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Abstract

Interactions between intestinal microbiota and the human host are complex. The gut muco-
sal surface is covered by a mucin layer that prevents bacteria from accessing the epithelial
cells. Thus, the crosstalk between microbiota and the host mainly rely on secreted factors
that can go through the mucus layer and reach the epithelium. In this context, vesicles
released by commensal strains are seen as key players in signaling processes in the intesti-
nal mucosa. Studies with Gram-negative pathogens showed that outer membrane vesicles
(OMVs) are internalized into the host cell by endocytosis, but the entry mechanism for
microbiota-derived vesicles is unknown. Escherichia coli strains are found as part of normal
human gut microbiota. In this work, we elucidate the pathway that mediate internalization of
OMVs from the probiotic E.coli Nissle 1917 (EcN) and the commensal ECOR12 strains in
several human intestinal epithelial cell lines. Time course measurement of fluorescence
and microscopy analysis performed with rhodamine B-R18-labeled OMVs in the presence
of endocytosis inhibitors showed that OMVs from these strains enter epithelial cells via cla-
thrin-mediated endocytosis. Vesicles use the same endocytosis pathway in polarized epi-
thelial monolayers. Internalized OMVs are sorted to lysosomal compartments as shown by
their colocalization with clathrin and specific markers of endosomes and lysosomes. OMVs
from both strains did not affect cell viability, but reduce proliferation of HT-29 cells. Labeling
of 8-oxo-dG adducts in DNA revealed that neither OMVs from EcN nor from ECOR12 pro-
moted oxidative DNA damage. In contrast, flow cytometry analysis of phosphorylated
yH2AX evidenced that OMVs from the probiotic EcN significantly produced more double
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strand breaks in DNA than ECOR12 OMVs. The EcN genotoxic effects have been attributed
to the synthesis of colibactin. However, it is not known how colibactin is exported and deliv-
ered into host cells. Whether colibactin is secreted via OMVs is an open question that
needs further study.

Introduction

Intestinal microbiota has a great impact on human health. These microbial populations pro-
vide crucial benefits to the host, including metabolic activities, development of the host
immune system, and prevention of gut colonization and infection by pathogens [1-3]. The
intestinal epithelium is the first line of defence against pathogens and is also the surface where
the host interacts with microbiota. It is protected by a mucus layer that prevents close contact
between luminal bacteria and the epithelial surface [4]. Therefore, factors secreted by micro-
biota that can diffuse through the mucin layer, such as membrane vesicles, play a relevant role
in intestinal communication. Extracellular vesicles are secreted by all bacteria. The best charac-
terized are the outer membrane vesicles (OMVs) produced by Gram-negative bacteria. These
vesicles are spherical, bilayered membrane structures that are released during normal bacterial
growth and have sizes ranging from 20 to 250 nm. They act as a secretion pathway for a set of
selected proteins and other active compounds in a protected environment. Bacterial vesicles
have important biological functions in both bacterial survival and host interaction, allowing
cell-to-cell communication without intimate intercellular contact. Depending on their cargo,
they promote modulation or subversion of the host defence and immune responses [5,6]. A
great number of studies performed with Gram-negative pathogens showed that OMV's are
internalized in the host target cells, and contribute to virulence by delivering cytotoxic factors
and mediators that interfere with the immune system [7-9]. In addition, OMV's isolated from
several pathogenic E. coli strains and from the laboratory strain DH50 are genotoxic to human
intestinal epithelial cells. Upon internalization, these bacterial vesicles can cause DNA lesions
and affect cell proliferation and viability [10,11].

Uptake of pathogen-derived OMVs by epithelial host cells is mainly driven by endocytosis.
This process involves invagination of the cell membrane, and takes place through different
pathways depending on the composition and cargo of the vesicles to be internalized. There are
two main endocytic pathways: clathrin-mediated endocytosis (CME), and the lipid raft-medi-
ated pathway, which is cholesterol sensitive. These pathways produce endosomal compart-
ments with different surfaces that allow the delivery of their cargo to various subcellular
destinations [12]. CME involves a complex protein network including clathrin and dynamin as
key components. Lipid rafts are dynamic membrane microdomains rich in cholesterol, sphin-
golipids and proteins such as caveolin and flotillin, which are associated with distinct clathrin-
independent pathways. Vesicles from enterohemorrhagic E.coli enter host cells via CME [13],
whereas vesicles from enterotoxigenic E. coli, Porphyromonas gingivalis, Moraxella catharralis
or Pseudomonas aeruginosa are internalized through a lipid raft-mediated pathway in a cla-
thrin-independent manner [14-17]. Clathrin-mediated endocytosis is the main pathway
involved in the uptake of Helicobacter pylori OMVs, but lipid microdomains also contribute,
although to a lesser extent [18].

Nowadays, microbiota vesicles are perceived as key players in the maturation of the immune
system and in signaling processes at the intestinal mucosa [9,19]. However, studies in this field
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are still scarce, and to our knowledge there are no reports to date on the internalization path-
way of vesicles produced by gut microbiota or probiotic strains.

Escherichia coli strains are commonly found as part of normal human gut microbiota. Some
of these strains, such as Escherichia coli Nissle 1917 (EcN), provide benefits to the host, espe-
cially due to their ability to compete and inhibit gut colonization by pathogens. EcN is a good
colonizer of the human gut and positively affects gastrointestinal homeostasis and microbiota
balance. It is used as a probiotic in the treatment of intestinal disorders, especially inflamma-
tory bowel diseases [20,21]. EcN upregulates the expression of both antimicrobial peptides and
tight junction proteins, and promotes anti-inflammatory modulation of the immune response
[22-25]. This probiotic strain is closely related to the uropathogenic E. coli strain CFT073, but
lacks genes encoding particular virulence factors such as haemolysin and P-fimbrial adhesin.
Both strains belong to the phylogenetic group B2, and although they cause different effects on
the host (benefit or disease), their functional gene profiles are very similar [26,27]. We have
recently reported the proteomic analysis of OMVs produced by the probiotic strain EcN. We
identified 192 vesicular proteins with functions related to adhesion, immune modulation or
bacterial survival in host niches [28]. Some of these proteins can target the vesicles to the host,
and mediate their beneficial effects on intestinal function. We have also shown that EcN-
derived OMVs modulate the expression of several cytokines and regulators of the intestinal
barrier in human colonic explants, and in co-cultures of epithelial Caco-2 cells/peripheral
blood mononuclear cells. Upon OMV's internalization, the activated epithelial cells elicit a
response in the underlying immunocompetent cells [29].

In the present study, we elucidated the internalization pathway of EEN OMV:s in several
human intestinal epithelial cell lines, and examined whether these vesicles promote cytotoxic
or genotoxic effects. We extended the analysis to other commensal E. coli strains without
known probiotic traits, such as ECOR12 that belongs to phylogenetic group A, which is largely
associated with non-pathogenic E. coli strains.

Materials and Methods
Bacterial strains and growth conditions

Escherichia coli Nissle 1917 (EcN) (serotype O6:K5:H1) was provided by Ardeypharm GmbH,
Herdecke, Germany. ECOR12 is a commensal strain isolated from the stool of a healthy
human [30]. Bacterial cells were routinely grown at 37°C in Luria-Bertani broth (LB) with con-
stant rotation (150 rpm). Growth was monitored by measuring the optical density at 600 nm.

Cell culture and growth conditions

The human colonic cells lines Caco-2 (ATCC HTB37) and HT-29 (ATCC HTB-38) were
obtained from the American Type Culture Collection. The mucus-secreting HT29-MTX cell
line was a gift from Thécla Lesuffleur, INSERM, Paris, France. Cells were cultured in DMEM
High Glucose (Dulbecco’s Modified Eagle Medium) or DMEM Glutamax medium (Life Tech-
nologies), both supplemented with 10% (v/v) fetal bovine serum, 25 mM HEPES, 1% non-essen-
tial amino acids, penicillin (100 U/ml) and streptomycin (100 pg/ml) (Gibco BRL, MD, USA).
Cultures were incubated at 37°C with 5% CO,. Cells were routinely subcultured once a week
with trypsin-EDTA (0.25%, 0.53 mM) and seeded at a density of 2x10” cells per 55 cm” dishes.

Isolation and labeling of OMVs

OMVs were isolated from culture supernatants as described previously [28]. Briefly, bacterial
cells were culture overnight and pelleted by centrifugation at 10,000xg for 20 min at 4°C; the
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supernatants were filtered through a 0.22 pm-pore-size filter (Merck Millipore) to remove
residual bacteria and concentrated using a Centricon®™ Plus-70 filter device (Merck Millipore).
Vesicles were obtained by centrifugation at 150,000xg for 1 h at 4°C in an Optima ™ L-90K
ultracentrifuge (Beckman Coulter), washed and resuspended in an adequate volume of phos-
phate buffered saline (PBS) and stored at -20°C. Protein concentration was determined by the
method of Lowry et al. [31].

Vesicles were fluorescently labeled with rhodamine isothiocyanate B-R18 (Molecular
Probes). Fluorescence of this probe is quenched in bilayer membranes at high concentration
but it is dequenched when probe is diluted after membrane fusion. OMVss purified as described
previously were washed, resuspended in labeling buffer (50 mM Na,CO3, 100 mM NaCl, pH
9.2) and incubated with rhodamine isothiocyanate B-R18 (1 mg/ml) for 1 h at 25°C, followed
by centrifugation at 100,000x¢ for 1 h at 4°C. Subsequently, to fully remove the unbound dye,
samples were washed with PBS (0.2 M NaCl) followed by ultracentrifugation at 100,000 xg for
1 h at 4°C. After a final centrifugation step, B-R18-labeled OMV's were resuspended in PBS
(0.2 M NaCl) containing a protease inhibitor cocktail tablet (Complete Protease Inhibitor Tab-
let, Roche) and stored at 4°C for up to 6 weeks.

Internalization of OMVs

To monitor OMVss entry by epithelial cells, a total of 1x10° HT-29 cells were seeded in 96-well
plate (Corning Incorporated, Costar™) and grown to 80% confluence. Prior to the assay, cells
were washed once with PBS. The medium was replaced with rhodamine B-R18- labeled OMVs
(2 ug/well) suspended in DMEM without fetal bovine serum and red phenol but containing
gentamicin. Cells were incubated at 37°C and fluorescence was measured over time in a Modu-
lus™ Microplate fluorescence reader (Turner BioSystems) (Ex 570 nm; Em 595 nm). Fluores-
cence intensity was normalized by fluorescence detected at the indicated time points by
labeled-OM Vs in the absence of cells. Internalization assays with Caco-2 or HT29-MTX cell
lines were performed with confluent monolayers fully polarized (17 days post-confluence).
During growth and differentiation the medium was changed every 2 days.

To determine the mechanism involved in the endocytosis process, monolayers of HT-29,
HT29-MTX or Caco-2 cells grown in 96-well black plates were pre-treated with the endocytosis
inhibitors: dynasore 80 uM, chlorpromazine 15 pg/ml, filipin III 10 pg/ml or nystatin 10 ug/ml
(all from Sigma-Aldrich) for 1 h at 37°C prior to the addition of labeled-OMVs. Control cells
were not treated with the inhibitors. Rhodamine B-R18- labeled OMVs (2 ug protein/well)
were applied to the apical side. Cells were incubated at 37°C and fluorescence was tracking
over the time. Cell samples were also analyzed by microscopy as described below to ensure that
no cell damage was caused by the inhibitors at the concentration used and to confirm the intra-
cellular location of labeled-OMVs.

Confocal fluorescence microscopy

HT-29 cells were grown in 8-well chamber slider (ibidi) until approximately 80% confluence
and incubated with rhodamine B-R18-labeled OMVss (2 pg/well) at 37°C or 4°C for 15min, 30
min, 1 h and 3 h and then washed with PBS. Nuclei were labeled with DAPI and plasma mem-
brane with fluorescent wheat germ agglutinin (WGA). For this purpose, cells were incubated
for 25 min with Alexa-488 WGA (1 pg/ml, 4°C; Molecular Probes) followed by fixation for 30
min with 3% paraformaldehyde. After PBS washing, cells were analysed microscopically.

To determine colocalization of OMVs with clathrin, cells were incubated with rhodamine
B-R18-labeled OMV:s for 15 min at 37°C and clathrin was stained using anti-clathrin mouse
monoclonal antibody (clone 23,BD Biosciences) and Alexa Fluor 488-conjugated goat anti-
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mouse IgG (Molecular Probes). In control experiments, cells were incubated for 15 min with
transferrin-Alexa Fluor 633 (TF-633) at 20 ug/ml (Molecular Probes). TF-633 was used as a
positive control for clathrin-mediated endocytosis. To determine colocalization of OMVs with
the endo-lysosomal compartments, cells were incubated with rhodamine B-R18-labeled OMV's
(2 ug/well) for 30, 45 and 60 min. Cells were fixed with 3% paraformaldehyde, permeabilized
with 0.05% saponin (Sigma Aldrich) and blocked using PBS containing 1% bovine serum albu-
min. Endosomes were detected with rabbit polyclonal antibody against EEA1 (Abcam™) and
Alexa Fluor 488-conjugated goat anti-rabbit IgG (Molecular Probes). Lysosomes were detected
using LysoTracker Green DND-26 at 300 nM (Molecular Probes). When indicated, internal-
ized OMV's were labeled with anti-E. coli LPS antibodies (Abcam™) and Alexa Fluor 546-con-
jugated anti-mouse IgG (Molecular Probes).

Confocal microscopy was carried out using a Leica TCS SP5 laser scanning confocal spectral
microscope, using the 63x oil immersion objective lens. Images were captured with a Nikon
color camera (16 bit). Fluorescence was recorded at 405 nm (blue; DAPI), 488 nm (green;
WGA and Alexa Fluor 488), 546 nm (red; rhodamine isothiocynate B-R18, Alexa Fluor 543
and MitoTracker Red FM) and 633 nm (far-red; TF-633, Alexa Fluor 633). Z-stack images
were taken at 0.5 to 1.0-um. Images were analyzed using Fiji image processing package. Coloca-
lization was assessed by calculating the overlap coefficient (r) from quantitative data obtained
from four confocal stacks using the JaCoP plugin. The value of this coefficient ranges from 0 to
1. Data were presented as mean + standard error from four independent experiments. In all
cases, the total number of cells analyzed was between 90 and 130.

Cell viability and proliferation assays

The trypan blue exclusion test was used to study the ability of OMVs to affect the proliferation
of HT-29 cells. HT-29 cells plated into 24-well plates were exposed to 5 pg/ml OMV's for up to
168 h. As a rule, once every two days, the cells were trypsinised, stained with 0.25% w/v trypan
blue, and counted with a haemocytometer. The Mean Proliferative Index (MPI) at any given
point was calculated as described elsewhere [10]. MPI = (number of cells treated with OM Vs in
each well / number of control cells in each well) x 100. To estimate the cell proliferation rate we
calculated the population doubling time (PDT) values according to the equation: PDT = CT/
log (N1/N0)x 3.31; where CT is the culture time, N1 the cell number at the end of cultivation
period and NO the cell number at the beginning of the experiment [32].

Cell viability was assessed by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphen yl tetrazo-
lium bromide) assay, based on the mitochondrial reduction of tetrazolium to formazan. Forma-
zan formation is considered directly proportional to viable cell numbers. For this, 1x10* HT-29
cells in 100 pl of media were plated into each well in a 96-well plate and incubated for 24 h at
37°C before the addition of OMVs (5 pg/ml) and further incubated for up to 168 h. At one or
two day intervals, the cells were treated with 0.25% MTT (Sigma-Aldrich) in PBS and allowed
to react for 2 h at 37°C. The medium was then removed and 1 ml of solubilization reagent (99%
dimethyl sulfoxide) was added (Applichem, Ecogen). Cell viability was measured at 570 nm in a
Modulus™ Microplate Photometer (Turner BioSystems). The results were expressed as percent-
age of cell survival relative to the control (untreated cells).

Cell cycle analysis

After treating HT-29 cells with OMV's (5 pg/ml) for 24, 48 and 72 h, cells were collected by cen-
trifugation (1000xg, 3 min) and washed once with cold PBS. The pellet was resuspended in 0.5
ml cold PBS and 4.5 ml cold 70% ethanol and left at —20°C until use. Prior to analysis, cells
were centrifuged, washed once with cold PBS, resuspended in PBS containing RNase A
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(200 pug/ml) and incubated for 20 min at room temperature. The cells were then permeabilized
with 0.1% Triton X-100, stained with propidium iodide (5 mg/mL final concentration) for 1 h
and analysed by flow cytometry using an Epics XL flow cytometer (Coulter Corporation, Hia-
leah, Florida). The instrument was set up with the standard configuration: excitation of the
sample was done using an standard 488nm air-cooled argon-ion laser at 15mW power. For-
ward scatter (FSC), side scatters (SSC) and red (620 nm) fluorescence for PI were acquired.
Optical alignment was based on optimized signal from 10 nm fluorescent beads (Immuno-
check, Epics Division). Time was used as a control of the stability of the instrument. Red fluo-
rescence was projected on a 1024 monoparametrical histogram. Aggregates were excluded
gating single cells by their area vs. peak fluorescence signal. DNA analysis (Ploidy analysis) on
single fluorescence histograms was done using Multicycle software (Phoenix Flow Systems,
San Diego, CA). A total of 10,000 events were analysed for each sample.

Immunofluorescence microscopy of mutagenic 8-oxo-dG adducts

Mutagenic 8-o0xo0-7,8-dihydro-2’-deoxyguanosine (8-oxo-dG) adducts are among the lesions
generated by hydroxyl radical attack on DNA. Formation of 8-oxo-dG adducts in cells exposed
to OMVs was analyzed by immunofluorescence microscopy using mouse monoclonal anti-
80HJG antibodies (Abcam™). HT-29 cells grown in 8-well chamber slider (ibidi) were
exposed to 5 pg/ml OMV:s for up to 168 h (7 days). As a control of this kind of oxidative dam-
age, HT-29 cells were treated with 300 uM H,O, for 24 h. Fluorescence detection of 8-oxo-dG
in cell nuclei was evaluated by following the primary antibody manufacturer s instructions.
Briefly, the cells were washed with PBS, fixed with 3% paraformaldehyde, permeabilized using
0.5% Triton X-100 in PBS for 30 min at room temperature, blocked with 0.1% Triton X-100 in
5% Bovine serum albumin for 1 h at room temperature and then incubated using anti SOHdG
(Abcam™) for 16 h at 4°C. The secondary antibody was an Alexa-Fluor 488 conjugated goat
anti-mouse antibody (Life Technologies). Nuclei were labeled with DAPI.

Immunodetection of phosphorylated histone yH2AX

YH2AX is required for checkpoint-mediated arrest of cell cycle progression and for efficient
repair of DNA double strand breaks (DSBs). Recruitment of phosphorylated histone YH2Ax to
sites of damaged DNA in HT-29 cells exposed to OMVs versus HT-29 control cells was evalu-
ated by using immunofluorescence microscopy and flow cytometer. The cells were treated
with 5 pug/ml OMV:s for up to 168 h (7 days) or with 300 uM H,O, for 24 h (as positive control
of DNA damage). For immunofluorescence microscopy, the cells were fixed with paraformal-
dehyde and blocked with BSA prior to incubation with anti-gamma H2A X antibodies
(Abcam®) for 16 h at 4°C. Samples were washed and incubated with the Alexa-Fluor 546 con-
jugated goat anti-rabbit secondary antibody for 1h at 37°C. Nuclei were labeled with DAPI.
Quantification of YH2Ax was performed by flow cytometry. HT-29 cells, plated on 6-well
tissue culture plates, were exposed to 5 pug/ml OMV:s for 7 days and then washed with culture
medium to removed unbound OMVs. The cells were trypsinized, fixed in ice-ethanol and
stored at -20°C until analysis. After three washes with PBS, the fixed cells were treated with
RNAse (200 pg/ml) and stained with propidium iodide (10 pg/ml) for 30 min at room temper-
ature. Then, cells were permeabilized with 0.5% Triton X-100 in PBS for 30 min and blocked
with 5% BSA for 2 h at room temperature. Samples were incubated with anti-gamma H2A.X
followed by Alexa-Fluor 546 conjugated goat anti-rabbit antibodies as described above. The
cells were washed and analysed using a Beckman Coulter Cytomics FC500 flow cytometer. Cell
debris and dead cells were excluded from analysis by gating cells using FSC vs SSC double dot.
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A total of 10,000 events were analyzed for each gated sample. Statistical analysis data were pre-
sented as mean * standard error from at least three independent experiments.

Evaluation of DNA damage by alkaline single-cell gel electrophoresis
(Comet assay)

This method was used to assess the formation of DSBs in cells exposed to OMVs. Glass slides
were coated with 1.5% agarose and then dried at room temperature. HT-29 cells treated with

5 ug/ml OMVs for up to 168 h or with 300 uM H,O, for 24 h (positive control) were trypsi-
nized, washed twice in PBS and mixed with low melting point agarose (1:5). The agarose sus-
pended cells were spread on the coated slides, covered with 22 x 22 mm coverslips and left at
4°C for approximately 20 min to allow the agarose settle down. Cells were then lysed at 4°C for
2 h in lysis buffer (2.5 M NaCl, 100 mM EDTA, 10 mM Tris, 10% DMSO, 1% v/v Triton X-
100, pH 10). The slides were transferred to a BioRad horizontal electrophoresis tank containing
electrophoresis buffer (10 M NaOH, 0.2 M EDTA) and left for 40 min to equilibrate before
being electrophoresed for 45 min at 25 Volts. After three washes in neutralisation buffer (0.4M
Tris pH 7.5) the cells were stained with ethidium bromide (20 pg/ml). The slides were exam-
ined using a Leica D1000 microscope with a 63X oil immersion objective.

Statistical analyses

Statistical analysis was performed using SPSS (version 20.0, Chicago, IL, USA) software pack-
age. All assays were repeated at least three independent times in triplicate. The values for all
measurements are presented as the mean + standard error. Differences between more than two
groups were assessed using one-way ANOVA followed by Tukey’s test. The p value less than
0.05 were considered statistically significant.

Results

OMVs from probiotic and commensal E. coli strains are internalized by
intestinal epithelial cells

EcN and ECOR12 OMV's were isolated from LB cultures as described previously [28]. The
absence of cell debris was assessed by electron microscopy [28,29]. We have previously shown
that vesicles from both strains displayed similar protein profiles and LPS amount [29]. To
study the entry mechanism of OMVs into human intestinal epithelial cells, HT-29 cells grown
to 80% confluency were incubated with rhodamine B-R18-labeled OMVs (2 pg/well), and the
kinetics of OMVs uptake were monitored over time using a microplate fluorescence reader.
For both EcN and ECORI12 vesicles, the results showed a time-dependent increase in fluores-
cence, which was consistent with OMVs internalization. The fluorescence level of control sam-
ples containing only HT-29 cells or rhodamine B-R18- labeled OMV's did not increase above
the background levels (Fig 1A).

OMVs internalization by HT-29 cells was confirmed by confocal fluorescence microscopy
at 1 and 3 h incubation with rhodamine B-R18-labeled ECN OMVs or ECOR12 OMVs (2 pg/
well). Nuclei were labeled with DAPI and plasma membranes with WGA. As expected, no red
signal was observed in non-treated control cells. Rhodamine B-R18-labeled OMV's were visual-
ized in the cytoplasm of HT-29 cells incubated at 37°C. In contrast, vesicle uptake was not
observed when incubation was carried out at 4°C (Fig 1B). The intracellular location of OMVs
was confirmed through experiments performed with HT-29 cells incubated with unlabeled
OMVs (2 pg/well) at 37°C, followed by vesicle immunostaining with anti-E. coli LPS and
Alexa Fluor 546-conjugated anti-mouse IgG antibodies (Fig 1C). Taken together, these results
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Fig 1. Uptake of EcN and ECOR12 OMVs in HT-29 cells. (A) HT-29 cells were incubated at 37°C with rhodamine
B-R18-labeled OMVs (2 pg/well) from strains EcN and ECOR12 (squares) and fluorescence was measured over time with a
microplate reader. OMVs (circles) and cells (triangles) alone were analyzed in parallel as controls. Fluorescence intensity was
normalized by fluorescence detected at the indicated time points by labeled OMVs in the absence of cells. Data are presented as
means + standard error from four independent experiments. Results significantly different from that of untreated control cells are
indicated by an asterisk (P<0.006). (B, C) Visualization of internalized OMVs by florescence microscopy. HT-29 cells were
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incubated with rhodamine B-R18-labeled OMVs (B) or with unlabeled OMVs (C) for 1 and 3 h at 37°C. When indicated
incubations were performed at 4°C as a control. The cell membrane was stained with WGA (green) and nuclei with DAPI (blue).
Internalized rhodamine B-R18-labeled OMVs are visualized in red. In (C) vesicles were immunostained with E. coli anti-LPS
antibody and Alexa Fluor 546-conjugated secondary antibody. Analysis was performed in a Leica TCS SP5 laser scanning
confocal spectral microscope with 63x oil immersion objective lens, and images were captured with a Nikon color camera (16
bit). Scale bar: 20 um.

doi:10.1371/journal.pone.0160374.g001

showed that both EEN OMVs and ECOR12 OMV's were internalized by HT-29 cells, and that
the entry process was temperature-dependent.

EcN and ECOR12 OMVs are internalized by clathrin-mediated
endocytosis

The internalization pathway used by bacterial OMVs depends on the strain. Vesicles from E.
coli pathogens can enter host cells by clathrin-dependent endocytosis or via lipid rafts [13,14].
To identify the endocytic pathway involved in the entry of ECN and ECOR12 OMVs, time-
course internalization experiments using rhodamine B-R18-labeled OMVs were performed in
the presence of various inhibitors of endocytosis. OMV's entry was assessed by monitoring the
increase in fluorescence emitted by HT-29 cells upon OMVs addition. Disruption of lipid rafts
microdomains and caveolae by treatment with the cholesterol-sequestering agent’s filipin IIT or
nystatin did not significantly reduce OMVs internalization by HT-29 cells (Fig 2A). This indi-
cated that cholesterol-enriched lipid rafts are not required for the entry process. In contrast,
vesicle internalization was drastically inhibited in chlorpromazine- or dynasore treated-cells
(p>0.012) (Fig 2B). Chlorpromazine is an inhibitor of clathrin-dependent endocytosis [33]
and dynasore inhibits dynamin, a protein essential in membrane remodelling and fission of
clathrin-coated vesicles [34]. The effect of endocytosis inhibitors on microbiota OMV's inter-
nalization was confirmed by microscopy analysis. As shown in Fig 2C, internalization of rho-
damine B-R18-labeled OMVs in HT-29 cells was specifically inhibited by chlorpromazine,
whereas filipin III had no effect. Overall, these data indicate that OMV's from probiotic and
commensal E.coli strains are internalized in HT-29 cells via clathrin-mediated endocytosis.
The contribution of this endocytic pathway was further assessed by analysing colocalization of
EcN and ECOR12 OMVs with clathrin in HT-29 cells. Cells were incubated for 15 min with
rhodamine B-R18-labeled OMVss, or with transferrin-Alexa Fluor 633 as a positive control,
before immunostaining with anti-clathrin and Alexa Fluor 488-conjugated secondary antibod-
ies. Colocalization of rhodamine B-R18-labeled vesicles with clathrin was visualized by fluores-
cence microscopy as yellow spots in the merged images (Fig 3A). To measure colocalization of
these vesicles with clathrin, the overlap coefficients (r) were calculated from data collected
from four independent experiments. This analysis yielded r values of 0.71+0.07 for EEN OMV's
and 0.603+0.025 for ECOR12 OMVs. These coefficients were similar to that of the positive
control transferrin (r = 0.556+0.028). Images showing colocalization of transferrin and clathrin
are presented as supporting information (S1 Fig).

We next tested whether this endocytic pathway mediates OMV's entry in other human intes-
tinal epithelial lines, such as Caco-2 and HT29-MTX cells. Uptake experiments with rhoda-
mine B-R18-labeled OMV's were performed in the absence or presence of endocytosis
inhibitors (chlorpromazine and filipin IIT) in Caco-2 cells grown to 80% confluency and in dif-
ferentiated Caco-2 and HT29-MTX cells (17 days post-confluence). Upon the addition of
labeled OMVs (2 pg/well), fluorescence was recorded over 150 min with a plate reader. Data
showed that internalization of EcN and ECOR12 OMV:s by polarized epithelial cell monolayers
also takes place through the clathrin-dependent endocytosis pathway (S2 Fig). In the absence
of specific endocytic inhibitors, the time-dependent increase in fluorescence detected in
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Fig 2. Inhibitors of dymanin and clathrin-mediated endocytosis block internalization of EcN and ECOR12
vesicles. HT-29 cells were pre-incubated for 1h at 37°C with (A) the lipid raft disrupting agents filipin Il (triangles)
or nystatin (circles), or with (B) the inhibitors of the clathrin-mediated endocytosis pathway chlorpromazine
(circles) or dynasore (triangles) before adding rhodamine B-R18-labeled OMVs (2 pg/well) from strains EcN and
ECOR12. Uptake experiments were performed in HT-29 cells in the absence of endocytosis inhibitors for
comparison (squares). Fluorescence was measured over time with a microplate reader. Fluorescence intensity
was normalized by fluorescence detected at the indicated time points by labeled OMVs in the absence of cells.
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Data are presented as means + standard error from four independent experiments. Results significantly different
from that of cells incubated with OMVs in the absence of endocytosis inhibitors are indicated by an asterisk
(P<0.012). (C) Analysis by fluorescence microscopy of vesicle uptake in the presence of endocytosis inhibitors.
HT-29 cells were pre-incubated with chlorpromazine or filipin 11l for 1 h before the addition of rhodamine
B-R18-labeled OMVs (2 pg). After 1 h incubation, the cell membrane was stained with WGA (green) and nuclei
with DAPI (blue). Internalized OMVs are visualized in red. Images are from a single representative experiment
(n=4). Scale bar: 20 pm.

doi:10.1371/journal.pone.0160374.9002

differentiated cultures of the mucin-producer HT29-MTX cell line indicated that bacterial
OMVs can diffuse through the mucus layer before their entry into target cells.

EcN and ECOR12 OMVs are sorted to lysosomal compartments

Intracellular trafficking of microbiota E. coli OMV's was assessed by monitoring vesicle associa-
tion with endocytic compartments, specifically with early endosomes and lysosomes. We
found that at 30 min incubation, rhodamine B-R18-labeled OMV's colocalized with the endo-
some-associated EEA1 protein in HT-29 cells (Fig 3B). The degree of colocalization was esti-
mated from the corresponding overlap coefficients, with values of 0.422+0.071 for EcN and
0.36610.017 for ECORI12 vesicles. The location of OMV’s into early endosomes was confirmed
by vesicle immunostaining with anti-E. coli LPS antibodies (S3 Fig), and quantitative colocali-
zation analysis from the collected images (r = 0.440+0.08 for EcN and r = 0.39+0.045 for
ECOR12 vesicles). At 30 and 60 min, OMVs were also detected into lysosomal compartments,
as shown by their colocalization with LysoTracker Green DND-26 (Fig 3C). At 30 min, coloca-
lization was also evident (not shown). At 60 min, the overlap coefficients were 0.546+0.031 for
EcN and 0.481+0.005 for ECORI12 vesicles. Time course analyses from 15 min to 5 h did not
reveal any vesicle-derived fluorescence signal in the cell nuclei.

EcN and ECOR12 OMVs inhibit HT-29 cell growth without affecting cell
viability

Since OMV's from some pathogenic E. coli strains induce proliferation of Caco-2 cells, we
examined the impact of gut microbiota-derived OMVs on the cell growth of the intestinal epi-
thelial cell line HT-29. To this end, kinetic studies were performed in HT-29 cells exposed to
EcN or ECOR12 OMVs (5 pg/ml) for up to 168 h. Cell numbers were calculated by trypan blue
exclusion assays carried out every second day during the experiment. Results showed that cell
viability was not significantly altered by OMVs treatment. The number of dead cells did not
increase upon incubation with microbiota E. coli vesicles (Fig 4A). HT-29 cells grew exponen-
tially up to 72 h, and then the growth rate began to decline as they reached confluency. The
growth of cells treated with either ECN or ECOR12 OMVs was lower than that of unstimulated
control cells (Fig 4B). Growth reduction values were statistically significant from 72 h (around
50% and 60% respectively compared to control cells, p<0.01) until the end of the experiment.
Consistently, the population doubling levels were lower in OMVs-treated cells than in control
cells (Fig 4C). The calculated PDT values were 17.42+1.70 h for untreated control cells, 30
+1.40 h for cells incubated with ECN OMVs and 25.76+1.15 h for cells incubated with ECOR12
OMVs.

In addition to the trypan blue assay, viable cells were also estimated using MTT (Fig 4D).
Results showed around 20% lower MTT reduction levels in cells treated with OMV's than in
untreated control cells. These data were consistent with the reduction in the growth rates, and
hence in the cell number, deduced from the trypan blue assays. Overall, these results suggested
that EcN and ECOR12 OMV:s inhibit cell proliferation, but have no cytotoxic effects on intesti-
nal epithelial cells. We next examined the effect of the bacterial vesicles on cell cycle progress in
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Colocalization of the green (clathrin, EEA1 or the LysoTracker probe)) and red (vesicles) signals was confirmed by
histogram analysis of the fluorescence intensities along the yellow lines. Analysis by laser scanning confocal spectral
microscope was performed as described for Fig 1.

doi:10.1371/journal.pone.0160374.g003
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HT-29 cells incubated with OMV's (5 pg/ml) for 24, 48 and 72 h (Fig 5). Flow cytometry analy-
sis of cells labeled with propidium iodide showed no significant differences in the percentage of
cells in the G1 phase between control and treated cells. However, microbiota E. coli OMVs
increased the percentage of cells in the S phase, with values that were statistically significant at
72 h incubation. Consistent with this finding, the number of cells reaching the G2 phase was
significantly lower upon 48 and 72 h incubation in cells challenged with OMVs than in non-
treated cells (P<0.02). These results indicated that OMVs promote S/G2 cell cycle arrest in
HT-29 cells. This effect may account for the observed OMVs-inhibition effect on cell growth.

DNA damage and repair induced by EcN and ECOR12 OMVs

OMVs from some E. coli strains induce oxidative stress in intestinal epithelial cells, leading to
the formation of DNA lesions, such as 8-0x0-dG adducts [10]. To examine whether EcN and
ECOR12 derived OMVs induce these kind of DNA lesions, immunofluorescence microscopy
analysis was used to detect 8-0xo-dG adducts in HT-29 cells exposed to OMV's (5 pg/ml) for
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Fig 4. Effect of EcN and ECOR12 OMVs on proliferation and viability of HT-29 cells. (A) Cell viability, (B) Mean proliferation
index, (C) Population doubling level of HT-29 cells exposed to OMVs (5 pug/ml) from EcN (squares) or ECOR12 (triangles) for up
to 7 days, measured by the trypan blue exclusion assay. In panel (C), control cells are indicated by circles. (D) MTT reduction
activity measured along the experiment. Values are means + standard error from four independent experiments (P<0.01, versus
untreated control cells).

doi:10.1371/journal.pone.0160374.9004
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doi:10.1371/journal.pone.0160374.g005
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up to 7 days. As a control, cells were challenged with 300 pM H,O, for 24 h (Fig 6A). Whereas
8-0x0-dG staining was apparent in the nuclei of cells treated with H,O,, no fluorescent signal
attributable to 8-oxo-dG was visible in either untreated or OMVs-treated cells throughout the
experiment. These results suggested that ECN and ECOR12 OMVs do not induce oxidative
stress in gut epithelial cells.

Some bacterial toxins present in OMV's from E.coli O157:H7 strains can produce DSBs in
DNA [10]. These DNA lesions are also produced by E. coli strains harbouring the pks gene
island responsible for the synthesis of the genotoxic polyketide colibactin [35]. The probiotic
strain EcN is among the colibactin-producing strains. It has been shown that EcN causes high
levels of DNA DSBs in intestinal epithelial cells, whereas a derived AclbA mutant, impaired in
colibactin synthesis, fails to do so. These experiments were performed in cultured intestinal
cells infected with bacterial suspensions [36]. Based on this information, we sought to analyse
whether OMVs from this probiotic strain have the potential to induce this kind of DNA dam-
age. Vesicles from the commensal strain ECOR12 were also included for comparison. As the
repair of DSBs in DNA requires recruitment and phosphorylation of the histone YH2AX to the
damaged sites, immunostaining of phosphorylated YH2AX was performed in HT29 cells after
24 and 48 h incubation with EcN or ECOR12 OMV3s (Fig 6B). Untreated control cells displayed
a very low level of punctuate red nuclear staining in fluorescence micrographs, which is com-
patible with free radical generation of DNA damage and repair in normal dividing cells. How-
ever, following exposure to ECN OMVs, considerably more cells displayed the red nuclear
staining either at 24 h or 48 h (22.5% positive nuclei versus 13.6% in untreated cells). In this
case, labeled nuclei were enlarged. In cells challenged with ECOR12 OMVs, immunolabeling
of phosphorylated YH2AX was only apparent in some cells after 48 h treatment (14.5% positive
nuclei versus 13.6% in untreated cells). These results were from three independent experi-
ments, and for each condition the total number of cells analysed ranged in between 150-200.
Quantification of phosphorylated YH2AX by flow cytometry confirmed the immunofluores-
cence microscopy results (Fig 6C). A significant increase in fluorescence intensity with respect
to unstimulated HT-29 cells was observed upon exposure to ECEN OMVs (P<0.02), whereas
vesicles from the commensal ECOR12 strain only promoted a slight increase in fluorescence
intensity at 48 h, which was not statistically significant. Overall, these results suggested that
probiotic ECN OMVs induced a larger proportion of DSBs, and therefore more DNA damage,
than ECOR12 OMVs. Consistent with these results, alkaline single-cell electrophoresis analysis
revealed longer DNA tails in cells exposed to ECN OMVs (S3 Fig).

Discussion

It is well-stablished that OMV's are a mechanism used by pathogens to secrete and deliver bac-
terial virulence or immunomodulatory factors into host cells. Released OMV's allow direct
interaction of bacterial components with cellular receptors before the whole bacterium inter-
acts with or enters mammalian target cells. Therefore, this delivery system provides injury and
immune subversion mechanisms to facilitate infection. OMV's from Gram-negative pathogens
are mainly internalized by host cells via endocytosis [13-16]. The uptake pathway depends on
particular vesicular proteins or components that target these vesicles to specific cellular recep-
tors or lipid membrane microdomains. This has been shown for the OMV's released by entero-
toxigenic E. coli, in which the heat-labile enterotoxin LT interacts with its specific cell surface
receptor GM1, targeting OMV:s to lipid raft-mediated endocytosis [14]. In contrast, OMV's
from EHEC enter epithelial cells via CME. In this case, the toxin hemolysin is delivered and
targeted to mitochondria through OMVs, but it is not required for the endocytic process [13].
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Fig 6. DNA damage analysis in HT-29 cells exposed to EcN or ECOR12 OMVs. (A) Immunofluorescence microscopy of
mutagenic 8-oxo-dG adducts (green) in cell nuclei of cells challenged with the indicated OMVs (5 pg/ml) for 48 h. (B)
Immunofluorescence microscopy of phosphorylated yH2AX (red) in cell nuclei of cells challenged with the indicated OMVs (5 pg/
ml). Cells treated with 300 uM H,O, for 24 h were processed in parallel as a positive control. Immunofluorescence microscopy
images are from a single representative experiment (n = 3). (C) Flow cytometry analysis of phosphorylated yH2AX expression.
Cells were gated using the FSC vs SSC double dot. A total of 10,000 events were analyzed for each sample. Data are presented
as means + standard error from three independent experiments. Results significantly different from that of untreated control cells
are indicated by an asterisk (P<0.02).
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Although the number of studies dealing with gut microbiota OMV:s is still limited, bacterial
vesicles are emerging as key players in the communication between microbiota and intestinal
mucosa cells. A proteomic analysis of OM Vs released by the probiotic EcN revealed that, in
addition to strain-specific proteins, these vesicles contain sets of proteins also found in the
OMVs generated by Gram-negative pathogens that provide essential functions for the estab-
lishment and persistence of bacteria (either pathogens or probiotics) in the host tissues [28].
Examples of these proteins are antimicrobial activities to kill competing bacteria, surface-asso-
ciated proteins that promote adhesion to host tissues, and factors that can modulate the host
immune response. As the uptake pathway for gut microbiota vesicles has not been reported so
far, we approached internalization studies in intestinal epithelial cell lines using as a model the
OMVs released by two E. coli strains that colonize the human gut, the probiotic strain EcN and
the commensal strain ECOR12. These strains differ in their bacterial surface, as EcN expresses
a capsular K5 polysaccharide that is widespread in some pathogenic bacterial groups and medi-
ates interactions with intestinal epithelial cells [37]. In spite of this difference, OMVs from
both strains entered epithelial cells via CME, as vesicle uptake was clearly blocked by chlor-
promazine and dynasore. Dynasore was first described as a dynamin inhibitor, thus interfering
with the remodeling and fission of clathrin-coated vesicles during endocytosis. Dynasore also
has other effects that are dynamin-independent, such as its ability to disrupt lipid raft organiza-
tion by reducing labile cholesterol in the plasma membrane [38]. Since, filipin III and nystatin,
both cholesterol-sequestering agents, do not impair internalization of ECN and ECOR12
OMVs, the effect of dynasore on the uptake of these microbiota vesicles must be attributed to
CME inhibition. In polarized epithelia, uptake of these microbiota vesicles follows the same
CME pathway. In addition, our results in the mucin-producer HT29-MTX cell line show that
OMVs can diffuse through the mucus layer before their entry into target cells. Following the
CME pathway, these vesicles are sorted to endocytic compartments, reaching lysosomes. Colo-
calization studies evidenced the presence of these OMV:s in early endosomes and lysosomes.
The overlap coefficients (higher than or close to 0.5) confirmed colocalization of EcN and
ECORI12 with specific markers of these endocytic compartments. The overlap coefficients cal-
culated for the colocalization with EEA1 were slightly below 0.5, which can be explained by the
transient location of vesicles in early endosomes during their trafficking to lysosomes. Once
these vesicles reach early endosomes they can activate NOD1-signalling responses through spe-
cific binding of peptidoglycan to this intracellular receptor [39,40]. In the acidic lysosomes,
some specific protein cargo in OMVs may be separated or dissociated from the whole vesicle
inside this endocytic compartment, and then targeted to other organelles or subcellular loca-
tions to induce particular responses. This is, for instance, the fate of EHEC hemolysin, which is
separated from OMV:s after endosomal acidification, and is targeted to mitochondria to cause
apoptosis [13].

Considering our results, although OMV's have not been observed in the nuclei, EcN vesicles
promote DSB in eukaryotic cell DNA, as shown by the immunoquantification of phosphory-
lated YH2AX and the formation of DNA tails in the Comet assay. In this probiotic strain,
genotoxicity has been attributed to colibactin [36]. This toxin is a non-ribosomal peptide-poly-
ketide, synthesized by enzyme activities encoded in the pks island, which belongs to a largely
uncharacterized family of small genotoxic molecules that induce DSB in DNA. Studies per-
formed with an EcN mutant deficient in colibactin synthesis proved that, in addition to its
genotoxic activity, colibactin is also required for the in vivo anti-inflammatory effects of this
probiotic. Moreover, deficiency in colibactin biosynthesis leads to the exacerbation of colitis
severity in dextran sulfate sodium-treated mice [36]. These facts lead authors to considered
colibactin as an immunomodulin. Interestingly, the probiotic activity of EcN cannot be dissoci-
ated from its genotoxicity, and both effects require a functional colibactin biosynthetic pathway
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[36]. How this toxin is exported and delivered into the host infected cell remains unknown. As
EcN OMVs induce the same type of DNA lesions as colibactin, we may speculate that colibac-
tin or intermediate metabolites of colibactin biosynthesis could be delivered to mammalian
cells by OMVs. In contrast, OMVs from the commensal strain ECOR12 (pks negative) display
low ability to induce DSB lesions. Although the protein profile and LPS content of EcN and
ECORI12 vesicles are very similar [29], these strains belong to a different phylogenetic group
and therefore differ in their genomic profiles. These genomic differences may impact on the
proteomic content of the released vesicles. Therefore, contribution to genotoxicity of EcN-spe-
cific vesicular components other than colibactin cannot be ruled out.

In general, E. coli OMV's may be genotoxic to human intestinal epithelial cells. Even vesicles
released by the avirulent E. coli strain DH50. induce the generation of radical oxygen species
that lead to DNA damage and the formation of mutagenic 8-0xo-dG adducts [10]. Our results
show that neither the probiotic EcN nor the commensal ECOR12 OMVs induce this kind of
oxidative lesions in the DNA of epithelial cells upon internalization. It is known that accumula-
tion of DNA damage results in cell cycle arrest before DNA is repaired. Analysis of the cell
cycle progression indicates that both EcN and ECOR12 OMVss promote S/G2 cell cycle arrest
in HT-29 cells. These results are compatible with the p53 mutation present in this cell line.
Deficiency in p53 abolishes the G1 checkpoint, which is essential to control the entry of cells in
the S phase.

OMVs from the gut microbiota strains ECN and ECOR12 do not affect cell viability, but
reduce the proliferation rate. These effects are clearly different from what has been reported for
some E. coli pathogenic strains. Regarding cell viability, specific toxins present in the OMV's of
EHEC induce apoptosis and cell death [11,13]. Consistently, vesicles from the non-pathogenic
E. coli strain DH5a do not alter cell viability nor affect cell growth rates [10]. Considering cell
growth, OMV's from EHEC or adherent-invasive E. coli significantly increase cell proliferation
[10]. This fact together with their genotoxic-associated activity led to the hypothesis that, like
Helicobacter pylori vesicles [41,42], OMVs from these E. coli strains may potentially influence
the development of cancer [10].

Conclusions

To our knowledge this is the first study exploring the internalization pathway used by mem-
brane vesicles released by gut microbiota strains to enter intestinal epithelial cells. In conclu-
sion, the OMV's produced by the E. coli probiotic EcN and the commensal ECOR12 strains are
internalized by epithelial cells through CME, and sorted to lysosomes via endocytic compart-
ments. During intracellular trafficking, these vesicles could activate intracellular NOD recep-
tors to induce cellular responses. These vesicles do not affect cell viability nor cause oxidative
damage on DNA. OMVs from the probiotic strain EcN specifically cause DSBs in DNA, which
are repaired through recruitment of phosphorylated YH2AX. Both the genotoxic and anti-
inflammatory effects of EcN have been attributed to colibactin [36]. Whether this immunomo-
dulin is exported and delivered into the human gut by OMV?s is an open question that needs
turther study.

Supporting Information

S1 Fig. Colocalization analysis of chlatrin and transferrin in fluorescence microscopy.
Immunostaining of clathrin (green) was carried out after 15 min incubation of HT-29 cells
with transferrin- Alexa Fluor 633 (red). Colocalized green and red signals appear in yellow.
Scale bar: 20 pm. Colocalization of the green (clathrin) and red (transferrin) signals was
assessed by histogram analysis of the fluorescence intensities along the yellow line. Images are
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from a single representative experiment (n = 3). Analysis was performed in a Leica TCS SP5
laser scanning confocal spectral microscope with 63x oil immersion objective lens, and images
were captured with a Nikon color camera (16 bit).

(TTF)

S2 Fig. Analysis of OMVs internalization by polarized Caco-2 or HT29-MTX cells in the
presence of endocytosis inhibitors. Confluent monolayers of fully polarized Caco-2 (A) or
HT29-MTX (B) cells (17 days post-confluence) were pre-incubated for 1h at 37°C with filipin
III (triangles) or chlorpromazine (circles) before adding rhodamine B-R18-labeled OMV's

(2 pg/well) from strains EcN and ECOR12. Uptake experiments were performed in the absence
of the endocytosis inhibitors for comparison (squares). Fluorescence was measured over time
with a microplate reader. Fluorescence intensity was normalized by fluorescence detected at
the indicated time points by labeled OMV's in the absence of cells. Data are presented as
means * standard error from three independent experiments. Results significantly different
from that of cells incubated with OM Vs in the absence of endocytosis inhibitors are indicated
by an asterisk (P<0.03).

(TIF)

S3 Fig. Colocalization analysis of EEA- with ECN and ECOR12 vesicles in fluorescence
microscopy. Analysis was carried out after 30 min incubation of HT-29 cells with OMV's

(2 pg) from the indicated strains. Early endosomes were immunostained with a rabbit poly-
clonal antibody against the endosome-associated protein EEA1 and Alexa Fluor 488-conju-
gated goat anti-rabbit IgG (green). Internalized vesicles were immunostained with E. coli anti-
LPS antibody and Alexa Fluor 546-conjugated secondary antibody (red). Colocalized green
and red signals appear in yellow. Scale bar: 20 um. Colocalization of the green (EEA1) and red
(vesicles) signals was assessed by histogram analysis of the fluorescence intensities along the
yellow line. Images are from a single representative experiment (n = 3). Analysis by laser scan-
ning confocal spectral microscope was performed as described in S1 Fig.

(TTF)

S4 Fig. Analysis of OMV-induced DNA double strand breaks in HT-29 cells by the Comet
assay. HT-29 cells treated with the indicated OMV's (5 pg/ml) for 48 h or with 300 uM H,O,
for 24 h were trypsinized and processed for alkaline cell-single electrophoresis assay. DNA was
stained with ethidium bromide (20 pg/ml). The slides were examined using a Leica D1000
microscope with a 63x oil immersion objective. Images are from a single representative experi-
ment (n = 3).

(TIF)
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