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Abstract

Background

Grainyhead-like-3 (GRHL3) was recently identified as the second gene that, when mutated,

can leads to Van der Woude syndrome, which is characterized by orofacial clefts (OFC)

and lower lip pits. In addition, a missense variant (rs41268753) in GRHL3 confers risk for

non-syndromic cleft palate cases of European ancestry. Together with interferon regulatory

factor 6 (IRF6), GRHL3may be associated with the risk of NSOFC which awaits for being

verified across different ethnic populations.

Objective

The aim of this study was to investigate the possible relationship between common functional

variants inGRHL3 and susceptibility to NSOFC, especially cleft palate cases, in a Han Chinese

population, one of the ethnic groups with the highest birth prevalence of orofacial clefting.

Methods

Because the allele frequency for rs41268753 minor alleles was zero in our Chinese popula-

tion, we selected functional single nucleotide polymorphisms (SNPs) spanningGRHL3 with

minor allele frequencies (MAFs) > 5% in the Han Chinese population. Two SNPs which

meet the above criteria were then genotyped in a case-control cohort comprising 1145 indi-

viduals using the TaqMan 50-exonuclease allelic discrimination assay.

Results

SNPs rs2486668 and rs545809 were used in this study. Overall genotype and allele distri-

butions of both SNPs in general and stratified genotyping analyses revealed no statistically
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significant differences between cases and controls. Further logistic regression analyses

using different genetic models failed to reveal any evidence that these markers influence

risk to NSOFC.

Conclusions

The variant rs41268753 inGRHL3 increases the risk for cleft palate in European population,

but our findings failed to detect the link between two GRHL3 SNPs (rs2486668 and

rs545809) and risk to NSOFC in the Han Chinese cohort. Although the present study did

not provide any evidence that common functional variants inGRHL3may contribute to

NSOFC etiology in this Chinese population, further studies with a larger sample size, addi-

tional SNPs, and a more diverse ethnic cohort are still warranted.

Introduction
Orofacial clefts (OFC) are among the most common congenital defects with a relatively high
birth prevalence of 1.66/1000 newborns in China [1]. Categorization according to anatomical
site shows that OFCs are commonly subtyped as cleft lip only (CLO), cleft lip with palate
(CLP), or cleft palate only (CPO). Given their shared epidemiological traits and embryologic
origin, CLO and CLP are traditionally combined as a single subgroup, namely, cleft lip with or
without cleft palate (CL/P) [2]. Nevertheless, an increasing number of evidence indicates CLO
and CLP might have different genetic origins and would be better analyzed as distinct entities
[3]. Most OFCs occur as non-syndromic (NS) cases where clefting occurs as the only malfor-
mation in the affected infant, and are thought to be caused by the interplay between environ-
mental and genetic factors [4]. Although previous studies of linkage and candidate genes, and
more recently, several genome-wide association studies (GWAS), have reported multiple risk
loci associated with NSOFC [5–10], the underlying genetic architecture of this birth defect
remains largely unknown.

A powerful molecular approach with which to study the genetics of NSOFC is to investigate
causative genes for syndromic clefting. Interferon regulatory factor 6 (IRF6) is one such candi-
date gene, and mutations in IRF6 cause Van der Woude syndrome (VWS, [MIM 119300]), the
most common type of syndromic OFC, or popliteal pterygium syndrome (PPS, [MIM
119500]) [11]. Furthermore, variants in IRF6 show a strong association with NSOFC, especially
with the CLO subtype [12]. However, findings from different studies have been inconsistent
and the risk association of NSOFC with particular variants of IRF6may differ depending on
ethnic background [13–15]. Thus far, mutations in IRF6 have been identified in only 70% of
families with VWS. A linkage study for a large Finnish pedigree with VWS identified a novel
locus on 1p33–p36 (VWS2) rather than IRF6 at 1q32–q41, providing further evidence of locus
heterogeneity underlying this syndrome [16]. Further mutation screening in VWS families
without IRF6mutation demonstrated that GRHL3 is the second reported gene for which muta-
tions resulting in VWS. Phenotypic analyses of murine embryos with double heterozygous
knockout (Irf6+/-; Grhl3+/-) indicated that both genes play pivotal roles in the development of
the functional periderm, and disturbing this process leads to VWS [17]. Functional analyses
also showed Grhl3 is a key downstream target of Irf6 in the process of periderm differentiation
[18]. Taken together, previous studies demonstrate mutations in both IRF6 and GRHL3 cause
almost the same clefting phenotypes. Furthermore, the recent studies by GWAS and sequenc-
ing approaches have indicated a missense variant (rs41268753) in GRHL3 increases risk for
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NSCPO cases of European ancestry [10, 19]. However, the allele frequency for rs41268753
minor alleles is zero in Chinese population according to the same report and the Hapmap data-
base. More recently, an association study genotyped multiple tag single nucleotide polymor-
phisms (SNPs) spanning the GRHL3 gene in Chinese NSCL/P patients and controls and had
not reached a clear-out conclusion that any genotype or haplotype variant is associated with
the susceptibility to NSCL/P in this cohort [20]. Hence, we examined other common functional
variants in GRHL3 (rather than rs41268753 itself) involved in the pathogenesis of NSOFC in a
Chinese Han population. The aim of this study was to investigate any possible association
between GRHL3 polymorphisms and susceptibility to NSOFC in this Han Chinese population.

Materials and Methods

Study population and DNA samples
The Ethics Committee of School of Stomatology, Wuhan University, Wuhan, China (protocol
number: 2014–20) has approved this study. All applicable regulations concerning the use of
human DNA were followed. A cohort comprising 768 cases, and 377 controls, was used for
genotyping and all subjects were ethnic Han Chinese. Any associated anomalies or syndromes
were excluded by two experienced surgeons and only those diagnosed with NSOFC were thus
included. All participants or their guardians have signed the informed consent forms. Periph-
eral venous blood samples were collected and genomic DNA was extracted as previously
described [9].

Selection ofGRHL3 polymorphisms
Functional SNPs for GRHL3 located in either the coding region or the regulatory elements (5’-
flanking region and 5’/3’-untranslated regions) with the minor allele frequency (MAF)> 5% in
Han Chinese population were selected from the International HapMap Project database
(http://hapmap.ncbi.nlm.nih.gov), and the National Center for Biotechnology Information
(NCBI) database (http://www.ncbi.nlm.nih.gov/projects/SNP).

Genotyping
The TaqMan 50-exonuclease allelic discrimination assay (Applied Biosystems, Foster City, CA)
was used to perform the genotyping. Technicians were blinded to the case or control status of
individuals when performing it. Finally, genotyping was randomly replicated for 10% of sam-
ples to ensure genotypic consistency.

Statistical analyses
The Hardy-Weinberg equilibrium (HWE) was evaluated for both polymorphisms in the con-
trol group. Statistical analyses of case vs. control status was performed using the SPSS package
to test the null hypothesis of independence between disease and marker genotypes (SPSS Inc.,
Chicago, IL, USA). Comparison of genotype and allele frequencies among cases, and the con-
trol group, were performed by the Chi-square test. Odds ratios (ORs) with 95% confidence
intervals (CI) were computed from unconditional logistic regression analyses. Pairwise linkage
disequilibrium (LD) was indicated as both Lewontin D0 and r2 values by use of the Haploview
program (http://www.broad.mit.edu/mpg/haploview/index.php/).
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Results

Characteristics of the genotyped cohort
The case and control groups were satisfactorily matched for gender (P> 0.05). According to
clinical manifestations, 768 NSOFC patients were divided into four main subgroups: 297 CPO
patients and 471 CL/P patients, which were further subdivided into 214 CLO patients and 257
CLP patients, respectively.

SNP data
Both selected tag SNPs (rs2486668 and rs545809) in GRHL3 are described in Table 1. These
were successfully genotyped, with a call rate> 99% (S1 and S2 Figs, S1 Table). Again, 10% of
samples were randomly selected for duplicate genotyping, which resulted in completely con-
cordant results. The genotypic frequencies of each SNP conformed to the Hardy–Weinberg
equilibrium (both P> 0.05) among controls, indicating there is no population stratification
present in this study.

Distribution of genotypic and allele frequencies
The MAFs of the tested SNPs in the controls were similar to those recorded in the HapMap
CHB cohort. As listed in Table 2, the frequencies of the rs2486668 CC, CG, and GG genotypes
(62.5%, 33.2% and 4.3%, respectively) in both controls and NSOFC cases were identical
(P = 0.994). Significant differences were not observed in allele frequencies between groups. Fur-
ther logistic regression analyses unraveled that neither the CG heterozygote, nor the GG homo-
zygote, conferred to NSOFC risk when comparing with the wild-type homozygote (OR = 1.00,
95% CI = 0.77–1.30 for CG and OR = 1.01, 95% CI = 0.54–1.87 for GG, respectively). Analyses
using different genetic models also uncovered no differences in genotype distribution between
NSOFC cases and controls. Given that genetic etiologies may be diverse in different subtypes of
NSOFC, a stratified analysis was also conducted for CL/P, CLP, CLO, and CPO, respectively.
We observed that for rs2486668, overall genotype and allele frequencies for the subgroups dif-
fered slightly from those in controls. However, the differences were not statistically significant
between controls and each subgroup, and a lack of any significant association was also
observed in logistic regression analyses under these different models of inheritance.

Similar data were also observed for rs545809 (Table 3). We could not identify any relation-
ship between rs545809 and the risk of NSOFC using general or stratified analyses. In the LD
analyses, we found no strong linkage disequilibrium (D’ = 0.177; r2 = 0.571) between the two
SNPs (rs2486668 and rs545809). Given the lack of association with single marker analyses,

Table 1. General information for genotyped SNPs.

SNP ID Gene Chr. Posotion Region SNPs Function Amino Acid Changes MAFa (CHB) HWEb (P-value)

rs2486668 GRHL3 1 24658063 exon 2 C>G missense Aspc!Glud 0.22 0.996

rs545809 GRHL3 1 24690764 exon 16 T>A missense Mete! Lysf 0.42 0.997

aMAF, minor allele frequency; CHB, Chinese Han Chinese in Beijing, China.
bHardy-Weinberg equilibrium among controls.
cAsp, aspartic acid.
dGlu, glutamic acid.
e Met, methionine.
f Lys, lysine.

doi:10.1371/journal.pone.0159940.t001
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haplotypes of these two markers would not differ between cases and controls. Therefore, haplo-
type analyses were not undertaken here.

Discussion
NSOFC is a complex malformation, thought to be of multifactorial etiology, with both genetic
and environmental elements. This complexity has impeded the process of screening causal
genetic risk factors [4]. In the past few decades, candidate gene-based approaches have proven
to be a useful tool with which to investigate the genetic components of NSOFC. However, thus

Table 2. Genotypic and allelic distributions of rs2486668 in NSOFC cases and controls.

rs2486668 Controls (n = 376,%) All cleft cases (n = 768,%) CL/P (n = 471, %) CLP (n = 257, %) CLO (n = 214, %) CPO (n = 297, %)

Genotype

CC 235(62.5) 480(62.5) 290(61.6) 161(62.6) 129(60.3) 190(64.0)

CG 125(33.2) 255(33.2) 157(33.3) 85(33.1) 72(33.6) 98(33.0)

GG 16(4.3) 33(4.3) 24(5.1) 11(4.3) 13(6.1) 9(3.0)

Pa - 0.994 0.8428 0.999 0.5963 0.694

OR(95% CI)

CG vs. CC - 1.00(0.77, 1.30) 1.02(0.80, 1.30) 0.99(0.72, 1.38) 1.05(0.71, 1.55) 0.97(0.66, 1.41)

GG vs. CC - 1.01(0.54, 1.87) 1.22(0.70,1.80) 1.00(0.48, 2.10) 1.48(0.64, 3.41) 0.70(0.29, 1.68)

CG/GG vs. CC - 1.00(0.78, 1.29) 1.04(0.82,1.32) 0.99(0.73, 1.36) 1.09(0.76, 1.60) 0.93(0.65, 1.35)

CG/CC vs. GG - 0.99(0.54, 1.82) 0.83(0.48, 1.41) 0.99(0.48, 2.06) 0.69(0.30, 1.57) 1.42(0.60, 3.39)

Alleles

C 0.79 0.79 0.78 0.79 0.77 0.8

G 0.21 0.21 0.22 0.21 0.23 0.2

Pa - 1 0.8592 0.9538 0.8989 0.8431

CL/P, cleft lip with or without cleft palate; CLP, cleft lip with palate; CLO, cleft lip only; CPO, cleft palate only; OR, odds ratio; CI, confidence interval.
aComparison of genotype and allele frequencies among cases and controls were performed by two-sided Chi-square test.

doi:10.1371/journal.pone.0159940.t002

Table 3. Genotypic and allelic distributions of rs545809 in NSOFC cases and controls.

rs545809 Controls (n = 376,%) All cleft cases (n = 768,%) CL/P (n = 471, %) CLP (n = 257, %) CLO (n = 214, %) CPO (n = 297, %)

Genotype

TT 139(37.0) 284(37.0) 157(33.3) 94(36.6) 63(29.4) 127(42.8)

AT 180(47.9) 368(47.9) 235(50.0) 117(45.5) 118(55.1) 133(44.8)

AA 57(15.2) 116(15.1) 79(16.8) 46(17.9) 33(15.4) 37(12.5)

Pa - 0.9997 0.7195 0.7782 0.4741 0.1575

OR(95%CI)

AT vs. TT - 1.00(0.76, 1.31) 1.16(0.90, 1.49) 0.96(0.69, 1.35) 1.45(0.96, 2.18) 0.81(0.55, 1.20)

AA vs. TT - 1.00(0.68, 1.45) 1.23(0.87, 1.73) 1.19(0.77, 1.86) 1.28(0.74, 2.21) 0.71(0.41, 1.24)

AT/AA vs. TT - 1.00(0.77, 1.29) 1.17(0.92, 1.49) 1.02(0.74, 1.40) 1.41(0.95, 2.07) 0.79(0.54, 1.14)

AT/TT vs. AA - 1.00(0.71, 1.42) 0.89(0.65, 1.21) 0.82(0.55, 1.22) 0.98(0.60, 1.60) 1.26(0.76, 2.08)

Alleles

T 0.61 0.61 0.58 0.59 0.57 0.65

A 0.39 0.39 0.42 0.41 0.43 0.35

Pa - 1 0.3772 0.5578 0.4725 0.0769

CL/P, cleft lip with or without cleft palate; CLP, cleft lip with palate; CLO, cleft lip only; CPO, cleft palate only; OR, odds ratio; CI, confidence interval.
aComparison of genotype and allele frequencies among cases and controls were performed by two-sided Chi-square test.

doi:10.1371/journal.pone.0159940.t003
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far, only IRF6 has shown any convincing degree of consistency across studies [3, 12,13].
GRHL3 was recently identified as a second causative gene for VWS, providing a prominent
candidate susceptible gene for NSOFC [17]. Furthermore, a missense variant in GRHL3 was
identified to be associated with the risk for NSCPO in European population [10, 19]. A recent
association study was performed in Chinese NSCL/P patients using ten tag SNPs of GRHL3
and did not give an affirmative answer that this gene contributes to NSCL/P etiology in the
Chinese Han population [20]. Therefore, it is necessary to further investigate whether there are
other common functional variants in GRHL3 involved in the pathogenesis of NSOFC, espe-
cially NSCPO, in the Chinese population.

Grainyhead genes encode a well conserved family of transcription factors including three
members, Grhl1, 2, and 3 in mice, which have ubiquitous expression patterns in the process of
embryonic development, and in adult skin cells. Despite sharing extensive sequence homology,
overlapping expression patterns, and a consensus in DNA binding sequence, Grhl3 is indis-
pensable in the courses of neural tube closure, skin barrier formation and wound healing [21].
Grhl3 is directly regulated by Irf6, but functions in independent, but convergent pathways dur-
ing palatogenesis [17, 18]. In Irf6 deficient mice, orofacial clefting was caused by abnormal
periderm differentiation and a failed disappearance of the medial edge epithelium (MEE). Con-
versely, the MEE was successfully cleared in Grhl3-/- embryos. Thus the common feature of Irf6
and Grhl3mutants may be a failed periderm development, providing further confirmation of a
role for the oral periderm in orofacial development. Mutations in the IRF6 and GRHL3 genes
can lead to VWS, with a dysfunctional oral periderm contributing to the phenotypes of orofa-
cial clefts in humans [17].

Although locus heterogeneity for VWS was further confirmed, we also noted that the delete-
rious mutations in GRHL3may not be prevalent in VWS pedigrees without mutations in IRF6
[17]. Sequencing of the coding regions of the GRHL3 gene in three Chinese VWS-affected fam-
ilies lacking IRF6mutations identified no new pathogenic mutations (unpublished data). In
the mouse, Grhl3-/- embryos with an abnormal oral periderm developed cleft palate at low pen-
etrance (17%) [17]. Potential causative genes for VWS awaits being identified in the future. So
far, the precise biological role of Grhl3 in facial morphogenesis is still elusive. In vivo functional
dissection of GRHL3missense variants will be performed in zebrafish models in our future
study. In addition, identification of the downstream targets of the Irf6-Grhl3 network will help
not only to enrich our knowledge of craniofacial development, but also to provide more candi-
dates involved in the genetic etiology of syndromic and/or non-syndromic clefting in humans.

The results presented in the current study are frustrating, although not entirely unexpected
given the heterogeneous nature of NSOFC. First, population differences may affect the results
of genetic association study in complex diseases. For example, inconsistent results in IRF6 asso-
ciation studies have been reported using patient cohorts derived from distinct regions within
China [13–15]. The common variant (rs41268753) in the GRHL3 locus identified by the recent
GWAS and sequencing is associated with the risk to NSCPO in European population, but not
in several Asian and African-derived populations [10, 19]. Further well-designed studies
including diverse ethnic backgrounds are now warranted. Second, we adopted stratified analy-
ses in this study in which CL/P and CPO were analyzed separately as distinct entities.The
VWS-affected patients with GRHL3mutations were reported to have a higher proportion of
having CP than those with IRF6mutations [17]. The results from GWAS and sequencing have
also found the SNP (rs41268753) in GRHL3 is associated with NSCPO, but not with NSCL/P
[10, 19]. The association analysis in the Chinese CL/P patients identified two SNPs and a hap-
lotype of GRHL3 that reached the significance level, but none of them survived the multiple
comparisons [20]. Third, the limited sample size may also have affected the results of our
study. However, the number of NSCPO cases in the current study is comparable to the recent
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GWAS that found the GRHL3 hit [10]. Meanwhile, the MAFs of both SNPs for controls from
this study and from publicly-available databases are very similar, indicating favorable quality
control. Therefore, increasing the sample size is unlikely to have any effect. Lastly, considering
more markers as haplotypes be a more efficient analytic tool in this situation than the study of
one or two SNPs at the population level [22]. However, the original purpose of this study was
to investigate the potential link between common functional variants in GRHL3 and risk to
NSOFC in the Han Chinese population. Only two SNPs met the selection criteria and were
used in this study. Given the lack of association with single marker analyses, it is now impera-
tive to conduct additional SNP-based haplotype analyses and re-sequencing studies in the
future.

In summary, this preliminary study investigated whether GRHL3 was involved in the patho-
genesis of non-syndromic clefting in the Han Chinese population. Our findings failed to detect
two missense variants (rs2486668 and rs545809) in GRHL3 contribute to NSOFC risk in Han
Chinese cases and controls. More cohort-based studies with wider SNP coverage of the GRHL3
locus, recruiting from different ethnic populations, are still warranted to further verify any rela-
tionship between GRHL3 and risk to NSOFC.

Supporting Information
S1 Fig. Representative fluorescence scatter plot for rs2486668 in Taqman assay.
(JPG)

S2 Fig. Representative fluorescence scatter plot for rs545809 in Taqman assay.
(JPG)

S1 Table. Genotype counts for rs2486668 and rs545809 in the sample set.
(XLS)
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