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Abstract
Multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis

(EAE) are inflammatory demyelinating and neurodegenerative diseases in the central ner-

vous system (CNS). It is believed that MS and EAE are initiated by autoreactive T lympho-

cytes that recognize myelin antigens; however, the mechanisms responsible for

neurodegeneration in these diseases remain elusive. Data indicate that vascular endothe-

lial growth factor A (VEGF-A) plays a role in the development of MS and EAE. Interestingly,

VEGF-A is regarded as a neurotrophic factor in the CNS that promotes neuron survival and

neurogenesis in various neurodegenerative diseases by activating VEGF receptor 2

(VEGFR2). In this study, we sought to explore the role of the VEGF-A/VEGFR2 signaling in

neurodegeneration in MS and EAE. We showed that the expression of VEGF-A was

decreased in the spinal cord during EAE and that VEGFR2 was activated in lower motor

neurons in the spinal cord of EAE mice. Interestingly, we found that treatment with SU5416,

a selective VEGFR2 inhibitor, starting after the onset of EAE clinical symptoms exacerbated

lower motor neuron loss and axon loss in the lumbar spinal cord of mice undergoing EAE,

but did not alter Purkinje neuron loss in the cerebellum or upper motor neuron loss in the

cerebral cortex. Moreover, SU5416 treatment had a minimal effect on EAE clinical symp-

toms as well as inflammation, demyelination, and oligodendrocyte loss in the lumbar spinal

cord. These results imply the protective effects of the VEGF-A/VEGFR2 signaling on lower

motor neurons and axons in the spinal cord in MS and EAE.
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Introduction
Multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis
(EAE) are T-cell-mediated autoimmune diseases of the central nervous system (CNS), charac-
terized by inflammatory demyelinated lesions in the white matter [1, 2]. The hallmarks of the
demyelinated lesions in MS and EAE include inflammation, demyelination, oligodendrocyte
loss, and axon degeneration. Interestingly, in the last few years, evidence has been emerging
that neurodegeneration in the CNS gray matter is an early event and contributes to chronic dis-
ability in MS [3, 4]. Significant neuron loss has also been observed in the CNS gray matter of
animals undergoing EAE, including the spinal cord, cerebral cortex, cerebellum, and hippo-
campus [5–8]. Although the current predominant view is that inflammation is ultimately
responsible for axon degeneration and neuron loss in MS and EAE [9, 10], the molecular
mechanisms responsible for neurodegeneration in these diseases remain largely unknown.

Vascular endothelial growth factor A (VEGF-A) is a potent endothelial cell growth factor,
which stimulates blood vessel growth and regulates vascular permeability [11]. A number of
studies have shown that VEGF-A increases angiogenesis and vascular permeability, and facili-
tates inflammation in various diseases [11, 12]. Data indicate the involvement of VEGF-A in
regulating inflammation in MS and EAE, but these data are, at times, contradictory [13, 14].
Some reports showed that the level of VEGF-A is increased in MS and EAE lesions and the
increased level of VEGF-A leads to enhanced inflammation in the CNS of EAE mice [14–16].
In contrast, other studies showed that the level of VEGF-A is decreased in the CNS of MS
patients and EAE animals [17, 18]. Interestingly, intensive research in the last decade has
shown that VEGF-A has direct effects on neurons and axons and functions as a neurotrophic
factor that promotes neuron survival and neurogenesis in various neurodegenerative diseases,
including amyotrophic lateral sclerosis, Alzheimer’s disease, Parkinson’s disease, spinocerebel-
lar ataxia, and stroke [11, 19, 20]. VEGF-A exerts its functions through several receptors; one
of these, VEGFR2, is believed to be involved in most of the neuron-specific functions [20, 21].
However, the role of the VEGF-A/VEGFR2 signaling in neurodegeneration in MS and EAE
remains unexplored.

In this study, we sought to determine the effects of the VEGF-A/VEGFR2 signaling on neu-
rodegeneration during EAE by treating mice with SU5416, a selective VEGFR2 inhibitor [22].
We found that SU5416 treatment starting after EAE onset exacerbated lower motor neuron
loss and axon loss, but did not affect inflammation, demyelination, or oligodendrocyte loss in
the lumbar spinal cord of EAE mice. Our finding implies a neuroprotective role of the
VEGF-A/VEGFR2 signaling in lower motor neurons and axons in the spinal cord in MS and
EAE.

Materials and Methods

EAE immunization and SU5416 treatment
To induce EAE, 7-weeks old C57BL/6J female mice were injected subcutaneously in the flank
and at the tail base with 200 μg of myelin oligodendrocyte glycoprotein 35 to 55 (MOG 35–55)
peptide emulsified in complete Freund’s adjuvant (BD Biosciences, San Jose, CA) supple-
mented with 600 μg of mycobacterium tuberculosis (strain H37Ra; BD Biosciences). Two
intraperitoneal injections of 400 ng pertussis toxin (List Biological Laboratories, Denver, CO)
were given 24 and 72 hours later. Clinical scores (0 indicates healthy; 1, flaccid tail; 2, ataxia
and/or paresis of hind limbs; 3, paralysis of hind limbs and/or paresis of forelimbs; 4, tetra
paralysis; and 5, moribund or death) were recorded daily as described in our previous papers
[23–26]. SU5416 was purchased from Sigma-Aldrich (St. Louis, MO), and was dissolved in

VEGFR2 Affects Neurodegeneration during EAE

PLOSONE | DOI:10.1371/journal.pone.0160158 July 28, 2016 2 / 16

Competing Interests: The authors have declared
that no competing interests exist.

https://en.wikipedia.org/wiki/Intraperitoneal_injection


dimethyl sulfoxide (DMSO, Sigma-Aldrich). One group of mice received intraperitoneal injec-
tion of DMSO (30 μL) daily starting on the day after EAE disease onset to serve as controls.
The other group of mice received intraperitoneal injection of 20 mg/kg SU5416 (30 μL) daily
starting on the day after EAE disease onset. Mice were sacrificed at post-immunization day
(PID) 21 through transcardial perfusion. Prior to transcardial perfusion, the animals were
deeply anesthetized with intraperitoneal injections of 425 mg/kg Avertin (2,2,2-Tribromoetha-
nol from Sigma-Aldrich). All mice were housed in the Research Animal Resources facilities of
the University of Minnesota and received routine care, including feeding standard diets, pro-
viding fresh water, and changing cages and bedding. Animal health monitoring was performed
on a daily basis by animal care staff, at least twice weekly by veterinary technicians and at least
once weekly by a veterinarian. EAE mice were monitored starting at PID 1 twice daily. EAE
mice that reached a score of 3.0 received supplemental nutrition, fluids and care on a twice
daily basis. EAE mice that reached a score of 4.0 were sacrificed immediately. All animal proce-
dures were conducted in complete compliance with the NIH Guide for the Care and Use of
Laboratory Animals and were approved by the Institutional Animal Care and Use Committee
(IACUC) of the University of Minnesota.

VEGF-A ELISA analysis
Deeply anesthetized mice were perfused with ice-cold PBS. The spinal cords were harvested
from mice, and homogenized using a motorized homogenizer, as previously described [23, 24].
After incubating on ice for 15 minutes, the extracts were cleared by centrifugation at 18,000g
for 30 minutes, twice. The protein content of each extract was determined by DC Protein
Assay (Bio-Rad Laboratories, Hercules, CA). The VEGF-A protein was measured using the
Mouse VEGF-A ELISA kit (RayBiotech, Norcross GA), according to the manufacturer’s
instructions.

Histology and Immunohistochemistry
Anesthetized mice were perfused through the left cardiac ventricle with 4% paraformaldehyde
in PBS. Brains were bisected in the sagittal plane. To isolate the lumbar spinal cord, the muscle
and bone overlaying the dorsal side of the spinal cord from the sacral region (within the pelvis)
to midway through thoracic region (middle of the rib cage) were carefully removed to expose
the entire lumbar spinal cord, taking care not to severe the peripheral nerves. Lumber 1 –Lum-
ber 5 peripheral nerves were identified based on the gross anatomy of the mouse as described
in a previous paper [27]. The Lumber 3 nerve was identified and followed to the root at the spi-
nal cord and the spinal cord was severed at the point where the Lumber 3 nerve entered the spi-
nal cord. Both the upper (Lumber 1 –Lumber 3) and the lower (Lumber 3 –Lumber 5) regions
of the lumbar spinal cord were carefully dissected from the vertebra.

One-half of brains and the spinal cord segments from the lumbar 3 to lumbar 5 were post-
fixed for at least 48 h in 4% paraformaldehyde in PBS, dehydrated through graded alcohols,
and embedded in paraffin. Serial sections of 5 μm thickness were cut. Sections were routinely
stained with hematoxylin and eosin (H&E). The other half of brains and the spinal cord seg-
ments from the lumbar 3 to lumbar 1 were postfixed for 1 h in 4% paraformaldehyde in PBS,
cryopreserved in 30% sucrose for 48 h, embedded in OCT compound, and frozen on dry ice.
Frozen sections were cut in a cryostat at 10 μm thickness. Immunohistochemistry (IHC) for
VEGFR2 (1:100, Santa Cruz Biotechnology, Santa Cruz, CA), phosphorylated VEGFR2
(pVEGFR2,1:100, Santa Cruz Biotechnology), myelin basic protein (MBP, 1:1000, Sterberger
monoclonals, Berkeley, CA), aspartoacylase (ASPA, 1:3000, kindly provided by Dr. M.A.
Aryan Nomboodiri at Uniformed Services University of Health sciences, Bethesda, Maryland),
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NeuN (1:500, Millipore, Temecula, CA), phosphorylated neurofilament-H (SMI31, 1:1000,
Sternberger Monoclonals), calbindin 2 (1:400, Sigma-Aldrich), CD3 (1:100, Santa Cruz Bio-
technology), and CD11b (1:50; Millipore) were performed as previous described [25, 26, 28].
Signals were detected using fluorescein, Cy3, or enzyme-labeled secondary antibodies (Vector
Laboratories, Burlingame, CA). Fluorescent-stained sections were mounted with Vectashield
mounting medium with DAPI (Vector Laboratories) and visualized with a Zeiss Axioskop 2
fluorescence microscope (Carl Zeiss Microscopy, Thornwood, NY).

To quantify the cells and axons in the white matter, we counted immunopositive cells or
axons within the anterior funiculus directly medial to the anterior median fissure in the lumbar
spinal cord and confined to an area of 0.1 mm2, as described in our previous articles [24–26].
To quantify the lower motor neurons in the spinal cord segment from the lumbar 3 to lumbar
5, serial sections of 5 μm thickness were cut and every tenth section was immunostained with
the NeuN antibody. The anterior horn of the spinal cord was selected for motor neuron counts.
Only cells that had a visible nucleolus, the characteristic morphological features of an α-motor
neuron, and a minimum diameter of 13.0 μmwere counted using the NIH ImageJ software
(http://rsbweb.nih.gov/ij/), as described in previous articles [29, 30].

To quantify the Purkinje neurons in the cerebellum, 5 μm thick sagittal brain sections were
cut and every tenth section in the series spanning from Bregma lateral 0.12 mm to 0.36 mm
were immunostained with the calbindin 2 antibody. Calbindin 2 positive cells were counted in
the lobules I/II, III and IV of the anterior cerebellum as described in previous papers [31, 32].
To quantify the upper motor neurons in the primary motor cortex, 5 μm thick sagittal brain
sections were cut and every tenth section in the series spanning from Bregma lateral 1.08 mm
to 1.32 mm were immunostained with the NeuN antibody. NeuN positive cells were counted
in the layer V of the primary motor cortex as described in a previous paper [33].

Statistics
Data are expressed as mean ± standard deviation (SD). For quantitative analyses, multiple com-
parisons were statistically evaluated by the one-way ANOVA test followed by post hoc Bonferro-
ni’s test using GraphPad Prism 5 (GraphPad Software). Comparison of two groups was
statistically evaluated by t-test using GraphPad Prism 5. P< 0.05 was considered significant.

Results

VEGF-A/VEGFR2 signaling was activated in lower motor neurons in the
spinal cord during EAE
The data regarding the level of VEGF-A in the CNS of MS patients and EAE animals are con-
tradictory. Some reports showed increased level of VEGF-A in MS and EAE [14–16]; however,
other reports showed opposite results [17, 18]. We first determined the protein level of
VEGF-A in the CNS during the course of EAE. Our previous studies showed that C57BL/6J
mice immunized with MOG 35–55 peptide develop typical EAE disease course, the mice devel-
oped neurological signs of disease starting at approximately PID 12, reached the peak of disease
around PID 19, and started recovering from EAE at approximately PID 22 [23–26]. ELISA
analysis showed that VEGF-A level was not altered in the spinal cord of EAE mice at the onset
of disease at PID14, but was significantly reduced at PID 19 (the acute phase of EAE) and PID
50 (the chronic phase of EAE), as compared to naïve mice (Fig 1A). These data suggest that
VEGF-A level is decreased in the CNS during the course of EAE.

VEGF-A exerts direct actions on neurons by binding to VEGFR2, resulting in autopho-
sphorylation of the receptor and subsequent activation of its downstream signaling pathways
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[11, 21]. It has been shown that lower motor neurons in the spinal cord express VEGFR2 and
activation of the VEGF-A/VEGFR2 signaling is essential to lower motor neuron survival under
physiological and pathological conditions [34, 35]. Loss of lower motor neurons has been
observed in the lumbar spinal cord in MS patients and EAE animals [5, 36]. We examined the
expression and activation of VEGFR2 in lower motor neurons during EAE. As expected,
VEGFR2 and pVEGFR2 double immunostaining showed that lower motor neurons in the lum-
bar spinal cord of naïve mice express VEGFR2 and that the VEGFR2 was moderately activated
(Fig 1B, 1C and 1D). However, the levels of both VEGFR2 and pVEGFR2 were not significantly
altered in lower motor neurons of EAE mice as compared to naïve mice (Fig 1E, 1F and 1G).

Fig 1. Activation of the VEGF-A/VEGFR2 signaling in lower motor neurons during EAE. A. VEGF-A
ELISA showed that the protein level of VEGF-A was not altered in the spinal cord of EAEmice at PID14, but
was significantly reduced at PID 19 and PID 50, as compared to naïve mice. N = 5 animals.B—J. VEGFR2
and pVEGFR2 double immunostaining revealed activation of VEGFR2 in lower motor neurons in the lumbar
spinal cord of both naïve mice and EAEmice. Importantly, treatment with SU5416 noticeably reduced the
levels of pVEGFR2 in the lower motor neurons of mice with EAE at PID 21. N = 5 animals. Error bars
represent SD, **P < 0.01, ***P < 0.0001. Scale bar: B–J, 50 μm.

doi:10.1371/journal.pone.0160158.g001
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Thus, these data demonstrate activation of the VEGF-A/VEGFR2 signaling in lower motor
neurons in the spinal cord during EAE.

Impairment of VEGFR2 signaling after EAE onset exacerbated lower
motor neuron loss and axon loss in lumbar spinal cord
SU5416 is a well-characterized, selective VEGFR2 inhibitor [22]. We assessed the effects of the
VEGF-A/VEGFR2 signaling on EAE-induced neurodegeneration by treating mice with
SU5416. Data suggest that activation of the VEGF-A/VEGFR2 signaling in endothelial cells
increases the permeability of the blood brain barrier (BBB) and contributes to the infiltration
of inflammatory cells in the CNS during EAE [14, 15]. Interestingly, a previous study showed
that treatment with a high dose of SU5416 (50 mg/kg) during the acute phase of EAE sup-
presses inflammation in the CNS and attenuates EAE disease severity; however, the same treat-
ment during the chronic phase of EAE does not affect inflammation or EAE disease severity
[15]. The study raises the possibility that there is a window for SU5416 treatment during the
course of EAE, in which the treatment does not affect inflammation, but has an impact on
neurodegeneration.

A number of studies showed that BBB breakdown, inflammatory cell infiltration, and oligo-
dendrocyte death occur in the CNS well before the onset of EAE clinical symptoms [25, 37].
Moreover, several reports showed that treatment with a low dose of SU5416 (10 mg/kg) is suffi-
cient to impair the VEGF-A/VEGFR2 signaling in neurons and exacerbate neuron death in
mouse models of brain injury [38, 39]. Thus, to minimize the impact of SU5416 treatment on
inflammation in EAE mice, we used a low dose of SU5416 (20 mg/kg) and started the treat-
ment on the day after EAE disease onset. We found that the disease severity displayed by
SU5416-treated mice was comparable with vehicle-treated mice (Fig 2A and 2B). H&E staining
showed comparable pathological changes in the lumbar spinal cord of these two groups of
mice (Fig 2C and 2D). Unfortunately, we could not treat EAE mice with SU5416 beyond PID
21. Mice undergoing EAE did not tolerate daily intraperitoneal injection of DMSO (the vehicle)
well. Our pilot study showed that all 3 SU5416-treated mice and all 3 vehicle-treated mice died
after 10 days of daily intraperitoneal injections. All these mice died suddenly without obvious
signs, besides typical EAE clinical symptoms. While occasional death of EAE mice was
expected and was approved by the IACUC, we had not anticipated that all SU5416 or vehicle-
treated mice died after 10 days of injections. The onset of EAE ranged from PID 11 to PID 14.
Therefore, all EAE mice treated with SU5416 or vehicle were sacrificed at PID 21. None of
SU5416 or vehicle-treated mice died unexpectedly by PID 21, and one of vehicle-treated mice
reached a clinical score of 4.0 were sacrificed immediately (Fig 2A and 2B). The CNS tissues
were preserved for either histological studies or biochemical studies.

Next, we examined the effects of SU5416 treatment on EAE-induced neuron loss and axon
loss in the CNS. In agreement with previous studies [38, 39], we found that treatment with the
low dose of SU5416 (20mg/kg) noticeably reduced the immunoreactivity of pVEGFR2 in lower
motor neurons in the lumbar spinal cord of mice undergoing EAE (Fig 1H, 1I and 1J). Consis-
tent with previous studies [5, 36], NeuN IHC showed a significant reduction of lower motor
neuron numbers in the lumbar spinal of vehicle-treated mice at PID 21 as compared to naïve
mice (Fig 3A, 3B and 3G). Importantly, the number of lower motor neurons was further
reduced in the lumbar spinal cord of SU5416-treated mice (Fig 3B, 3C and 3G). Moreover,
phosphorylated neurofilament-H (SMI-31) IHC revealed a significant reduction of axon num-
bers in the white mater in the lumbar spinal cord of vehicle-treated mice at PID 21 as com-
pared to naïve mice (Fig 3D, 3E and 3H). Interestingly, the number of axons was further
reduced in the lumbar spinal cord of SU5416-treated mice (Fig 3E, 3F and 3H). Taken together,

VEGFR2 Affects Neurodegeneration during EAE

PLOSONE | DOI:10.1371/journal.pone.0160158 July 28, 2016 6 / 16

https://en.wikipedia.org/wiki/Intraperitoneal_injection
https://en.wikipedia.org/wiki/Intraperitoneal_injection
https://www.google.com/search?biw=1280&bih=713&q=sacrifice&spell=1&sa=X&ved=0ahUKEwjpjJuerfjMAhUUDlIKHVAqDqMQvwUIGSgA


these results suggest that SU5416 treatment attenuates activation of VEGFR2 signaling in
lower motor neurons, and exacerbates loss of lower motor neurons and axons in the spinal
cord during EAE.

In contrast, although we found the significant reduction of Purkinje neuron numbers in the
cerebellum of EAE mice as compared to naïve mice (Fig 4A, 4B and 4G), SU5416 treatment
did not significantly alter Purkinje neuron loss during EAE (Fig 4B, 4C and 4G). Similarly, we
found that SU5416 treatment did not significantly affect EAE-induced upper motor neuron
loss in the layer V of the primary motor cortex (Fig 4D, 4E, 4F and 4H). Taken together, these
data likely reflects that the VEGF-A/VEGFR2 signaling is critical for the survival of lower
motor neurons and axons in the spinal cord during EAE, but has no major effect on the viabil-
ity of Purkinje neurons or upper motor neurons.

Treatment with SU5416 after EAE onset did not significantly affect
inflammation or demyelination in the lumbar spinal cord
As described above, a previous report showed that the effects of SU5416 treatment on inflam-
mation during the course of EAE is determined by the timing of treatment [15]. We examined
whether treatment with the low dose of SU5416 (20 mg/kg) starting after EAE disease onset
influenced infiltration of inflammatory cells in the CNS. CD3 immunostaining showed that

Fig 2. Treatment with the low dose of SU5416 after EAE onset did not alter the disease severity. A.Mean clinical score. B. Peak
clinical score for individual mice. C, D. H&E staining revealed typical EAE pathology in the lumbar spinal of mice treated with vehicle and
SU5416. N = 5 animals. Error bars represent SD. Scale bar: C, D, 200 μm.

doi:10.1371/journal.pone.0160158.g002
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SU5416 treatment did not significantly alter the number of infiltrated T cells in either the white
matter or gray matter in the lumbar spinal cord at PID 21 (Fig 5A, 5B, 5C, 5D, 5E and 5F).
Moreover, CD11b immunostaining showed that SU5416 treatment did not significantly
change the number of microglia/macrophages in either the white matter or gray matter in the
lumbar spinal cord at PID 21 (Fig 5G, 5H, 5I, 5J, 5K and 5L). Collectively, these data suggest
that the low dose of SU5416 treatment after EAE onset has no significant impact on inflamma-
tion in the spinal cord.

Fig 3. Treatment with the low dose of SU5416 after EAE onset exacerbated lower motor neuron loss and axon loss in the lumbar
spinal cord. A, B, C, G.NeuN IHC showed that the number of lower motor neurons was significantly reduced in the lumbar spinal cord of
vehicle-treated EAEmice at PID 21 as compared to naïve mice, and that SU5416 treatment further reduced the motor neuron numbers in
SU5416-treated EAEmice. N = 5–7 animals.D, E, F, H. SMI31 IHC showed that the number of axons was significantly reduced in the lumbar
spinal cord of vehicle-treated EAEmice at PID 21 as compared to naïve mice, and that SU5416 treatment further reduced the axon numbers in
SU5416-treated EAEmice. N = 5 animals. Error bars represent SD, *P < 0.05, **P < 0.001,***P < 0.0001. Scale bar: A–C, 100 μm; D–F,
25 μm.

doi:10.1371/journal.pone.0160158.g003
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Furthermore, we determined the effects of SU5416 treatment on demyelination and oligo-
dendrocyte loss in the lumbar spinal cord of EAE mice. MBP IHC showed comparable myelin
damage in the lumbar spinal cord of vehicle-treated mice and SU5416-treated mice at PID 21
(Fig 6A, 6B and 6C). We quantified the percentage of the white matter area that was demyeli-
nated in the lumbar spinal cord by normalizing the demyelinated white matter area against the
total white matter area. We found that SU5416 treatment did not significantly alter the

Fig 4. Treatment with the low dose of SU5416 after EAE onset did not affect Purkinje neuron loss or upper motor neuron loss. A, B, C,
G. Calbindin 2 IHC showed the number of Purkinje neurons was significantly reduced in the cerebellum of vehicle-treated EAEmice at PID 21 as
compared to naïve mice, and that SU5416 treatment did not significantly change the number of Purkinje neurons in the cerebellum of EAEmice.
N = 5 animals.D, E, F, H. NeuN IHC showed the number of neurons in the layer V of the primary motor cortex was significantly reduced in vehicle-
treated EAEmice at PID 21 as compared to naïve mice, and that SU5416 treatment did not change the number of neurons in the layer V of the
primary motor cortex of EAEmice. N = 5 animals. ***P < 0.0001. Scale bar: A–C, 100 μm; D–F, 50 μm.

doi:10.1371/journal.pone.0160158.g004
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percentage of demyelinated area in the lumbar spinal cord at PID 21 (Fig 6G). Similarly, immu-
nostaining for ASPA, a maker for oligodendrocytes [25, 40, 41], showed that oligodendrocyte
numbers were significantly reduced in the lumbar spinal cord of vehicle-treated mice at PID 21

Fig 5. Treatment with the low dose of SU5416 after EAE onset did not change the infiltration of inflammatory cells in the lumbar
spinal cord during EAE. A, B, C. CD3 immunostaining showed comparable numbers of CD3 positive T cells in the white matter in the
lumbar spinal cord of vehicle-treated mice and SU5416-treated mice at PID 21. N = 5 animals.D, E, F. CD3 immunostaining showed
comparable numbers of CD3 positive T cells in the anterior horn in the lumbar spinal cord of vehicle-treated mice and SU5416-treated mice
at PID 21. N = 5 animals.G, H, I. CD11b immunostaining showed comparable numbers of CD11b positive microglia/macrophages in the
white matter in the lumbar spinal cord of vehicle-treated mice and SU5416-treated mice at PID 21. N = 5 animals. J, K, L. CD11b
immunostaining showed comparable numbers of CD11b positive microglia/macrophages in the anterior horn in the lumbar spinal cord of
vehicle-treated mice and SU5416-treated mice at PID 21. N = 5 animals. Error bars represent SD. Scale bar: A, B, D, E, G, H, J, K, 100 μm.

doi:10.1371/journal.pone.0160158.g005

VEGFR2 Affects Neurodegeneration during EAE

PLOSONE | DOI:10.1371/journal.pone.0160158 July 28, 2016 10 / 16



as compared to naïve mice, and that SU5416 treatment did not significantly change the number
of oligodendrocytes in the lumbar spinal cord of EAE mice (Fig 6D, 6E, 6F and 6H). Thus,
these data suggest that inhibition of VEGFR2 signaling after EAE onset did not significantly
influence EAE-induced demyelination or oligodendrocyte loss in the spinal cord.

Discussion
VEGF-A was originally identified as an endothelial cell specific growth factor. Interestingly,
recent studies showed that VEGF-A plays an important role in the CNS under normal and

Fig 6. Treatment with the low dose of SU5416 after EAE onset did not affect demyelination or oligodendrocyte loss in the lumbar
spinal cord during EAE. A, B, C, G.MBP IHC showed that treatment with the low dose of SU5416 after EAE onset did not significantly change
the degree of demyelination in the lumbar spinal cord at PID 21. N = 5 animals. D, E, F, H. ASPA immunostaining showed that treatment with
the low dose of SU5416 after EAE onset did not significantly change the degree of reduction of oligodendrocyte numbers in the lumbar spinal
cord at PID 21. N = 5 animals. Error bars represent SD, ***P < 0.0001. Scale bar: A–C, 200 μm; D–F, 50 μm.

doi:10.1371/journal.pone.0160158.g006
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disease conditions [11, 20]. VEGF-A exerts direct actions on various CNS cell types, including
neural progenitor cells, neurons, astrocytes, oligodendrocyte progenitor cells (OPCs), and
microglia, by activating its receptor, VEGFR2 [21]. It has been shown that activation of the
VEGF-A/VEGFR2 signaling promotes neuron survival and neurogenesis in various neurode-
generative diseases [11, 20]. MS and EAE are chronic inflammatory demyelinating and neuro-
degenerative diseases of the CNS [3, 4]. Although there is evidence that the VEGF-A/VEGFR2
signaling regulates inflammation during EAE [13, 14], the role of this pathway in neurodegen-
eration in this disease has not been explored. Using a selective VEGFR2 inhibitor SU5416, in
this study, we showed that treatment with the low dose of SU5416 (20 mg/kg) starting after
EAE onset significantly exacerbated lower motor neuron loss and axon loss, but did not signifi-
cantly affect inflammation, demyelination, or oligodendrocyte loss in the lumbar spinal cord of
EAE mice. These results provide the first evidence that activation of the VEGF-A/VEGFR2 sig-
naling protects neurons and axons against inflammation in MS and EAE.

Data indicate that the VEGF-A/VEGFR2 signaling is essential for lower motor neuron sur-
vival in the spinal cord under physiological conditions [34, 35]. This pathway also promotes
lower motor neuron survival under pathological conditions [35, 42]. In agreement with these
studies, we showed herein that VEGFR2 was activated in lower motor neurons in the lumbar
spinal cord of mice undergoing EAE, and that treatment with the low dose of SU5416 impaired
VEGFR2 activation and resulted in exacerbation of EAE-induced lower motor neuron loss.
Moreover, we found that SU5416 treatment exacerbated EAE-induced axon loss in the spinal
cord. In contrast, we showed that SU5416 treatment did not affect Purkinje neuron loss in the
cerebellum or upper motor neuron loss in the cerebral cortex during EAE. Collectively, these
results raise the possibility that the effects of the VEGF-A/VEGFR2 signaling on neuron viabil-
ity during EAE are neuron-type dependent. The VEGF-A/VEGFR2 signaling modulates the
viability of certain neuron types during EAE, including lower motor neurons in the spinal
cord; however, other neuron-types, such as Purkinje neurons and upper motor neurons, are
not sensitive to this signaling. On the other hand, our intent is to minimize the impact of
SU5416 treatment on inflammation during EAE mice by using the low dose of SU5416. There-
fore, the alternative possibility is that the low dose of SU5416 treatment is sufficient to block
the VEGFR2 signaling in lower motor neurons in the lumbar spinal cord, but is not sufficient
to impair the VEGFR2 signaling in other types of neurons. Unfortunately, the results presented
in this study do not allow us to dissect the precise role of the VEGFR2 signaling on different
neuron types in the CNS during EAE. Clearly, the role of VEGFR2 signaling on neurons in MS
and EAE warrants further investigation. A neuron-type specific conditional mouse model that
allows for inactivation of VEGFR2 selectively in specific type of neurons would be an ideal
model to address this important open question.

Although data indicate that activation of the VEGF-A/VEGFR2 signaling in endothelial
cells leads to infiltration of inflammatory cells in the CNS by increasing the permeability of the
BBB [14, 43], several studies demonstrated that the effects of this signaling on inflammatory
cell infiltration during the course of CNS diseases are determined by the timing of activation
[15, 44, 45]. A study showed that treatment with a high dose of SU5416 (50 mg/kg) during the
acute phase of EAE suppresses inflammation in the CNS; however, the same treatment during
the chronic phase of EAE has no effect on inflammation [15]. The goal of this study is to dissect
the effects of the VEGF-A/VEGFR2 signaling on neurodegeneration during EAE. It is believed
that inflammation contributes to neurodegeneration in MS and EAE [9, 10]. Therefore, we
tried our best to minimize the effects of SU5416 treatment on inflammation during EAE. We
tested various doses of SU5416 and various timings for the treatment. After considerable effort,
we found that treatment with the low dose of SU5416 (20mg/kg) starting after EAE onset did
not significantly alter inflammation, but noticeably impaired VEGFR2 signaling in the lower
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motor neurons and significantly exacerbated EAE-induced lower motor neuron loss and axon
loss in the spinal cord. Since it is known that BBB breakdown and inflammatory cell infiltration
occur in the CNS well before the onset of EAE clinical symptoms [25, 37], these data likely
reflects that SU5416 treatment starting after EAE onset is too late to have an impact on the per-
meability of the BBB and subsequent inflammatory cell infiltration. Moreover, several studies
have reported that lower motor neurons are more sensitive to the alternation of the VEGF-A/
VEGFR2 signaling than endothelial cells [34, 44, 45]. Thus, an alternative, but not mutually
exclusive, possibility is that impairment of the VEGF-A/VEGFR2 signaling induced by the low
dose of SU5416 (20 mg/kg) treatment is sufficient to increase the sensitivity of lower motor
neurons to inflammation during EAE, but is not sufficient to alter the function of endothelial
cells and influence inflammation in the CNS.

While previous studies showed that OPCs express VEGFR2 and that VEGF-A promotes
OPC migration by activating VEGFR2 [46, 47], there is no evidence that the VEGF-A/
VEGFR2 signaling influences differentiated oligodendroglia under normal or disease condi-
tions. It is generally believed that inflammation is responsible for oligodendrocyte death and
myelin damage during EAE [1, 2, 4]. We showed herein that treatment with the low dose of
SU5416 (20mg/kg) starting after EAE onset had no major effect on inflammation. Not surpris-
ingly, we found that SU5416 treatment did not alter oligodendrocyte loss or demyelination
during EAE. Moreover, we found that the treatment did not significantly affect the severity of
EAE clinical symptoms. There is evidence suggesting that inflammation and demyelination
contributes significantly to the clinical symptoms of EAE [48]. Since SU5416 treatment did not
alter the degree of inflammation, demyelination, or oligodendrocyte loss in the CNS of mice
undergoing EAE, it is likely that the lack of effect of SU5416 treatment on EAE clinical symp-
toms is due to its minimal actions in inflammation and demyelination in the CNS of EAE
mice. On the other hand, it is well documented that the CNS has an ability to compensate for
greater than 50% loss of specific types of neurons, without displaying clinical symptoms (com-
pensated state) [49]. Neurodegeneration in the CNS at the acute phase of EAE is modest (~
20% loss of neurons), far away from the threshold of the decompensated state of the CNS.
Additionally, we showed that SU5416 treatment significantly but moderately exacerbated neu-
rodegeneration in the lumbar spinal cord of EAE mice. It is unlikely that SU5416 treatment
drives neurodegeneration in the CNS of EAE mice to the threshold of the decompensated state.
Not surprisingly, moderate exacerbation of neuron loss and axon loss induced by SU5416 did
not significantly contribute to the EAE clinical symptoms.

It has been shown that all major CNS cell types express VEGF-A, including neurons, astro-
cytes, oligodendrocytes, microglia, and endothelial cells [50]. The previous data regarding
VEGF-A level in the CNS of EAE animals are contradictory. Some reports showed the increased
level of VEGF-A in the CNS during EAE [14–16]; however, other reports showed opposite results
[17, 18]. There are a number of different EAE models. Each of these models displays very differ-
ent disease course and CNS pathology. These reports use different EAEmodels as well as differ-
ent methods to measure the level of VEGF-A. The contradictory data likely result from different
model systems and/or different measurement methods. Using the well-characterized MOG35-55
EAEmodel as well as the highly sensitive and reproducible ELISA assay, we showed here that the
level of VEGF-A in the CNS was not altered at the onset of disease, but was decreased at the peak
of disease and the chronic phase of disease. Our data demonstrate the level of VEGF-A is
decreased in the CNS in the MOG35-55 EAEmodel at the both acute and chronic phases of dis-
ease. Our results also suggest that the decreased level of VEGF-A may contribute to loss of lower
motor neurons and axons in the spinal cord during EAE.

In summary, the results presented herein suggest the protective effects of the VEGF-A/
VEGFR2 signaling on lower motor neurons and axons in the spinal cord during EAE.
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Neurodegeneration is considered to be the primary cause of chronic disability in MS. However,
the molecular mechanisms responsible for neurodegeneration in MS and EAE remain largely
unknown. There is no available therapy for MS that attenuates neuron loss and/or axon loss
[51, 52]. This study implicates that therapeutic strategies that activate the VEGFR2 signaling in
neurons may be beneficial to MS patients.
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