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Abstract

Background & Aims

Development of resistance results from mutations in the viral genome, and the presence of

selective drug pressure leads to the emergence of a resistant virus population. The aim of

this study was to analyze the impact of genetic variability on the genetic barrier to drug resis-

tance to DAAs.

Methods

The genetic barrier was quantified based on the number and type of nucleotide mutations

required to impart resistance, considering full-length HCV NS3, NS5A and NS5B regions

segregated by genotype into subtypes 1a, 1b, 2a, 2b and 3a. This study analyzeds 789

NS3 sequences, 708 sequences and 536 NS5B sequences deposited in the European

Hepatitis C Virus Database, in the following resistance-associated positions: NS3: F43/I/L/

S/V, Q80K/R, R155K/G, A156G/S/T and D168A/C/E/G/H/N/T/V/Y; NS5A: L/M28A/T/V,

Q30E/H/R, L31F/I/M/V, H58D or P58S and Y93C/F/H/N/S; NS5B: S282P/R/T, C316H/N/Y,

S368T, Y448C/H, S556G/R, D559R.

Results

Variants that require only one transversion in NS3 were found in 4 positions and include

F43S, R80K, R155K/G and A156T. The genetic barrier to resistance shows subtypic differ-

ences at position 155 of the NS3 gene where a single transition is necessary in subtype 1a.

In the NS5A gene, 5 positions where only one nucleotide change can confer resistance

were found, such as L31M which requires one transversion in all subtypes, except in 0.28%

of 1b sequences; and R30H, generated by a single transition, which was found in 10.25% of

the sequences of genotype 1b. Other subtypic differences were observed at position 58,

PLOS ONE | DOI:10.1371/journal.pone.0159924 August 9, 2016 1 / 15

a11111

OPEN ACCESS

Citation: Kliemann DA, Tovo CV, Gorini da Veiga AB,
Machado AL, West J (2016) Genetic Barrier to Direct
Acting Antivirals in HCV Sequences Deposited in the
European Databank. PLoS ONE 11(8): e0159924.
doi:10.1371/journal.pone.0159924

Editor: Ravi Jhaveri, University of North Carolina at
Chapel Hill School of Dentistry, UNITED STATES

Received: February 23, 2016

Accepted: July 11, 2016

Published: August 9, 2016

Copyright: © 2016 Kliemann et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: D. A. Kliemann holds a fellowship from
CAPES (Ministry of Education, Brazil); A. B. G. Veiga
holds a research fellowship from CNPq (Ministry of
Science and Technology, Brazil).

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0159924&domain=pdf
http://creativecommons.org/licenses/by/4.0/


where resistance is less likely in genotype 1a because a transversion is required to create

the variant 58S. For the NS5B inhibitors, the genetic barrier at positions conferring resis-

tance was nearly identical in subtypes 1a and 1b, and single transitions or transversions

were necessary in 5 positions to generate a drug-resistant variant of HCV. The positions

C316Y and S556D required only one transition in all genotypes, Y448H and S556 G/N/R

positions required only one transition for up to 98.8% of the sequences analyzed. A single

variant in position 448 in genotype 1a is less likely to become the resistance variant 448H

because it requires two transversions. Also, in the position 559D a transversion and a transi-

tion were necessary to generate the resistance mutant D559H.

Conclusion

Results revealed that in 14 out of 16 positions, conversion to a drug-resistant variant of

HCV required only one single nucleotide substitutions threatening direct acting antivirals

from all three classes.

Introduction
First discovered in 1989, hepatitis C virus (HCV) is a major health problem worldwide [1]. The
percentage of people who are seropositive for anti-HCV antibodies worldwide is estimated to
have increased from 2.3% to 2.8% between 1990 and 2005 [2]. Most patients (80–85%) who
become acutely infected cannot clear the virus and progress to chronic infection. Current data
states that more than 170 million people are chronically infected by HCV; the outcomes of
chronic infection are cirrhosis, portal hypertension, hepatic decompensation, and the develop-
ment of hepatocellular carcinoma, causing approximately 350,000 deaths per year [3].

HCV contains a positive-sense, single-stranded 9,600 kb RNA genome. A single HCV poly-
protein of 3,011 amino acids is translated, and then cleaved by cellular and viral proteases into
three structural proteins (core, E1 and E2) and seven non-structural proteins (p7, NS2, NS3,
NS4A, NS4B, NS5A, and NS5B) [4]. Additionally, HCV has enormous genetic diversity in
infected hosts, existing in blood as a swarm of closely related individual genotypes that may
code for subtly distinct phenotypes, known as quasispecies. One of the phenotypes potentially
selectable from the quasispecies is drug resistance. HCV diversity derives from an error-prone
viral polymerase, rapid replication and natural selection within each host to antibody and cellu-
lar immune responses, and now, increasingly, to antiviral drugs [5].

There are two major models explaining the development of drug resistance mutations: the
deterministic model and the stochastic model. If the viral effective population size is relatively
small, drug resistance mutations might emerge “stochastically” under the selection pressure
during treatment with the antivirals, so in this case the genetic barriers of codon changes may
affect the development of drug resistance mutations. On the other hand, the deterministic
model is based on effective virus population that are large enough to infer that all drug resis-
tance mutations pre-exist and can be seen; this model can be used if there is enough sampling
depth (6–8). The model to be used in drug resistance studies depend on the pathogen and pop-
ulation size; there are few studies calculating the effective population size in HCV (6,9).

Factors favoring the emergence of resistant variants include high viral replicative load with
prolonged and rapid viral turnover; high intrinsic viral mutation rates; degree of selective drug
pressure, which is higher with prolonged or repeated courses of drug therapy, particularly with
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suboptimal doses; and an antiviral target that can mutate without adversely affecting viral fit-
ness (10).

Advances in our knowledge of the molecular biology of the HCV replication life cycle have
led to the development of several molecules that specifically inhibit HCV enzymatic activities
that are essential for replication [6, 7]. These compounds are called direct-acting antiviral
agents (DAA) and target viral non-structural proteins, including the NS3/4A protease, the
NS5B polymerase, and the NS5A protein [8]. Resistance to DAAs is driven by the selection of
mutations in the non-structural proteins [9–11]. Each compound or drug family induces a spe-
cific mutation profile that is also influenced by the HCV genotype/subtype. Furthermore, each
class of DAAs is characterized by a difference in the genetic barrier to resistance; though this
general characterization differs for individual agents in the class. Cross-resistance between
compounds in the same inhibitor class is of greatest concern for NS3 protease and NS5A
inhibitors.

The genetic barrier to resistance, defined as the number of viral mutations required for rep-
lication in the presence of drug-selective pressure, is an important factor in HCV treatment.
The huge variability between HCV genotypes and subtypes at the nucleotide level could impact
the effectiveness of the genetic barrier and therefore, the likelihood of drug resistance develop-
ment. It has been recognized that despite an identical amino acid at certain positions within
the NS3 protease of HCV subtype 1a and 1b the probability/frequency with which a treatment-
induced resistance mutation is detected was different between these HCV subtypes. For exam-
ple, the alteration of arginine at codon position 155 to lysine, which confers resistance to sime-
previr and paritaprevir, is 6 times more frequent in genotype 1a than in 1b [12–14]. This is
explained, in part, by different nucleotide codons encoding the same amino acid. For instance,
two nucleotide changes are required at codon position 155 for generation of R155K in HCV
subtype 1b isolates; whereas, in HCV subtype 1a isolates one alteration is sufficient. As a
consequence, distinct resistance frequencies are observed in HCV subtype 1a and 1b infected
patients after failure to a protease inhibitor based antiviral therapy [15, 16]. Similar differences
have been observed also for the generation of other resistance-associated variants (RAVs) in
other HCV genes [17, 18].

Beside the number of nucleotide changes required for an amino acid exchange as definition
of the genetic barrier to resistance, also the type of exchange seems to be of importance in HCV
infection. A model previously described for HIV, HBV, or HCV proposed a score of 1 for tran-
sitions and 2.5 for transversions, because it was based on an initial report that addressed the
issue of quantifying the genetic barrier for development of drug resistance substitutions
between subtypes [19], where it was reported that transitional replacement of a purine by
another purine or of a pyrimidine by another pyrimidine are sterically more favorable and
therefore occur 2.5-fold more frequently than transversional replacement of a purine by a
pyrimidine and vice-versa. Beside this, the HCV RNA is more highly structured than that of
HIV or HBV, and more prone to mutations [20]. The HCV NS5B RNA polymerase was shown
to favor the generation of nucleotide transitions in comparison to transversions [21]. This may
explain that some RAVs are rarely observed at all or generated only after a longer DAA expo-
sure (for example S282T within NS5B leading to resistance to sofusbuvir or L31M within
NS5A) causing resistance to ledipasvir [17, 21]. In the case of S282T substitution, the deficit in
viral fitness and the low frequencies of transversions over transitions within the diversity of
viral quasispecies found by deep-sequencing analyses of HCV samples from treatment-naive
patients represent an overall high barrier to the selection of 282T in vivo [22, 23] and there is
little in vivo evidence of drug resistance to nucleo(s/t)ide inhibitors and, when detected, resis-
tant variants with 282T rapidly revert to the wild type as soon as the treatment is interrupted
[24, 25].
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Currently, there are more than 1,684 complete HCV genome sequences, and 6,567, 6,819
and 1,877 sequences of NS3, NS5A and NS5B, respectively, obtained by Sanger sequencing
available on public databanks. Three HCV databases are currently available to provide insights
into the basic biology, immunology, and evolution of the virus: the Hepatitis Virus DataBase
Server (http://s2as02.genes.nig.ac.jp), the European Hepatitis C Virus database (http://
euhcvdb.ibcp.fr) and The Hepatitis C Virus (HCV) Database Project (http://hcv.lanl.gov).

Considering the genetic diversity, the quality and quantity of nucleotide changes and the
selection of mutations leading to resistance to DAA’s, the aim of this study was to analyze the
impact of genetic variability on the genetic barrier to development of substitutions causing
drug resistance to DAAs, quantifying the genetic barrier from the number and type of nucleo-
tide mutations required to impart resistance after analysis of a large number of HCV sequences
of all genotypes deposited in European HCV databank.

Methods

HCV Database
The sequences analyzed in this study were downloaded in November 2015 from the European
Hepatitis C Virus database (https://euhcvdb.ibcp.fr/euHCVdb/). This databank provides key
data about the HCV sequences (e.g. genotype, genomic region, viral proteins and their func-
tions, known 3-dimensional structures) and ensures consistency of the annotations, which
enables reliable keyword queries. Any user can extract subsets of sequences matching particular
criteria or enter their own sequences and analyze them with various bioinformatics programs
available on the same server. The euHCVdb is mainly oriented towards protein sequence,
structure and function analyses and structural biology of HCV, and is updated every month
from a database by an automated process [26].

The search was performed for full-length HCV NS3 protease, NS5A inhibitors and NS5B
polymerase sequences segregated by genotype into subtypes 1a, 1b, 2a, 2b and 3a. These sub-
types were chosen due to their worldwide prevalence and presence in drug trials, specifically
genotype 1 with protease inhibitors and genotype 3 with Polymerase Inhibitor (PI). Reference
strains for the three genotypes were obtained (1a: AF009606, 1b: D90208, 2a: D00944, 2b:
D10988 and 3a: D17763). Sequences that contain missing data, such as gaps and sequencing
errors or were incomplete and sequences from patients previously treated with DAAs were
excluded from the analysis. To ensure the quality of the data, sequences were excluded from
the analysis if they contained stop codons in the NS5B gene or contained ambiguities consist-
ing of>2 bases per nucleotide position or>2 ambiguities per codon at individual drug resis-
tance-associated position.

Alignment and edition of the sequences
Sequence alignment was performed with MEGA 6.06 MAC [27] for editing and excluding
sequences with missing data (see S1–S15 Files), and for translating the genetic information into
amino acids. The resulting protein sequences were then analyzed using BioEdit 7.2.5. software
to identify mutations previously associated with resistance [28].

Genetic barrier calculation
The genetic barrier for each drug resistance substitution was calculated according to a model
previously described elsewhere. In summary, transitions (A$G and C$T) were assigned a
score of 1 and transversions (A$C, A$T, G$C, and G$T) were assigned a score of 2.5,
since transitions have been generally shown to occur for steric reasons on average 2.5 times
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more frequently than transversions [19, 29, 30]. Briefly, due to the degeneracy of the genetic
code, most amino acids associated with drug resistance can be encoded by more than one
codon. Therefore, starting from the wild-type codon detected in drug-naive patients, we calcu-
lated a numerical score by summing the number of nucleotide transitions and/or transversions
required to generate a specific resistance substitution. As a result, we obtained different scores
for each pathway of nucleotide mutations required to generate a resistance substitution in
response to a given drug. The minimal genetic barrier score for each drug resistance substitu-
tion analyzed was considered.

The genetic barrier for each drug resistance substitution within 789 NS3 sequences was
investigated: 313 from genotype 1a, 405 from genotype 1b, 18 from genotype 2a, 25 from
genotype 2b, and 28 from genotype 3a. We evaluated 708 sequences in the NS5A data set:
274 from genotype 1a, 361 from genotype 1b, 19 from genotype 2a, 26 from genotype 2b, and
28 from genotype 3a. Furthermore, we compiled 536 HCV NS5B sequences: 166 from geno-
types 1a, 308 from genotype 1b, 20 from genotype 2a, 24 from genotype 2b, and 18 from
genotype 3a. It was included only positions that have been described in previous studies to be
associated in vivo with treatment failure and/or have been shown in vitro phenotypic assays
to confer a>2-fold change in replication in comparison to the wildtype reference strain in
the presence of the following HCV DAAs: simeprevir (SMV), sofusbuvir (SOF), paritaprevir
(PTV), daclatasvir (DCV), ledipasvir (LDV), ombitasvir (OMV), dasabuvir (DSV), grazopre-
vir (GZR) and elbasvir (EBR). Based on the drug usage recommendations, the following resis-
tance-associated mutations were analysed: NS3: F43/I/L/S/V, Y56H, Q80K/R, R155K/G,
A156G/S/T and D168A/C/E/G/H/N/T/V/Y; NS5A: L/M28A/T/V, Q30E/H/R, L31F/I/M/V,
P32L, H58D or P58S and Y93C/F/H/N/S; NS5B: C316H/N/Y, S368T, Y448C/H, S556G/R
and D559R [31–35].

Results
Genetic variability among HCV genotypes impacts the calculation of the genetic barrier to
development of resistance substitutions. Considering that the available protease inhibitors are
less effective against genotypes other than genotype 1 due to natural polymorphisms in their
NS3 region, the analyses have taken this into consideration and the discussion focus on the
genotype 1 dataset; nevertheless the results of the other genotypes are shown in Table 1.
Although some rarely observed NS3 PI resistance variants require transversions or multiple
changes, many of the commonly observed changes consist of a single transition to become a
resistance mutation (Table 1). Variants that require only one transversion in subtype 1a and 1b
include NS3 F43S, R80K, R155K/G and A156T. Subtypic differences were observed at position
155 where a single transition is necessary in subtype 1a but are rare in subtype 1b, where most
of the variants require both a transversion and a transition. Some differences in the variants at
position 156 are also observed where a transition is necessary to generate the variant 156T but
a transversion is necessary to generate 156G or S.

The genetic barrier for resistance to NS5A inhibitors appears similar to that for the NS3 PIs,
with the majority of variants requiring a single transition in two of the five positions analyzed
(Table 2). Exceptions include the NS5A L31M variant, which requires at least one transversion
in all subtypes (except in 0.28% of the 1b sequences). Also, in 10.25% of the sequences of geno-
type 1b, at position 30 a single transition is necessary to generate the mutation R30H which
causes resistance to DCV, LDV and OMV. Other subtypic differences were observed at posi-
tion 58 where genotype 1a seems to confer some protection against development of resistance,
because a transversion is required to create the variant 58S, which leads to resistance to DCV,
compared to single transitions in other subtypes.
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The genetic barrier differs for the various NS5B inhibitor classes (nucleo(s/t)ide, Palm site,
Thumb site, Finger-loop) (Table 3). For the NS5B inhibitors, while subtypic differences in
activity are known, the genetic barrier at positions conferring resistance were nearly identical
in subtypes 1a and 1b, and the majority were single transitions or transversions. The positions
C316Y and S556D where palm inhibitors NS5B take action required only one transition in all

Table 1. Codon variability at HCV NS3 positions associated with major drug resistance to IP and its impact on the genetic barrier to drug resis-
tance development in HCV genotypes 1 to 3.

NS3 position Amino acid Codon Frequencies of codon in each genotype Score

1a (n = 313) 1b (n = 405) 2a (n = 18) 2b (n = 25) 3a (n = 28)

43 F TTC 283 (90.41%) 395 (97.53%) 18 (100%) 23 (92%) 28 (100%) 1.0

TTT 29 (9.27%) 10 (2.47%) 2 (8%) 1.0

S TCC 1 (0.32%)

80 Q CAA 151 (48.24%) 53 (13.09%) 3 (10.71%) 2.5

CAG 16 (5.11%) 325 (80.25%) 25 (89.29%) 2.5

G GGC 2 (8%) 4.5

GGA 4 (22.28%) 5 (20%) 2.0

GGG 14 (77.78%) 18 (72%) 2.0

R AGG 1 (0.32%) 1.0

CGA 2 (0.64%) 3.5

CGG 0 1 (0.25%) 3.5

L CTA 2 (0.64%) 1 (0.25%) 5.0

CTG 0 24 (5.93%) 5.0

K AAA 86 (27.48%)

AAG 55 (17.57%) 1 (0.25%)

155 R AGA 49 (15.65%) 24 (96%) 1 (3.57%) 1.0

AGG 262 (83.71%) 1 (0.25%) 1 (4%) 27 (96.43%) 1.0

CGA 18 (4.44%) 1 (5.56%) 2.5—155G

CGG 384 (94.81%) 17 (94.44%) 2.5—155G

P CCG 2 (0.49%) 5.0

K AAG 2 (0.64%)

G GGC

GGA

GGG

156 A GCT 338 (83.46%) 1 (4%) 23 (82.14%) 1.0—156T

GCC 313 (100%) 66 (16.30%) 5 (17.86%) 2.5—156G/S

GCA 17 (94.44%) 4 (16%) 1.0—156T

GCG 1 (0.25%) 1 (5.56%) 20 (80%) 1.0—156T

T ACA

ACG

168 D GAT 12 (3.83%) 28(6.91%) 14 (77.78%) 2.5

GAC 299 (95.53%) 373 (92.10%) 4 (22.28%) 25 (100%) 28 (100%) 2.5

Q CAG 28 (100%) 2.5

G GGC 1 (0.32%) 3.5

A GCC 1 (0.25%) 5.0

E GAA 1 (0.32%) 4 (0.99%)

Amino acids and nucleotides in bold are associated with resistance. Only codons with at least one sequence found in the database are shown, except for the

resistance amino acids. The score was calculated considering the minimal change necessary to generate a resistant variant. In cases where more than one

variant can be resistant, the nucleotide used as reference is indicated following the score.

doi:10.1371/journal.pone.0159924.t001
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genotypes, Y448H and S556 G/N/R positions required only one transition for up to 98.8% of
sequences analyzed. A single variant with a glutamic acid replacing the tyrosine in position 448
can confer some protection in genotype 1a because it then necessitates two transvertions to
become the resistance variant 448H. Also, in the position 559D a transvertion and a transition
were necessary to become a resistance mutant D559H.

Table 3. Codon variability at HCV NS5B positions associated with major drug resistance to NS5B inhibitors and its impact on the genetic barrier to
drug resistance development in HCV genotypes 1 to 3.

NS5B position Amino acid Codon Frequencies of codon in each genotype Score

1a (n = 166) 1b (n = 308) 2a (n = 20) 2b (n = 24) 3a (n = 18)

282 S AGC 164 (98.8%) 293 (95.13%) 19 (95%) 24 (100%) 3 (16.67%) 2.5

AGT 1 (0.66%) 15 (4.87%) 1 (5%) 14 (77.78%) 2.5

P CCG 1 (5.56%) 2.5

R AGG 1 (0.66%) 2.5

T ACA

ACG

316 C TGT 152 (91.57%) 7 (2.27%) 24 (100%) 1 (5.56%) 1.0

TGC 14 (8.43%) 185 (60.06%) 20 (100%) 17 (94.44%) 1.0

R CGC 1 (0.32%) 2.0

N AAT 3 (0.97%) 2.5

AAC 111 (36.04%) 2.5

Y TAT

TAC 1 (0.32%)

368 S TCT 40 (24.10%) 5 (1.62%) 4 (22.22%) 2.5

TCC 123 (74.10%) 298 (96.75%) 12 (66.67%) 2.5

TCA 3 (0.97%) 19 (95%) 24 (100%) 2 (11.11%) 2.5

TCG 3 (1.81%) 1 (0.32%) 1 (5%) 2.5

P CCC 1 (0.32%) 2.5

T ACA

ACG

448 Y TAT 2 (1.20%) 18 (5.84%) 2 (10%) 9 (37.50%) 1.0

TAC 162 (97.59%) 290 (94.16%) 18 (90%) 15 (62.50%) 18 (100%) 1.0

E GAA 1 (0.66%) 5.0

GAG 1 (0.66%) 5.0

H CAT

CAC

556 S AGT 270 (87.66%) 1.0

AGC 166 (100%) 5 (1.62%) 1.0

D GAC 3 (0.97%) 1.0

G GGC 24 (7.79%) 20 (100%) 24 (100%) 18 (100%)

N AAC 6 (1.95%)

559 D GAT 1 (0.66%) 3.5

GAC 165 (99.34%) 307 (99.68%) 19 (95%) 24 (100%) 18 (100%) 3.5

N AAC 1 (0.32%) 3.5

H CAT

CAC 1 (5%)

Amino acids and nucleotides in bold are associated with resistance. Only codons with at least one sequence found in the database are shown, except for the

resistance amino acids. The score was calculated considering the minimal change necessary to generate a resistant variant.

doi:10.1371/journal.pone.0159924.t003
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Regardless of HCV genotype the analysis revealed that in 14 of 16 positions conversion to a
drug-resistant variant required only single nucleotide substitutions (Table 4). That is, one tran-
sition with a genetic barrier score of 1 (F43S, Q80R, R155K or G, A156T in NS3 gene; H or
P58S, Y93H in NS5A; C316Y and S556N in NS5B), or one transversion with a genetic barrier
score of 2.5 (Q80K, A156S, D156E in NS3 gene; and S368T in NS5B gene).

Discussion
Besides the genetic variability and natural presence of drug resistance substitutions in selected
genotypes prior to treatment, another factor that can be associated with probability of success
of a DAA-based regimen is the genetic barrier for the development of resistance. This can be
broadly defined as the number and type of nucleotide mutations required for the generation of
a specific resistance substitution, starting from the wild-type genetic background of the virus
[22]. Previous studies have shown that genetic variability among HIV, HBV, or HCV geno-
types can in some cases facilitate the development of specific resistance variants [19, 22, 23, 29,
30, 36]. For instance, it has recently been proposed that the high degree of HCV genetic vari-
ability makes HCV genotypes, and even subtypes, differently prone to the development of PI
resistance substitutions, with important clinical implications for tailoring individualized and
appropriate regimens [29]. These findings support that genetic barrier is higher for genotype
1b than to 1a in the NS3 gene.

These results are consistent with available HCV experimental and clinical treatment obser-
vations [37]. Within NS3, many sequences had shown the Q80K mutation (44.7% for genotype
1a, 0.25% for genotype 1b), which can cause resistance to SMV, PTV and ASV but how Q80K
alters GZR susceptibility in cell culture has not been reported to our knowledge (Tables 1 and
4). The R155K mutation was rarely observed in subtype 1b viruses, where two changes (one
transition and one transversion) are required, while subtype 1a needs only one transition. A
similar profile has also been observed for other PIs such as SMV, FDV, ASV and PTV/r, to
which subtype 1a is more prone to acquire RAVs (Table 4).

Regarding NS5A RAVs, Y93H in genotype 1b was the most commonly variant identified
(4.25%), followed by L31M (3.40%), whereas other NS5A RAVs occurred at low frequencies.
Furthermore, the overall number of sequences with some NS5A RAVs was higher compared to
other genes but also the genetic barrier in this class is higher (requiring changing in more than
one nucleotide). Differences in the level of resistance depending on the HCV subtype were seen
in all position except in 93. The genetic barrier to DAA’s acting in NS5B gene was lower than for
NS5A, with exception of positions 448 and 559 where at least two mutations were shown to be
necessary to generate a RAV. Similarly, two substitutions, 316Y and 448H, with low genetic bar-
riers were shown to strongly reduce HCV susceptibility to DAA’s; accordingly, the 316Y variant
was described to confer resistance to DSV [38, 39]. Finally, the major resistance variant S282T,
selected in vitro by SOF, requires only a single G-to-C transversion (score 2.5) and is rarely, if
ever, seen in clinical isolates [11, 22], because it alters the conformation of the enzyme catalytic
site [40] and severely compromises viral fitness among different HCV genotypes [41, 42].

All RAVs found in this study were identified in näıve-treatment patients. However, consid-
ering that the present analysis is based on a databank, this findings are only correlative rather
than conclusive and the clinical relevance of this data is yet to be confirmed by additional lon-
gitudinal follow-up studies with DAAs involving patients infected with distinct HCV geno-
types. The analysis of genetic variation suggests that sequence variation is wide and therefore
some patients likely have a lower barrier of resistance than others; on the other hand, clinical
data currently available argue that current DAA regimens have sufficient multiplicity of action
and duration, and that treatment failure is rare.
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Table 4. Resistance level to DDA at HCV NS3, NS5A and NS5B positions and level of genetic barrier.

Gene Drug Mutation Codon Frequencies in each genotype Resistance level

1a 1b 2a 2b 3a

NS3 Simeprevir Q80K CAA§ 151 (48.24%) 53 (13.09%) 3 (10.71%) low

CAG§ 16 (5.11%) 325 (80.25%) 25 (89.29%)

R155K AGA# 49 (15.65%) high

AGG# 262 (83.71%) 1 (0.25%)

CGA#§ 18 (4.44%)

CGG#§ 384 (94.81%)

D168E GAT§ 12 (3.83%) 28(6.91%) 14 (77.78%) low-intermediate

GAC§ 299 (95.53%) 373 (92.10%) 4 (22.28%) 25 (100%)

Paritaprevir R155K AGA# 49 (15.65%) high

AGG# 262 (83.71%) 1 (0.25%)

CGA#§ 18 (4.44%)

CGG#§ 384 (94.81%)

D168E GAT§ 12 (3.83%) 28(6.91%) 14 (77.78%) low-intermediate

GAC§ 299 (95.53%) 373 (92.10%) 4 (22.28%) 25 (100%)

Grazoprevir A156T GCT# 338 (83.46%) 1 (4%) 23 (82.14%) low-intermediate

GCC§ 313 (100%) 66 (16.30%) 5 (17.86%)

GCA# 17 (94.44%) 4 (16%)

GCG# 1 (0.25%) 1 (5.56%) 20 (80%)

D168E GAT§ 12 (3.83%) 28(6.91%) 14 (77.78%) low-intermediate

GAC§ 299 (95.53%) 373 (92.10%) 4 (22.28%) 25 (100%)

NS5A Ledipasvir L31M TTA#§ 184 (50.97%) low-high

TTG§ 19 (6.93%) 104 (28.81%)

CTT§§ 5 (1.82%) 1 (0.28%)

CTC§§ 4 (1.46%) 28 (100%)

CTA#§ 1 (0.36%) 28 (7.76%)

CTG§ 242 (88.32%) 30 (8.31%)

Y93H TAT# 17 (6.20%) 4 (1.11%) 2 (10.63%) 3 (10.71%) high

TAC# 254 (92.70%)

Daclatasvir M28T ATG# 259 (94.53%) 10 (2.77%) 27 (96.48%) intermediate

Q30H CAA§ 260 (94.89%) 3 (0.83%) low-high

CAG§ 9 (3.28%) 20 (5.54%)

Y93H TAT# 17 (6.20%) 4 (1.11%) 2 (10.63%) 3 (10.71%) high

TAC# 254 (92.70%)

Ombitasvir M28T ATG# 259 (94.53%) 10 (2.77%) 27 (96.48%) intermediate

Y93H TAT# 17 (6.20%) 4 (1.11%) 2 (10.63%) 3 (10.71%) high

TAC# 254 (92.70%)

Elbasvir M28T ATG# 259 (94.53%) 10 (2.77%) 27 (96.48%) intermediate

Q30H CAA§ 260 (94.89%) 3 (0.83%) low-high

CAG§ 9 (3.28%) 20 (5.54%)

L31M TTA#§ 184 (50.97%) low-high

TTG§ 19 (6.93%) 104 (28.81%)

CTT§§ 5 (1.82%) 1 (0.28%)

CTC§§ 4 (1.46%) 28 (100%)

CTA#§ 1 (0.36%) 28 (7.76%)

CTG§ 242 (88.32%) 30 (8.31%)

Y93H TAT# 17 (6.20%) 4 (1.11%) 2 (10.63%) 3 (10.71%) high

TAC# 254 (92.70%)

(Continued)
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Given that all oral HCV DAA therapies are associated with high costs, resistance testing at
baseline, which is also a significant cost, may nevertheless be worthwhile to identify the best
DAA treatment option for each patient depending on the HCV genotype and preexisting poly-
morphisms in the NS3 and NS5A/B [37]. However, which frequencies of pre-existing RAVs
within the HCV quasispecies and which level of resistance of pre-existing RAVs may contrib-
ute to treatment failure is not completely clarified. The presence in DAA-naive patients of nat-
ural polymorphisms at resistance positions in selected genotypes, together with a broad low
genetic barrier for the development of resistance represents indeed an important issue in the
global approach for the management and treatment of HCV-related disease.

Supporting Information
S1 File. euhcvdb-NS3-1a.
(FAS)

S2 File. euhcvdb-NS3-1b.
(FAS)

S3 File. euhcvdb-NS3-2a.
(FAS)

S4 File. euhcvdb-NS3-1b.
(FAS)

S5 File. euhcvdb-NS3-3a.
(FAS)

S6 File. euhcvdb-NS5a-1a.
(FAS)

Table 4. (Continued)

Gene Drug Mutation Codon Frequencies in each genotype Resistance level

1a 1b 2a 2b 3a

NS5B Sofusbuvir S282T AGC§ 164 (98.8%) 293 (95.13%) 19 (95%) 24 (100%) 3 (16.67%) high

AGT§ 1 (0.66%) 15 (4.87%) 1 (5%) 14 (77.78%)

TCT

TCC

TCA

TCG

Dasabuvir C316Y TGT# 152 (91.57%) 7 (2.27%) 20 (100%) 24 (100%) 1 (5.56%) high

TGC# 14 (8.43%) 185 (60.06%) 17 (94.44%)

C316N AAT#§ 152 (91.57%) 7 (2.27%) 20 (100%) 24 (100%) 1 (5.56%) low

AAC#§ 14 (8.43%) 185 (60.06%) 17 (94.44%)

S556G AGT# 270 (87.66%) intermediate

AGC# 166 (100%) 5 (1.62%)

S556N AGT# 270 (87.66%)

AGC# 166 (100%) 5 (1.62%)

#one transition: score 1.0;
§one transversion: score 2.5;
#§one transition + one transversion: score 3.5;
§§two transversions: score 5.0

doi:10.1371/journal.pone.0159924.t004
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