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Abstract

Background

White blood cells have been shown in animal studies to play a central role in the pathogene-

sis of diabetic retinopathy. Lymphoblastoid cells are immortalized EBV-transformed primary

B-cell leukocytes that have been extensively used as a model for conditions in which white

blood cells play a primary role. The purpose of this study was to investigate whether lym-

phoblastoid cell lines, by retaining many of the key features of primary leukocytes, can be

induced with glucose to demonstrate relevant biological responses to those found in dia-

betic retinopathy.

Methods

Lymphoblastoid cell lines were obtained from twenty-three human subjects. Differences

between high and standard glucose conditions were assessed for expression, endothelial

adhesion, and reactive oxygen species.

Results

Collectively, stimulation of the lymphoblastoid cell lines with high glucose demonstrated cor-

responding changes on molecular, cellular and functional levels. Lymphoblastoid cell lines
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up-regulated expression of a panel of genes associated with the leukocyte-mediated inflam-

mation found in diabetic retinopathy that include: a cytokine (IL-1B fold change = 2.11, p-

value = 0.02), an enzyme (PKCB fold change = 2.30, p-value = 0.01), transcription factors

(NFKB-p50 fold change = 2.05, p-value = 0.01), (NFKB-p65 fold change = 2.82, p-value =

0.003), and an adhesion molecule (CD18 fold change = 2.59, 0.02). Protein expression of

CD18 was also increased (p-value = 2.14x10-5). The lymphoblastoid cell lines demon-

strated increased adhesiveness to endothelial cells (p = 1.28x10-5). Reactive oxygen spe-

cies were increased (p = 2.56x10-6). Significant inter-individual variation among the

lymphoblastoid cell lines in these responses was evident (F = 18.70, p < 0.0001).

Conclusions

Exposure of lymphoblastoid cell lines derived from different human subjects to high glucose

demonstrated differential and heterogeneous gene expression, adhesion, and cellular

effects that recapitulated features found in the diabetic state. Lymphoblastoid cells may rep-

resent a useful tool to guide an individualized understanding of the development and poten-

tial treatment of diabetic complications like retinopathy.

Introduction
A significant barrier to progress in the treatment of diabetic retinopathy is that it is a complex,
multifactorial condition caused by the interactions of multiple genetic and environmental com-
ponents. This has resulted in only marginal progress by our group and others in defining its
key underlying molecular elements [1–6]. For instance, targeting the angiogenic factor, VEGF,
has enjoyed considerable success in treating manifestations of diabetic retinopathy in some but
not all patients suggesting heterogeneous underlying etiologies [7]. Novel approaches that facil-
itate an individualized understanding of mechanisms and possible therapeutic strategies for
this condition are urgently needed. A potential way to advance care for diabetic complications
like retinopathy is to molecularly characterize disease-relevant tissue from large numbers of
diabetic human subjects who have been longitudinally followed for decades.

Pre-existing lymphoblastoid cell lines are available for thousands of subjects from several
landmark clinical studies of diabetes whose depth, scope and duration may never be repeated.
Lymphoblastoid cell lines are immortalized EBV-transformed primary B-cell leukocytes. Lym-
phoblastoid cells maintain primary leukocyte features for many inflammatory and genetic con-
ditions [8]. For instance, we have previously shown that lymphoblastoid cells preserve their
inter-individual variation in adhesion to endothelial cells, an important leukocyte property in
retinopathy [9]. Lymphoblastoid cell lines have been shown to be relevant not only to white
blood cells but also to a diverse array of different tissues [8, 10–12]. Recent findings of the
GTEx study confirm the substantial overlap in the genetic architecture for gene expression
between lymphoblastoid cells and other tissues [13, 14].

Accordingly, we hypothesized that the individual molecular response to glucose should be
maintained in lymphoblastoid cells. In this proof of principle study, we specifically tested
whether distinct lymphoblastoid cell lines could be stimulated with chronic high glucose expo-
sure to demonstrate heterogeneous and differential expression, adhesion, and cellular effects.

Differential Lymphoblastoid Cell Line Response to Glucose
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Methods

Subject Safety and Confidentiality Issues
All subject cell lines were de-identified prior to their arrival at the University of Illinois at Chi-
cago; therefore, this proposal qualified as nonhuman subjects research according to the guidelines
set forth by the Institutional Review Board at the University of Illinois at Chicago. As the data
were analyzed anonymously, no subject consent was required. The analyses performed at George
Washington University did not involve protected health information as the phenotypic data was
de-identified. The GeorgeWashington University institutional review board has approved all
analyses of EDIC data of this nature. Specific approval for this study was obtained from the
EDIC Research Review Committee. All protocols used for this portion of the study are in accor-
dance with federal regulations and the principles expressed in the Declaration of Helsinki.

Cell Lines
Twenty-three lymphoblastoid cell lines were used in the study.

Sixteen of the lymphoblastoid cell lines were generated from individuals with type 1 diabetes
from the DCCT/EDIC cohort (labeled with the de-identified subject numbers of 1–16 in data
tables). The Diabetes Control and Complications Trial (DCCT) was a multi-center randomized
clinical trial that demonstrated the benefit of intensive glycemic management in reducing the
risk of development and progression of diabetic retinal and other microvascular complications
in patients with type 1 diabetes [15]. Follow-up of DCCT cohort was continued in the Epidemi-
ology of Diabetes Interventions and Complications (EDIC) observational study [16]. Whole
blood samples were ascertained from the study subjects between 1991 and 1993. White blood
cells from study subjects were extracted, processed and frozen at the University of Minnesota
in the Central Biochemistry Laboratory, where they were transformed into lymphoblastoid cell
lines in the early 2000s. The sixteen diabetic lymphoblastoid cell lines used in this study were
obtained from the EDIC repository at the Central Biochemistry Laboratory.

The sixteen lymphoblastoid cell lines from diabetic subjects consisted of eight pairs of
matched cases and controls. Cases were defined by the development of proliferative diabetic
retinopathy by EDIC Year 10, whereas controls had no retinopathy through EDIC Year 10.
Most subjects were matched by age, gender, treatment group (intensive vs. conventional),
cohort (primary vs. secondary), and diabetes duration (S1 Table)[17, 18], but it was not possi-
ble to match all eight pairs in this fashion; therefore, 1 pair was matched by age, gender and
treatment group only. Diabetes duration was defined as the number of months since the onset
of diabetes at DCCT baseline which was the time at subject enrollment (1983–1989). Experi-
ments were conducted in a masked fashion in order to reduce any bias prior to the analysis.

The remaining seven lymphoblastoid cell lines were purchased from the Coriell Institute for
Medical Research NIGMS Human Genetic Cell Repository (http://ccr.coriell.org/) (GM14581,
GM14569, GM14381, GM07012, GM14520, GM11985, and GM07344). All of these subjects
were included in one of our prior published studies [9]. None of these subjects had a history
diabetes. Both male and female subjects were included. All of these control subjects were unre-
lated and of Caucasian ethnicity (S2 Table).

Lymphoblastoid cell lines at each site were established using standard Epstein-Barr virus
(EBV) transformation protocols.

Culture Conditions
All lymphoblastoid cells were maintained in conventional lymphocyte cell culture conditions
of RPMI 1640 with 10% FBS in a 25-cm2cell culture flask. The cells were incubated at 370 C in
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5% CO2 and the media was changed twice each week. Prior to the experiments (below), lym-
phoblastoid cells following serum starvation were passaged for a minimum of one week in
either standard RPMI 1640 (11 mM glucose) or high glucose RPMI media (30mM glucose)
[19].

mRNA Expression
Gene expression was assessed for a panel of genes that have previously been implicated in the
pathogenesis of diabetic retinopathy through leukocyte-mediated mechanisms of inflamma-
tion. The panel included: TNF alpha [20–23], IL-1 beta [24–27], NFKB-p50 [28, 29], NFKB-p65
[30], CD18 [31, 32], PKCB [33–35], and GAPDH. Pre-validated Prime Time qPCR primers
(IDT Coralville, Iowa, USA) (S3 Table) for each gene were used. GAPDH was used as internal
control for all cell lines [36]. Total RNA was isolated from lymphoblastoid cell lines using TRI-
zol reagent (Invitrogen, Carlsbad, CA). cDNA was synthesized using the High-Capacity cDNA
Reverse Transcription Kit (Life Technologies, Grand Island, NY, USA). qRTPCR was per-
formed by ABI Prism 7900 (Applied Biosystems, Foster City, CA, USA) using power SYBR
Green PCR master mix (Life Technologies, Grand Island, NY, USA). qPCR amplifications
were performed for 40 cycles of denaturation at 95°C for 10 seconds, annealing/extension 60°C
for 30 seconds. The melting curves were generated to detect the melting temperatures of the
products following the PCR run. The relative mRNA levels were determined by the compara-
tive CT method [37] with the fold change calculated using the equation 2-Δ(Δct).

Protein expression of CD18
Lymphoblastoid cells were collected in 15 mL tubes and counted using Countess (Life Technol-
ogies). 200,000 cells from each sample were transferred into U bottom 96 well plates. The cells
were pelleted at 300g at 4°C (Eppendorf Bench top with 96 well plate adaptor). The pelleted
cells were washed with 0.2 mL of ice cold PBS (1X, Gibco, Life Technologies, Grand Island,
NY) three times. The cells were then suspended in 5% heat inactivated serum for 30 minutes.
Cells were washed with ice cold PBS the cells and then incubated with FITC conjugated Anti-
Human CD18 (BD Biosciences, San Jose, CA) for 1 hour in 1% BSA containing the antibody
titer as indicated by the manufacturer. FITC conjugated IgG alone served as negative control.
The CD18 labeled cells were washed with ice cold PBS and suspended in ice cold PBS. The
CD18 expression was measured by flow cytometry using the BD LSRFortessa™ cell analyzer
and the data were analyzed at the UIC flow cytometry core facility, Chicago, IL.

Leukocyte endothelial adhesion
Lymphoblastoid cell lines were plated on a monolayer of human retinal microvascular endo-
thelial cells (HRMEC) (ACBRI 181, Cell Systems, Kirkland, WA) to test their adhesion as we
have described previously [9]. HRMECs were maintained in MCDB 131 medium (5.5 mM glu-
cose) containing 10% fetal calf serum (FCS, Invitrogen, Life Technologies, Carlsbad, CA), 100
IU/ ml penicillin, 100 μg/ml streptomycin, and 0.25 μg/ml amphotericin B supplemented with
1 μg/ml epidermal growth factor and 10 μg/ml hydrocortisone (complete medium) as we have
done previously [36]. All experiments using HRMECs were performed between passages 5 and
8. HRMECs were counted using the Beckman coulter counter, plated at a density of 30,000
cells/well in flat clear bottom black 96-well plates (Corning, Acton, MA), and cultured to
confluency.

On the day of the assay, lymphoblastoid cells at a concentration of 1×106 cells/mL were incu-
bated with 2 μMCalcein AM (BD Biosciences, Bedford, MA) for 30 minutes at 37°C. The cells
were collected and subjected to three washes with PBS to remove the free Calcein AM. Calcein
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AM labeled cells were added at a density of 50,000 cells/well on top of confluent monolayer cul-
tures of HRMEC in 96-well plates and incubated for 30 minutes at 37°C. Non-adherent cells
were removed by an optimized automated wash protocol adapted using the EP3 liquid handling
system. Calcein AM fluorescence in the labeled cells was assessed by the high content Acumen
imager at an excitation and emission wavelength of 485/535 nm before and after each wash.

Leukocyte endothelial adhesion was assessed for each lymphoblastoid cell line 4x (1 column
of four wells) by 1) measuring raw fluorescence for both the pre-wash and post-wash 2) con-
verting the relative fluorescence units (RFUs) to cell number using a standard curve 3) calculat-
ing lymphoblastoid cell line % remaining post-wash and 4) normalizing cell % based on plate
controls to account for interplate variability. A mean, standard deviation, and coefficient of
variation (CV) for each lymphoblastoid cell line were calculated. A z-score and CV for each
plate were determined. Differences in leukocyte endothelial adhesion between lymphoblastoid
cell lines and the control lines were determined in order to calculate the fold change as a metric
of comparison for each lymphoblastoid cell line.

Reactive Oxygen Species (ROS)
1 million cells/mL (5mL) were added to T-25 flasks and grown in standard and high glucose
conditions. Following treatment, cellular hydroxyl radical (-OH) was detected using the oxida-
tion-sensitive fluorescent dye, CMH2DCFDA (488 nm excitation/535 nm emission) (Life
Technologies, Grand Island, NY)). Cells treated with 25 μMH2O2 served as the positive control
for ROS measurement. (1μM) pre-dissolved CMH2DCFDA in PBS was then added to the cells
and incubated at 37°C for 30 minutes. After incubation, the cells were washed with PBS and
suspended in PBS. The fluroescence was measured by flow cytometry using the BD LSRFor-
tessa™ cell analyzer and the data were analyzed at the UIC flow cytometry core facility, Chicago,
IL. The gated geometric mean value (r) was used for comparing ROS expression in samples.

Statistical Analyses
Data for gene expression are presented as mean with 95% confidence intervals. Statistical dif-
ferences between groups were analyzed with a standard two-tailed paired Student t test using
Microsoft Excel software. A p-value of less than 0.05 was considered statistically significant.

Inter-individual differences among the lymphoblastoid cell lines were assessed using a one-
way ANOVA, with the differences in gene expression mediated by high glucose as the outcome.
Internal consistency among gene expressions was quantified as the Cronbach alpha.

Gene expression and subject covariates were used to determine the principal components.
Variance components were calculated using a mixed model. The covariates of age, gender,
treatment group, cohort, diabetes duration, and case/control status were included in the model
as random effects. High glucose exposure was treated as a fixed effect and a repeated measure.
The covariance given by the restricted maximum likelihood (REML) is used in the calculation
for the proportion of treatment effect [38]. Age was defined as a binary variable from< = 30
years (N = 7) and>30 (N = 9) at DCCT baseline. Duration is defined as a binary variable from
< = 36 months (N = 8) and>36 (N = 8) at DCCT baseline.

Results

High glucose induces up-regulation of gene expression in
lymphoblastoid cells
Differential fold change in mRNA expression of a panel of six genes previously implicated in
the leukocyte associated inflammation of diabetic retinopathy was determined in twenty-three
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lymphoblastoid cell lines. Fold change was calculated based on a comparison of expression for
that cell line under high (30 mM) and standard (11 mM) glucose conditions. Specifically, for
each cell line gene expression was compared under high (HG Δct) and standard glucose (SG
Δct) conditions to determine the differential glucose mediated expression for that cell line (Δ
(Δct)) (S4 Table). All six genes demonstrated a> 2 mean fold change induction in high glucose
(range 2.05–2.82) (Fig 1). Significant results were identified that included: IL-1B (fold
change = 2.11, p-value = 0.02), NFKB-p50 (fold change = 2.05, p-value = 0.01), NFKB-p65 (fold
change = 2.82, p-value = 0.003), CD18 (fold change = 2.59, 0.02), and PKCB (fold change = 2.30,
p-value = 0.01). The only exception was TNF-alpha, which at a p-value of 0.06, showed a trend
towards significance but did not meet the threshold. The control GAPDH gene did not show
any change with high glucose (p-value = 0.35). Among the cell lines, induction of gene expres-
sion in the six assessed genes in response to high glucose was significantly correlated (r = 0.40–
0.94, Cronbach alpha = 0.95).

Dynamic stimulation of lymphoblastoid cell lines with glucose reveals
significant inter-individual differences
Differences in gene expression under high glucose conditions were compared among the
twenty-three cell lines (S4 Table). We were interested in whether each line generated a unique
response to the fixed stimulus of 30mM glucose. We hypothesized that induction of the lines
with a uniform stimulus would generate a differential response due to the underlying genomic
differences among cell lines as each line is generated from a different individual. In order to
minimize confounding factors, we confirmed that no difference in viability was evident for the
cell lines at the study conditions of 11 mM and 30 mM glucose. Analysis of variance of the dif-
ferences in gene expression mediated by high glucose among the cell lines was conducted. Sig-
nificant inter-individual differences were found among the lymphoblastoid cell lines
(F = 18.70, p< 0.0001), with 78% of overall variance in glucose-mediated gene expression
change accounted for by the use of different lymphoblastoid cell lines. Hence, transformation
and multiple freeze/thaw passages do not appear to homogenize the individual response in
gene expression to high glucose in lymphoblastoid cell lines. Rather, the major factor that
determines differences in gene expression to high glucose stimulation is individual dependent.
In order to identify the covariate that plays the primary role in determining differences among
subjects in their response to glucose, variance component analysis was conducted which simi-
larly identified the individual response as the key factor (S1 Fig). It is unlikely that the greater
number of female subjects affects the study findings as gender was not found to be a significant
confounding covariate either in the variance analysis or in the principal component analysis.
This is consistent with prior epidemiologic studies that have failed to find an association
between gender and the development or progression of diabetic retinopathy. Thus, it appears
that with provocation through high glucose exposure, lymphoblastoid cell lines lose their
homogenous, uniform behavior [39], and reveal underlying unique responses that may be
characteristic of the individual from which they were generated.

Principal component analysis of the twenty-three samples based on gene expression did not
reveal clustering of any of the three groups of subjects (proliferative diabetic retinopathy
(PDR), diabetes without retinopathy (No PDR), and no diabetes (No DM)) (S2 Fig). As a qual-
ity measure this was reassuring as it suggests that there was not a major difference between the
groups in any potentially confounding factors like culture conditions, the transformation pro-
cess, or demographic features. Similar to the ANOVA, the principal component analysis sug-
gested that most of the variance (73.9%) was explained by individual subject differential
response to high glucose.

Differential Lymphoblastoid Cell Line Response to Glucose
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High glucose increases the protein expression of CD18
CD18, a leukocyte cell surface adhesion molecule that binds with ICAM-1 implicated in the
pathogenesis of diabetic retinopathy [32], was assessed by flow cytometry using an antibody-
based fluorescence assay. Expression was determined for twenty-three lymphoblastoid cell
lines under standard and high glucose conditions (S5 Table). One of the cell lines had to be
removed from the analysis (total n = 22), as the flow cytometer did not calculate a value for it
under standard glucose conditions. Consistent with the gene expression findings for CD18, the
flow cytometry revealed an increase in the expression of CD18 with high glucose (p-
value = 2.14x10-5) (Fig 2). Within a cell line the values of the mRNA and protein expression for
CD18 were not significantly correlated, perhaps due to the small sample size and inherent
experimental noise in these assays.

High glucose increases leukocyte endothelial adhesion
Leukocyte endothelial adhesion was assessed in the sixteen DCCT/EDIC lymphoblastoid cell
lines under standard and high glucose conditions. For this experiment a high throughput assay
that we had previously developed was employed (Z0-factor = 0.67) [9]. Similar to our prior
work we found the assay to be robust and reliable. Little variability was evident among runs as
revealed by the low coefficients of variation (Table 1). A significant increase in adhesion was

Fig 1. High glucose induces gene expression up-regulation in lymphoblastoid cell lines. Diabetes
associated genes are increased in lymphoblastoid cell lines (n = 23) exposed to high glucose (HG) (30 mM).
Figure is a bar graph of the fold change in gene expression in response to high glucose. Expression was
normalized toGAPDH. Change in gene expression is based on the difference in expression of each gene
under high and standard glucose conditions (11 mM). Error bars represent 95% confidence intervals of fold
change. * p-value < 0.05. NS Not significant p > 0.05.

doi:10.1371/journal.pone.0160504.g001
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seen under high glucose conditions (p = 1.28x10-5) (Fig 3). We confirmed inter-individual dif-
ferences among the cell lines for leukocyte endothelial adhesion with analysis of variance
(F = 73.07, p-value< 0.0001). Of the total variance in leukocyte endothelial adhesion, 80% was
cell line dependent. Hence, high glucose stimulated a cell line specific increase in leukocyte
endothelial adhesion in lymphoblastoid cells.

High glucose increases the generation of reactive oxygen species
Finally, we measured the generation of reactive oxygen species following high glucose stimula-
tion in the twenty-three lymphoblastoid cell lines. Reactive oxygen species were assayed by

Fig 2. Expression of CD18 by flow cytometry is increased in lymphoblastoid cell lines exposed to high glucose.CD18
expression was compared between standard glucose (11 mM) and high glucose (HG) (30 mM) conditions. CD18 is increased in
high glucose (p = 2.14x10-5) consistent with the mRNA expression findings. Figure is a univariate scatter plot showing the
distribution of change in relative fluorescence units (RFU) for CD18 expression in high glucose compared to standard glucose
conditions in twenty-two lymphoblastoid cell lines. Most but not all cell lines demonstrate an increase in CD18 under high glucose
conditions. Mean and 95% confidence intervals shown.

doi:10.1371/journal.pone.0160504.g002
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mean CM-H2DCFDA fluorescence. An increase in reactive oxygen species was evident follow-
ing high glucose (p = 2.56x10−6) (S6 Table). The differences among lines seemed to fall broadly
in a bell curve distribution (Fig 4).

No differences in response were discernable between three clinical groups (subjects with
diabetes and proliferative diabetic retinopathy, subjects with diabetes without diabetic retinop-
athy and non-diabetic control subjects) (S3 Fig). We assessed whether or not there was any sig-
nificant difference between the three different groups based on gene expression [40], CD18
expression, leukocyte endothelial adhesion, and reactive oxygen species generation. After con-
trolling for multiple measures no significant differences were identified (S7A Table). There was
also no difference present when comparing the diabetic subjects alone (PDR vs No PDR) (S7B
Table).

Discussion
Progress in the treatment of diabetic retinopathy has been hindered by limited access to a bio-
logically relevant tissue that is correlated to human clinical data. Human eye tissue is not rou-
tinely available for research purposes except from post-mortem specimens. Individual donors
may not have diabetic retinopathy, and for those who do, detailed associated clinical records of
their care may not be available. Problematic access to tissue for investigators has resulted in a
proliferation of diabetic retinopathy models to simulate the human condition in animals such
as mice, monkeys, fish, and cats. We investigated whether lymphoblastoid cell lines could be
utilized for this purpose as they are available for many of the subjects of several large clinical
epidemiologic studies of diabetic retinopathy, including the landmark Diabetes Control and

Table 1. Leukocyte adhesion to human retinal microvascular endothelium is reliably assessed by high throughput assay.

SG HG

cell line Mean stdev cv% Mean stdev cv%

1 44 4 9 47 3 7

2 17 1 8 22 2 7

3 22 1 5 33 2 7

4 36 3 8 47 4 8

5 34 3 8 39 4 10

6 46 3 6 52 2 5

7 36 1 4 36 3 7

8 24 1 5 29 9 31

9 18 1 6 29 2 6

10 27 3 10 42 2 6

11 18 2 13 26 1 4

12 18 2 12 21 0 2

13 17 1 5 26 2 9

14 23 2 8 39 2 5

15 20 1 6 27 1 5

16 11 0 4 15 1 5

Measurements performed in sixteen subject lymphoblastoid cell lines. Adhesion (n = 4) was measured under both standard glucose cell culture conditions

(SG) (11 mM glucose) and high glucose (HG) conditions (30 mM glucose) for each lymphoblastoid cell line. Mean, standard deviation (stdev), and coefficient

of variation in percent (cv%) are reported for each subject lymphoblastoid cell line and reflect the number of adherent cells as a % of the input in relative

fluorescence units (RFU).

doi:10.1371/journal.pone.0160504.t001
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Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/
EDIC) cohort.

Initially, we investigated whether high glucose was capable of inducing a relevant biologic
response in mature lymphoblastoid cells similar that seen in primary leukocytes. There were
several reasons why we were uncertain whether this would be the case. First, lymphoblastoid
cells are transformed. A major challenge in their use is that in a quiescent state mature lympho-
blastoid cell lines assume a homogeneous gene expression profile that reflects a uniform trans-
formed B cell state [39]. Second, they undergo years of storage and multiple freeze-thaw cycles.
Third, they are derived from B-cells, which are not likely the primary pathogenic leukocyte in
diabetic retinopathy. Earlier work has mostly implicated monocytes [41–43] and neutrophils
[44, 45] as the key leukocyte classes involved in diabetic retinopathy [46], but studies of other
cell types including B cells [47] and their relation to retinopathy are ongoing [48]. Finally, the
standard glucose concentration in which lymphoblastoid cells are cultured is 11 mM, notably
higher than physiologic levels. When cultured in physiologic 5 mM glucose it resulted in both
poor growth and reduced viability of the lymphoblastoid cells.

On the other hand, we considered that as lymphoblastoid cell lines originate from white
blood cells, at a minimum they should recapitulate many of their in vivo characteristics. Origi-
nally developed as a perpetual source of DNA, they have been shown to have a great deal of
biologic relevance. Specifically, studies investigating gene regulation [49–56], gene knockdown
[57], radiation response [58] and pharmacogenomics [59–62] have all recently been success-
fully conducted in lymphoblastoid cell lines [63, 64]. Furthermore, the translatability of

Fig 3. Leukocyte endothelial adhesion increases under high glucose conditions. Univariate scatter plot
of the difference in adhesion for each of sixteen subject lymphoblastoid cell lines under high glucose (30 mM)
(HG) compared to standard glucose (11 mM). A significant increase in adhesion is seen under high glucose
conditions (p = 1.28x10-5). Change in adhesion reveals increased endothelial adhesion in high glucose.
Mean and 95% confidence intervals shown.

doi:10.1371/journal.pone.0160504.g003
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lymphoblastoid cells has been demonstrated in multiple diseases despite their transformed
nature. In particular, lymphoblastoid cells have served as an excellent model for those complex
conditions in which white blood cells are the most relevant human tissue such as rheumatoid
arthritis, type 1 diabetes, Crohn’s disease, and multiple sclerosis [8, 11, 65].

Circulating peripheral leukocytes have clearly been implicated in the pathogenesis of dia-
betic retinopathy [66–69]. Diabetes induces an intrinsic systemic inflammatory response [70,
71]. It is not unexpected then that an early feature of diabetic retinopathy is a presence of sys-
temic inflammatory markers [72, 73]. Leukocytes are a key mediator of inflammation through-
out the body. Leukocytes are activated in the diabetic state [41]. The key features of leukocytes
that have been associated with the pathogenesis of diabetic retinopathy include differences in
adhesion, gene/protein expression, and endothelial effects. Leukocytes have been shown to
directly kill endothelial cells, and this is significantly worse when using leukocytes collected
from diabetic mice or patients [46, 74, 75]. It is thought that endothelial injury in diabetes is
mediated in part by enhanced leukocyte release of reactive oxygen species like superoxide,
inflammatory metabolites, and contact mediated mechanisms [45, 46, 68, 73, 76–78]. Amelio-
ration of leukocyte-endothelial adhesion reduces microvascular injury [79, 80]. Inhibition of
leukocyte killing of vascular cells in preclinical animal models of diabetic retinopathy protects
against diabetes-induced microvascular changes in the retina, demonstrating a key and pri-
mary role of peripheral, circulating leukocytes in diabetic retinopathy [46, 81–83]. Hence, we
anticipated that lymphoblastoid cell lines would demonstrate similar molecular, cellular, and
functional alterations to high glucose. By focusing on the differential cellular response to a net
increase of 19 mM glucose (342 mg/dl), we were optimistic that the homeostatic adjustments
induced in lymphoblastoid cells would mirror those that occur in vivo. Our prior work and
that of other groups also suggests that cellular changes at these absolute concentrations are
likely to generate a specific glucose-mediated effect, not affected by the increased osmolarity of

Fig 4. Reactive oxygen species are increased in lymphoblastoid cell lines exposed to high glucose.
Measurements performed in twenty-three subject lymphoblastoid cell lines. Reactive oxygen species were
measured under both standard (11 mM) and high glucose (HG) (30 mM) cell culture conditions for each
lymphoblastoid cell line. Reactive oxygen species assayed by mean CM-H2DCFDA fluorescence and
reported in relative fluorescence units (RFU). Univariate scatter plot demonstrates differential response for
each of 23 subject lymphoblastoid cell lines to high glucose for the formation of reactive oxygen species.
Significant increases in reactive oxygen species production in high glucose are evident (p = 2.56x10−6).
Scatter plot reveals increased reactive oxygen species formation for most but not all lymphoblastoid cell lines
in high glucose compared to standard glucose conditions. Mean and 95% confidence intervals shown.

doi:10.1371/journal.pone.0160504.g004
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the media [36, 84]. Indeed, we found that following chronic exposure to high glucose, lympho-
blastoid cell lines revealed increased expression of genes that included cytokines, transcription
factors, and adhesion molecules previously implicated in the pathogenesis of diabetic retinopa-
thy (Fig 1) [66, 67, 73]. These results may have been even more dramatic in 5 mM baseline
solution as opposed to the standard cell culture conditions of 11 mM glucose used in this
study.

In a dynamic state, the vast majority of the cellular proteome is generated in response to
transcriptional induction upon stimulation [85]. Hence, we hypothesized that stimulation of
the lymphoblastoid cells with high glucose would result not only in the gene expression
changes that we observed but also that these changes would be maintained at the protein level.
The numerous successful eQTL mapping studies performed to date [53, 54, 86] demonstrate
that these transcriptional differences, when present in lymphoblastoid cell lines, are valid and
reflective of true underlying biology. In our study the effect of high glucose on transcription
was maintained when protein expression was assessed. CD18, an adhesion molecule that
showed a significant increase in gene expression to high glucose, similarly demonstrated ele-
vated protein expression under high glucose conditions.

The increased expression of CD18 and other adhesion molecules resulted in a functional
effect on the lymphoblastoid cells. Specifically, we observed an increased adhesiveness of lym-
phoblastoid cells to endothelial cells in our cell-based assay. Moreover, as we identified the up-
regulation of several cytokines that have been shown to stimulate mitochondrial oxidative
stress [87], we similarly reasoned that there would be a corresponding effect on the generation
of reactive oxygen species in the lymphoblastoid cells. In fact, we found that generation of reac-
tive oxygen species in lymphoblastoid cells was increased in the setting of high glucose. Hence,
stimulation of lymphoblastoid cells with high glucose demonstrated corresponding changes on
molecular, cellular and functional levels. Taken together these collective findings suggest that
high glucose stimulation of lymphoblastoid cells results in profound changes reflective of those
seen in primary diabetic leukocytes.

Next, we were interested in assessing whether lymphoblastoid cell lines reveal individual dif-
ferential responses at the molecular and cellular level to high glucose. At baseline in a quiescent
state mature lymphoblastoid cell lines assume a homogeneous transformed B cell phenotype
[39]. In fact, the gene expression among mature lymphoblastoid cell lines is more alike than to
the individual primary cell lines from which they were derived. If the transformed state is the
primary determinant of cellular phenotype, then one might anticipate little difference in a high
glucose state both in a given subject as well as among different subjects. In response to high glu-
cose we observed an induction of transcription that resulted in corresponding and predictable
downstream cellular and functional effects in the lymphoblastoid cells. As each cell line harbors
the unique DNA signature of the individual subject and it is initially through gene expression
that an individual’s genotype exerts its affects on phenotype, we hypothesized that the response
to glucose would be cell line specific. For these reasons, we predicted that the glucose response
would be heterogeneous. If this were the case, then there should be individual differences seen
in the reaction to the same exogenous stimulus of high glucose among the twenty-three differ-
ent lymphoblastoid cell lines. In this study, we found that high glucose was capable of distin-
guishing among individuals. In particular, when we evaluated the specific responses for gene
expression, CD18 protein expression, endothelial adhesion, and reactive oxygen species gener-
ation for each of the lymphoblastoid cell lines, significant inter-individual differences were
present. Thus, individual differential responses to the same provocative agent were evident in
lymphoblastoid cells.

What these changes were unable to distinguish between, though, were the three groups of
clinical subjects (composed of individuals without diabetes, individuals with diabetes and no
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retinopathy, and individuals with diabetes and proliferative diabetic retinopathy) (S7 Table). In
hindsight, this is not surprising given the small sample size. While larger cohorts may help to
realize differences between different clinical sub-groups, since the genetic contribution to these
conditions is modest [88, 89], the range of variation produced in response to high glucose
exposure will necessarily be modest. Common molecular responses on average to high glucose
regardless of retinopathy status among the subject cell lines emphasize the key importance of
degree and duration of glycemia as the primary risk factors for diabetic complications like reti-
nopathy [90–92]. Since these non-genetic (environmental) factors play such a major, predomi-
nant role in dictating the development of diabetic complications, it has created a significant
challenge in identifying their genetic basis [6, 93].

Exposure to uniform cell culture conditions that produce differences among individuals,
though, can generate insights into the aberrant pathways that may underlie a particular
patient’s disease. Differences in response among subjects should reflect differences at the level
of the individual’s genome since all environmental factors are uniform [94, 95]. For diabetic
complications, like retinopathy, these findings suggest that management of affected individuals
may be best approached at the individual level. For example, the reactive oxygen species data
(Fig 4) suggest that an anti-oxidant strategy might not be equally effective in all subjects with
retinopathy. In fact, the widely divergent responses to high glucose in all study parameters for
individuals with retinopathy emphasize the multifactorial nature of this condition and the
potential importance of a personalized approach that takes into account these inter-individual
differences, as is beginning to occur more frequently in cancer care. Lymphoblastoid cell lines
may be an ideal tool for understanding this individual variability. They may offer a means to
dissect the genetic and environmental interactions present in diabetic complications thereby
accelerating the transition to more targeted, patient-specific treatments.

Supporting Information
S1 Fig. Proportion of variance in gene expression by covariate. Figure is variance component
analysis of gene expression. It demonstrates that differences in the individual subject lympho-
blastoid cell line gene expression response to high glucose explain most of the inter-subject var-
iance.
(TIFF)

S2 Fig. Fold Change In Gene Expression From SG to HG. Principal component analysis of
the twenty-three samples did not reveal clustering of any of the three groups when differences
in gene expression were compared between the three groups. Subjects without diabetes (Red—
No DM). Subjects with diabetes but no retinopathy (Green–No PDR). Subjects with diabetes
and proliferative diabetic retinopathy (Blue–PDR).
(PDF)

S3 Fig. (A-I) No differences were identified in response to high glucose between the three
clinical groups. Figure shows univariate scatter plots of response to high glucose (HG) for sub-
jects without diabetes (No DM), with diabetes and no diabetic retinopathy (No DR), and with
proliferative diabetic retinopathy (PDR). Differences in gene expression (Figures A-F in S3),
protein expression (CD18) (Figure G in S3), leukocyte endothelial adhesion (No DR vs PDR
only) (Figure H in S3) and reactive oxygen species (Figure I in S3) are shown for each cell line
comparing its response in standard and high glucose conditions.
(PDF)

S1 Table. DCCT/EDIC Subjects.
(PDF)
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S5 Table. CD18 expression by flow cytometry. Protein expression for each of the twenty-
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S6 Table. Reactive oxygen species generation. Reactive oxygen species were measured under
both standard glucose cell culture conditions (SG) (11 mM glucose) and high glucose (HG)
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assayed by mean CM-H2DCFDA fluorescence.
(PDF)
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