Fig 5A and Table 1). GRIP1 and 14-3-3 binding has been described in modified
HEK293 cells [18] and neurons [19] and 14-3-3 is an important part of the GPIb-IX complex
in platelets further indicating a potential role for GRIP1 in this complex.

We next investigated whether deletion of GRIP1 affected surface expression of GPIbα and
GPIbβ. There was no difference between WT and GRIP1-/- platelet surface expression of
GPIbα and GPIbβ (Fig 5B). We then confirmed protein interactions of GRIP1 with members
of the GPIb-IX complex. GPIbα or GPIbβ was immunoprecipitated fromWT and GRIP1-/-

platelets and the precipitate immunoblotted for GRIP1. As suggested by the mass spectrometry
data, GRIP1 interacted with GPIbα and GPIbβ in WT platelets, but not in GRIP1-/- platelets
(Fig 6A). We also found that GRIP1 interacted with 14-3-3 in platelets (Fig 6A).

To determine if adhesion complex interactions are altered in the absence of GRIP1, we used
WT and GRIP1-/- platelets to immunoprecipitate GPIbα and GPIbβ and determined whether
14-3-3 interacted. While GPIbβ and 14-3-3 interacted strongly in WT and GRIP1-/- platelets,
GPIbα only strongly interacted with 14-3-3 in GRIP1-/- platelets (Fig 6B). We incubated WT
and GRIP1-/- platelets in vitro with botrocetin and vWF to determine if there were binding
partner alterations after botrocetin-induced vWF binding and GPIb complex activation. In
contrast to basal conditions where WT platelets showed a weak interaction between 14-3-3z
and GPIbα, botrocetin-activated WT and GRIP1-/- platelets had similar associations between
14-3-3z and GPIbα (Fig 6C). 14-3-3z and GPIbβ interactions were similarly reduced in both
WT and GRIP1-/- platelets after botrocetin-vWF incubation (Fig 6C). These data suggest that
GRIP1 limits the association of 14-3-3z and GPIbα at rest and may be important for GPIb-IX
complex function and signaling.

Taken together, these findings indicate that GRIP1 interacts with the GPIb-IX complex and
that GRIP1 is needed for efficient thrombus formation in vivo.

0.5 U/mL thrombin and P-selectin expression was determined by flow cytometry (N = 4; ± S.E.M., NS by
students T-test betweenWT and GRIP1-/-). B) PF4 release from stimulatedWT and GRIP1-/- platelets.
Washed platelets were stimulated with thrombin or 2-meADP for 10 min. and PF4 release measured by
ELISA (N = 8; ± S.E.M, N.S. by students—test). C) WashedWT and GRIP1-/- platelets were thrombin-
stimulated and ATP release was measured (N = 8; ± S.E.M, N.S. by students T-test). D) WashedWT and
GRIP1-/- platelets have similar GPIIb/IIIa activation. Platelets were stimulated with thrombin or 2-meADP for
10 min. Activated GPIIb/IIIa expression was measured by JON/A antibody binding. (N = 4; ± S.E.M, N.S. by
students T-test). E) PRP fromWT or GRIP1-/- mice was incubated with either PE or APC labeled anti-CD9
antibody. PE and APC labeled PRP frommice of the same genotype was then mixed. Control buffer,
thrombin or 2-meADP were added and incubated with orbital shaking at 37°C for 15 minutes. Double positive
(APC and PE) platelet aggregates were quantified by flow cytometry. GRIP1-/- platelets stimulated with low
dose thrombin had a trend to fewer platelet aggregates compared to WT (N = 6–8). WT and GRIP1-/- platelets
stimulated with 2-meADP had similar aggregation.

doi:10.1371/journal.pone.0160638.g003
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Discussion
While the mechanism of GPIb-IX complex adhesion to vWF is well-studied, less is known
about intracellular interactions of the GPIb-IX complex. Other groups have found that the
GPIb-IX complex binds to 14-3-3, filamin A, calmodulin, and phosphoinositol-3 kinase [20].
We have found that GRIP1 is present in mouse and human platelets and that GRIP1 binds to
the GPIb-IX complex, either directly or involving an interaction with 14-3-3. Deletion of

Fig 4. GRIP1-/- platelets do not have decreased velocity in ionophore-stimulated blood vessels. A) GRIP1-/- platelets do not have a
decreased velocity in an ionophore-stimulated pinna vessel. WT murine pinna vessels were stimulated with A23187 and the change in
fluorescent-labeledWT and GRIP1-/- platelet velocity determined over time. As a control, platelets were treated with GPIbα blocking antibody
(N = 4; *P < 0.05 by students T-test GRIP1-/- vs WT). B) Representative images of WT and GRIP1-/- platelets before and 6 minutes after
vessel ionophore treatment (smaller, rounder platelets are rolling (arrow), magnification 20X). C) GRIP1-/- platelets do not have decreased
velocity in an ionophore-stimulated mesenteric vessel (N = 4 ± S.E.M; *P < 0.05 by students T-test GRIP1-/- vs WT). D) Representative
images of WT and GRIP1-/- platelets before and after ionophore treatment in mesenteric arterioles (smaller, rounder platelets are rolling
(arrow), magnification 20X). E) GRIP1-/- platelets have a trend toward reduced vWF adhesion in vitro. Platelets in whole blood fromWT and
GRIP1-/- mice were labeled with a fluorescent antibody. Blood was then pumped over a mouse vWF-coated MatTek chamber. Platelet
adhesion was determined at multiple time points (N = 4–6 per time point, P < 0.1 at 15 sec).

doi:10.1371/journal.pone.0160638.g004

Fig 5. GRIP1 interacts with the GPIb-IX complex. A) GRIP1 protein interactions in platelets. GRIP1 was
immunoprecipitated fromWT and GRIP1-/- (negative control) platelets and the precipitate analyzed by mass
spectrometry. Proteins were assigned by Panther into GO functional groups. B) GPIbα and GPIbβ surface expression is
similar in WT and GRIP1-/- platelets. GPIbα and GPIbβ surface expression was determined by flow cytometry (N = 8–13,
± S.E.M; NS by students T-test).

doi:10.1371/journal.pone.0160638.g005
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GRIP1 from platelets causes a significant decrease in platelet interactions with a stimulated
endothelial cell layer and delayed thrombus formation. GRIP1-/- platelets also have changes in
GPIb-IX complex molecular associations (including with 14-3-3) during resting conditions.
Understanding GRIP1 protein interactions in platelets may add knowledge to platelet adhesion
and signaling.

Defects in GRIP1-/- platelet function are similar to those noted in other mouse models in
which GPIbα [30, 31] or vWF [32] are mutated. Similar to mice lacking GRIP1 in platelets,
mice modified to have the extracellular domain of GPIbα replaced with the extracellular inter-
leukin-4 receptor (IL4Rα/GPIb transgene) had normal platelet numbers and morphology, but
a significant decrease in thrombus formation and platelet incorporation into the growing
thrombus [30]. Additionally, GPIbα deficiency produces a more profound phenotype than
vWF deletion alone [32,33] indicating other important functions for the GPIb-IX complex
besides vWF adhesion. Complete deletion of GPIbα increases bleeding times similar to those
seen with GRIP1-/- mice [31]. However, we did not see changes in platelet size, nor alterations
in GPIbα surface expression in platelet GRIP1-/- mice. This indicates that while surface expres-
sion of GPIbα is intact in GRIP1-/- platelets, GPIbα intracellular interactions and signaling
may be altered leading to defects in extracellular GPIb complex function.

Both GPIbα and GPIbβ are reported to have 14-3-3z binding sites [20]. Our data indicates
that GPIbα does not strongly bind 14-3-3z under resting conditions, but in the absence of
GRIP1, GPIbα has increased interaction with 14-3-3z. The GPIbα and 14-3-3 basal interac-
tions we noted are supported by a recent study that found similar interactions before and after
shear stress [34]. Others have suggested more robust GPIbα and 14-3-3z interactions in resting
platelets [35]. These differences in data may be due to experimental conditions or antibodies
used, but all point to the complexity of GPIbα interactions that may be regulated by phosphor-
ylation status or yet to be defined members of the GPIb-IX complex [20]. GPIb-IX activation
in response to botrocetin and vWF resulted in similar GPIbα and GPIbβ interactions with 14-
3-3z in both WT and GRIP1-/- platelets. This suggests that in the resting state, 14-3-3z is
bound primarily to GPIbβ, and after activation, 14-3-3z is predominantly bound to GPIbα.
Our data indicates that GRIP1 limits GPIbα and 14-3-3 interactions in basal conditions. It has
also recently been demonstrated that GPIb-IX cooperates with protease activated receptor
(PAR) signaling to promote platelet responses to low thrombin concentrations [36]. Our data
indicated that GRIP1-/- platelets may have less aggregation with low dose thrombin. This may

Table 1. Proteins highly enriched in mass spectrometry analysis with known roles in platelet function (light gray indicates interact with GPIb com-
plex, darker shading indicates other functional platelet protein interactions).

Protein Name Function in Platelets Interactions in Platelets

GPIbα Adhesion, integrin activation [20,25] GPIbβ, GPV, GPIX, 14-3-3, PI3K, filamin-A,
spectrins

GPIbβ Adhesion, integrin activation [20] GPIbα, GPV, GPIX, 14-3-3

14-3-3ζ Adhesion, integrin activation [20] GPIbα, GPIbβ, GPV, GPIX

Spectrin (multiple
proteins)

Cytoskeletal (interacts with GPIb/actin binding complexes)
[20]

Actin-binding proteins, GPIb-complex

Actin Cytoskeletal [20] Spectrins, GPIb-complex

Pleckstrin Secretion, aggregation, actin polymerization [26] PKCα (has PDZ domain)

Cyclophilin A Secretion, activation, integrin activation [27] SERCA2b

Integrin linked kinase Activation, aggregation, secretion, thrombus formation [28] β–parvin

Zyxin Adhesion, cytoskeletal interactions [29] VASP proteins

doi:10.1371/journal.pone.0160638.t001
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be confirmation that GRIP1 participates in the GPIb-IX complex response to low dose throm-
bin signaling.

Additional studies are needed to fully elucidate GRIP1 mediated signaling events in the
GPIb-IX complex in both resting and stimulated states. Our study may also have larger

Fig 6. GPIb-IX adhesion complex interactions differ in WT and GRIP1-/- platelets. A) GRIP1 interacts with GPIbα, GPIbβ, and 14-
3-3. GPIbα, GPIbβ, or 14-3-3 were immoprecipitated and immunoblotted for GRIP1 (GRIP1-/- platelets as negative control). B)
GRIP1-/- platelets have increased GPIbα and 14-3-3ζ interactions at rest, but no difference in GPIbβ interactions betweenWT and
GRIP1-/- (representative blots of multiple experiments). C) WT and GRIP1-/- platelets have similar GPIbα-14-3-3ζ and GPIbβ-14-3-3ζ
association post-stimulation with botrocetin and vWF (Representative blots of multiple experiments).

doi:10.1371/journal.pone.0160638.g006
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implications beyond platelet adhesion alone as the GPIb-IX complex has known functions out-
side of platelet adhesion such as bacterial recognition [37–38] and platelet clearance [39, 40].
We have found that GRIP1 has important roles in platelet function through potential changes
in intracellular interactions of the GPIb-IX complex.
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