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Abstract
Haemonchus contortus is a parasitic gastrointestinal nematode, and its excretory and

secretory products (HcESPs) interact extensively with the host cells. In this study, we report

the interaction of proteins from HcESPs at different developmental stages to goat peripheral

blood mononuclear cells (PBMCs) in vivo using liquid chromatography-tandemmass spec-

trometry. A total of 407 HcESPs that interacted with goat PBMCs at different time points

were identified from a H. contortus protein database using SEQUEST searches. The L4
and L5 stages of H. contortus represented a higher proportion of the identified proteins com-

pared with the early and late adult stages. Both stage-specific interacting proteins and pro-

teins that were common to multiple stages were identified. Forty-seven interacting proteins

were shared among all stages. The gene ontology (GO) distributions of the identified goat

PBMC-interacting proteins were nearly identical among all developmental stages, with high

representation of binding and catalytic activity. Cellular, metabolic and single-organism pro-

cesses were also annotated as major biological processes, but interestingly, more proteins

were annotated as localization processes at the L5 stage than at the L4 and adult stages.

Based on the clustering of homologous proteins, we improved the functional annotations of

un-annotated proteins identified at different developmental stages. Some unnamed H. con-
tortus ATP-binding cassette proteins, including ADP-ribosylation factor and P-glycoprotein-

9, were identified by STRING protein clustering analysis.

Introduction
Haemonchus contortus (H. contortus) is the most important abomasal nematode of small rumi-
nates. H. contortus infection causes high economic losses worldwide [1, 2]. This worm pene-
trates the abomasal mucosa to feed on the blood of the host, resulting in anemia and low total
plasma protein [3, 4].H. contortus is one of the most extensively used parasitic nematodes in
drug discovery, vaccine development and anthelmintic resistance research [5–8]. The
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development of first (L1), second (L2) and third (L3) stage H. contortus larvae occurs in the fae-
ces. The infective larvae (L3) are ingested by the host with herbage. After exsheathment trig-
gered by pepsin and HCl in the rumen, L3 migrates to the abomasum and develops into the L4
stage, which feeds on blood, followed by final development into adults approximately 3 weeks
post ingestion [9]. Each developmental stage has different motility, sensory and hormonal reg-
ulation requirements, which may require rapid transcriptional changes [10].

Excretory and secretory products (ESPs) are produced and released by parasites during in
vitro cultivation [11] and in vivo [12]. ESPs contain various proteins and glycoproteins whose
functions include depression of host immunity and modulate the host immune system from
the early stages of infection for their survival [13–15].

H. contortus excretory and secretory products (HcESPs) contain many proteins [16] that
perform diverse functions such as tissue penetration and host protein degradation [14]. A 55
kDa secretory glycoprotein was identified as an immunogenic protein that causes immune
modulation by inhibiting host neutrophils [17]. The purified 66 kDa adultH. contortus excre-
tory/secretory (E/S) antigen inhibits monocyte function in vitro, as confirmed by decreased
production of hydrogen peroxide and nitric oxide in the culture medium [11]. One HcESP pro-
tein induces eosinophil and neutrophil chemotactic activity [18]. We have also demonstrated
that recombinantH. contortus galectin (rHco-gal-m) is recognized by the serum of goats natu-
rally infected with H. contortus and can bind and modulate the activity of goat T cells and
monocytes. rHco-gal-m inhibits the expression of MHC II molecules, decreases T cell activa-
tion and proliferation, induces the apoptosis of T cells and affects several signaling cascades
[19]. In vitro studies have reported that parasitic ESPs have a direct effect on cultured cells or
tissues, such as inhibiting acid secretion [20] and inducing the vacuolation and detachment of
HeLa cells [21, 22]. These findings indicate that ESPs have multiple functions in vivo.

In a previous analysis of HcESP, approximately 193 immunogenic spots were detected by
2D gel analysis [16], and 52 proteins were identified by MS. We identified 129 male-specific,
132 female-specific and 23 shared immunogenic proteins from adult H. contortus by MALDI-
TOF [23]. The presence of antibodies against many E/S proteins in infected animals strongly
indicates the presence of ESPs in the circulation of infected animals [12, 23]. Other intestinal
nematodes of livestock that are very closely related toH. contortus, including Cooperia spp.
[24], Ostertagia ostertagi [25], and Teladorsagia circumcincta [26], also secrete a GAL/VAL-
dominated suite of ESPs. The large number of ESP molecules also suggests functional
complexity.

Binding to the host cell is often a prerequisite for ESP function [11, 17–19, 27]. Some ESP
molecules react to the molecules on the surface of the host cell to form receptor-ligand com-
plexes, similar to many other receptor-ligand systems, for example, galectin binds β-galactoside
sugars in a metal-independent manner [28, 29].

Despite the large number of ESP molecules and their diverse functions, few ESP proteins
have been identified and functionally characterized, particularly in vivo, and the ESP receptors
on the host cell surface have not been fully characterized. Peripheral blood mononuclear cells
(PBMCs) consist of several populations of immune cells, included lymphocytes (T cells, B cells,
and NK cells) and monocytes that play important roles in the immune responses. Previously
we reported that, HcESPs had immune suppressive potential on the goat PBMCs in vitro [30].
The present study is the first to analyze HcESPs from different developmental stages of H. con-
tortus that interact with goat PBMCs in vivo using proteomics. This study will facilitate the elu-
cidation of HcESP functions and the mechanisms ofH. contortus immune evasion and
pathogenesis.
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Materials and Methods

Ethics Statement
Animal experiments were conducted following the guidelines of the Animal Ethics Committee,
Nanjing Agricultural University, China. All experimental protocols were approved by the Sci-
ence and Technology Agency of Jiangsu Province. The approval ID is SYXK (SU) 2010–0005.

Production of H. contortus excretory and secretory product (HcESP) in
vitro
To harvest ESP, the standard procedure for H. contortus described by Yatsuda et al. was used
[16]. Briefly, H. contortus (Nanjing strain) adult worms were harvested from the abomasum of
an experimentally infected donor goat, washed several times with PBS, and incubated for 4 h in
RPMI 1640 medium (100/ml) containing antibiotics (100 IU of penicillin, 0.1 mg/ml strepto-
mycin, and 5g/ml gentamicin) at 37°C under 5% CO. The medium was then removed, and the
parasites were incubated in new medium containing 2% glucose overnight. The supernatant
was collected, centrifuged, filter-sterilized (0.2 m), concentrated, and desalted (10 mMTris,
NaCl pH7.4) using 3 kDa filters (Centriprep YM-3, Millipore). The protein concentration was
determined by the Bradford assay [31].

Production of anti HcESP polyclonal antibodies (IgGHcESP)
To generate polyclonal antibodies against HcESP (IgGHcESP), 0.4 mg of HcESP protein was
mixed with Freund’s complete adjuvant (1:1) and injected subcutaneously into 3 female Spra-
gue Dawley (SD) rats [27, 32]. Rats received four doses at 2-week intervals. Ten days after the
last injection, the rats were anesthetized with diethyl ether, sera containing specific anti-HcESP
antibodies were collected, and the concentration of antibodies was determined by ELISA. The
specific reactivity with HcESPs was confirmed by western blot analysis.

Western blot analysis of the specificity of IgGHcESP
Purified HcESP (20 μg) were resolved by 10% SDS-PAGE and transferred to Hybond-C extra
nitrocellulose membranes (Amersham Biosciences, UK). Non-specific binding was blocked by
incubating the membranes in 5% skim milk in Tris-buffered saline (TBST) for 1 h at room
temperature. The membranes were then washed 5 times (5 min each) with TBS containing
0.1% Tween-20 (TBST), followed by incubation with the primary antibodies (IgGHcESP) for 1 h
at 37°C (1:100 dilution in TBST). After washing 5 times with TBST, the membranes were incu-
bated with HRP-conjugated rabbit anti-rat IgG (Sigma, USA) for 1 h at 37°C (diluted 1:2000 in
TBST). Finally, the immunoreaction was visualized after incubation with freshly prepared dia-
minobenzidine (DAB, Sigma) as a chromogenic substrate for 5 min.

Collection of PBMCs from goats experimentally infected with H.
contortus
To identify HcESPPBMC-interacting proteins, three male Boer goats (2 years old) were raised
under nematode-free conditions for the in vivo experiment. Infective stage larvae (L3) of H.
contortus were produced in vitro, and 8000 L3 were administered to the nematode-free goats.
The goats were monitored during the entire experimental period. To confirm H. contortus
infection, fecal samples were collected from the rectum of each infected goat twice each week
and checked for the presence ofH. contortus eggs. Food and water were provided to all animals
ad libitum. Twenty milliliters of heparinized blood was collected from each goat after 7 (L4
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stage), 15 (L5 stage), 40 (early adult stage) and 60 days (late adult stage) by vein puncture.
PBMCs were separated by the standard Ficoll-Hypaque (GE Healthcare, USA) gradient centri-
fugation method [33], and isolated PBMCs were used to identify HcESP/PBMC-interacting
proteins by co-immunoprecipitation (Co-IP), western blot and liquid chromatography–tan-
dem mass spectrometry (LC-MS/MS) analyses.

Co-immunoprecipitation of HcESPPBMC-interacting proteins
Co-IP was performed using the Protein A/G PLUS-Agarose Immunoprecipitation Kit (Santa
Cruz Biotechnology, USA) according to the manufacturer’s instructions. Briefly, 4× 107

PBMCs were collected from experimentally infected goats (in vivo) were pelleted and lysed
with 3 mL of NP-40 lysis buffer (50 mM Tris pH 7.4, 150mMNaCl, 1% NP-40) containing pro-
tease inhibitor cocktail (Merck, USA). Cellular debris was pelleted by centrifugation at 10,000 x
g for 10 min at 4°C, and the supernatant was transferred to a new tube. The cell lysate was pre-
cleared by incubation with 1 μg of rat normal IgG and 20 μL of Protein A/G PLUS-Agarose
beads at 4°C for 30 min. After pelleting the beads by centrifugation at 1,000 ×g for 5 min at
4°C, the protein concentration of the supernatant (cell lysate for IP) was determined using the
PierceTM BCATM Protein Assay (Thermo Fisher Scientific, USA).

A 1-mL aliquot of the above lysate was incubated with IgGHcESP overnight at 4°C. Immune
complexes were isolated using 20 μL of protein A/G plus agarose. Immunoprecipitates were
collected by centrifugation at 2,500 rpm for 5 min at 4°C. The supernatant was carefully aspi-
rated and discarded, and the pellet was washed four times with RIPA buffer. After the final
wash, the pellet was resuspended in 1X SDS buffer.

Confirmation of the proteins of HcESP interacted with PBMCs in vivo by
Western blot
The immunoprecipitates obtained by Co-IP were used to confirm HcESP interation in vivo by
western blot using IgGHcESP as the primary antibody as described in the previous section.

In-solution trypsin digestion and liquid chromatography–tandemmass
spectrometry (LC-MS/MS)
In-solution trypsin digestion and LC-MS/MS of immunoprecipitates were performed at Shang-
hai Applied Protein Technology, Co. Ltd. MS data for protein identification were obtained
using Q Exactive (ThermoFinnigan, San Jose, CA). Approximately 30μg of sample was boiled
with 30μL of STD buffer in a water bath for 5 min and cooled to room temperature. A 200-μL
aliquot of UA buffer (8 M Urea, 150mMTris-HCl, pH 8.5) was added, followed by 30 kDa
ultrafiltration centrifugation. After centrifugation, the filtrate was discarded, and 100μL of IAA
(50mM IAA in UA) was added. After oscillation for 1 min, the sample was incubated at room
temperature in the dark for 30 min, centrifugation was repeated as above, and the filtrate was
discarded. Then, 100 μL of UA buffer was added, and the sample was centrifuged twice. Finally,
100μL of 25mM NH4HCO3 was added and centrifuged twice as described above. The solution
was then digested with 40μL of trypsin overnight at 37°C.

Dried peptides were dissolved in 40μL of 0.1% formic acid (FA), and a 20μL aliquot was
desalted for 10 min on a C-18 pre-column (Zorbax 300SB-C18 peptide traps, Agilent Technol-
ogies, Wilmington) pre-equilibrated with 0.1% FA. Separation was performed by capillary
high-performance liquid chromatography (0.15 X 150mm RP C18 analytical column, Column
Technology Inc.) at 200°C using a chromatographic gradient of 0.1% FA in H2O (A) to 0.1%
aqueous FA in 84% ACN (B) over 60 min (liquid linear gradient of solution A: 1–4% (1–50
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min), 4 to 50% (50–54 min) and linear gradient of solution B from 50–100% (54–60 min); B
was maintained at 100%).

Database search
Data were searched against an in-houseH. contortus sequence Uniprot database (21,722 pro-
tein entries) based on the recently published Haemonchus genome [34] using the search engine
Mascot (v.2.2, Matrix Science, London, UK), allowing a maximum of two missed cleavages.
Carbamidomethyl (C) was specified as a fixed modification and oxidation (M) as a variable
modification.

Gene Ontology (GO)
Gene ontology (GO) annotation was performed using BLAST2GO (version 2.7.2). The
sequence alignment software NCBI BLAST + (ncbi-blast-2.2.28 + -win32.ext) was used to com-
pare the identified protein sequences and the protein sequence NCBI nr database. According
to the principle of similarity, functional information for homologous proteins can be used for
the functional annotation of target proteins. Only results in the top10 and with an E value� 1
e-3 ratio in subsequent sequence analysis were retained. A resulting ratio of similarity of 42–
100% was considered.

Functional annotation improvement by STRING protein clustering
analysis
STRING DB (version 9.1) was used to improve the functional annotation and analyze the func-
tional networks among protein families [35, 36]. The sequences of unassigned proteins were
retrieved from the UNIPROT-KB and subjected to protein clustering analysis to identify func-
tional protein association networks using the STRING tool (http://string.embl.de/) [37].
Orthologous protein groups matching our queries were used for functional association net-
works and gene ontology annotation. A STRING conservative score threshold of 0.4 was
applied to calculate a confidence score on the basis of the conserved gene neighborhood, gene
fusion events, and significant co-occurrence and co expression.

Validation of proteomic data by interaction analysis of recombinant
proteins identified at different developmental stages
To validate the proteomic data, we confirmed the interaction of 6 recombinant proteins identi-
fied at different developmental stages to goat PBMCs. The genes encoding 14-3-3 (Hc-ftt),
ADP-ribosylation factor (Hc-arf), SCP-like extracellular-domain-containing protein (Hc-scp)
and serine threonine kinase (Hc-stp) were cloned using specific reverse and forward primers
(Table 1). The genes encoding actin [38], and glyceraldehyde-3-phosphate dehydrogenase
(HcGPDH) [39] were previously cloned in our laboratory. Briefly, the ORF of each gene was
amplified by RT-PCR and cloned into pMD-19T (Takara Biotechnology). After double diges-
tion with the corresponding restriction enzymes, DNA fragments were recovered and success-
fully sub-cloned into the pET32a (+) expression vector. Escherichia coli BL21 cells containing
the recombinant gene expression plasmid were cultured in Luria-Bertani medium with ampi-
cillin (100 μg/mL), and expression of the recombinant proteins (rHc-ftt, rHc-arf, rHc-scp,
rHc-stp, rHc-act, rHc-GPDH) was induced by IPTG. The histidine-tagged fusion protein was
purified from the bacterial lysates using the His-Bind Resin Chromatography kit (Novagen)
and dialyzed in phosphate buffered saline (PBS, pH 7.4) to remove imidazole. The purified
recombinant proteins were dissolved in PBS (pH 8.0) containing 0.1mM DTT (PBS/DTT). The
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purity of the protein preparation was determined by SDS-PAGE. Protein concentrations were
determined by the Bradford method. Endotoxins were removed from the recombinant proteins
using the ToxinEraserTM Endotoxin Removal kit (GeneScript, USA). Polyclonal antibodies
against the recombinant proteins were produced as described above.

Interaction of recombinant proteins with PBMCs
Heparinized blood was collected by vein puncture from dewormed healthy goats. PBMCs were
separated as described in the previous section and washed twice in Ca2+2+/Mg- free PBS pH
7.4. Cell viability assessed by means of the trypan blue exclusion test was consistently>95%.
The PBMC were resuspended to a final density of 1×105 cells/ml in RPMI 1640 medium con-
taining 10% heat inactivated fetal calf serum (FCS), 100 U/ml penicillin and 100 mg/ml strep-
tomycin (gibco, Life Technology). PBMCs were incubated in the presence and absence of
recombinant proteins (5μg/ml) for 1 h at 37°C. Confirmation of interaction was determined by
an immunofluorescence assay (IFA) as described by Yuan et al. [40]. Briefly, washed cells (105 /
ml) were fixed with 4% paraformaldehyde on a poly-L-lysine-coated glass slide. The cells were
then treated with blocking solution (4% BSA in PBS) for 30 min to minimize background stain-
ing. After sequential incubation with rat anti-recombinant protein IgG (1:100) for 2 h and a
secondary antibody (1:300) coupled to the fluorescent dye Cy3 (Beyotime, Jiangsu, China),
nuclear staining with 2-(4-amidinophenyl)-6-indole carbamidinedihydrochloride (DAPI,
1.5μM; Sigma, MO, USA) was performed for 6 min. Then, protein localization was determined
by observing the staining patterns with a 100× oil objective lens on a laser scanning confocal
microscope (L SM710, Zeiss, Jena, Germany). Digital images were captured using the Zeiss
microscope software package ZEN 2012 (Zeiss, Jena, Germany).

Results

Production and analysis of the specificity of anti-HcESP polyclonal
antibodies (IgGHcESP)
IgGHcESP was produced by injection of SD rats with HcESP protein mixed with Freund’s com-
plete adjuvant, and the specificity of IgGHcESP was confirmed by western blot using HcESP as
the antigen. Normal rat serum was used as a control. Bands from 13 to 180 kDa were detected
by IgGHcESP, and no bands were recognized by the normal rat serum (Fig 1).

Confirmation of the interaction of HcESPs with goat PBMCs in vivo
PBMCs collected from the experimentally infected goats were used to confirm the interaction
of HcESP with PBMCs in vivo. Protein extracted from the infected goat PBMCs was

Table 1. Oligonucleotide primer sequences for PCR.

Name Accession No. Sequences(5’- 3’)

Haemonchus contortus 14-3-3 (Hc-ftt) CDJ94531 GGATCCATGGCTGACAATAAGGATG

GAATTCCAATTTGCACCTTCTCCTT

Haemonchus contortusADP-ribosylation factor (Hc-arf) CDJ89627 AAAGGATCCATGGGTAACATTTTCGG

GCGCTCGAGTTATCCTCTGTTTTTCA

Haemonchus contortusserine/ threonine protein kinase (Hc-stk) AF457202 AAGCTTATGGTTCCGGCCTCTTATCAGA

GAATTCTCGACTGACCGGCAGGAGCTTG

Haemonchus contortus SCP-like extracellular-domain-containing protein (Hc-scp) CDJ81443 GAATTCATGTGTCCAGACACCAATGGTA

AAGCTTTTATGGGGCAATACAGAGAGCT

doi:10.1371/journal.pone.0159796.t001
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concentrated by Co-IP. Western blot analysis of the immunoprecipitate using IgGHcESP as the
primary antibody confirmed the interaction of HcESPs with the goat PBMCs collected from
the experimentally infected goats on day 7 (L4 stage), 15 (L5 stage), 40 (early adult stage) and
60 (late adult stage) post infection (Fig 2).

Analysis of HcESP interacting proteins in vivo by LC-MS/MS
The interaction of HcESPs with goat PBMCs in vivo at different stages of H. contortus develop-
ment was analyzed by LC-MS/MS after the interacting proteins were concentrated by Co-IP
(S1 Fig). A total of 407 interacting proteins in vivo were identified from theH. contortus pro-
tein database via SEQUEST searches. Of these proteins, 47 (11.54%) proteins were common to
all developmental stages (S1 Table) including actin, heat shock protein 70, glycoside hydrolase,
glyceraldehyde-3-phosphate dehydrogenase, zinc finger, peptidase, Ras domain, serine threo-
nine protein kinase (STK) and 14-3-3.

A total of 94 (23.09%) interacting proteins were common to both the L4 and L5 developmen-
tal stages, including elongation factor 1-alpha, tropomyosin, immunoglobulin I-set and fibro-
nectin, transcription factor E2F dimerization partner (TDP), tenascin-like and cytochrome b5.
L5 and the early adult stage shared 76 (18.67%) interacting proteins, including major sperm
protein (MSP), ribosomal proteins (S8, S5 and L2), Mbt repeat, NADH: ubiquinone oxidore-
ductase and dynein light intermediate chain. Fifty-nine (14.49%) proteins were shared between

Fig 1. Protein profile of H. contortus ESP (HcESP) and western blot analysis of HcESP probed with rat
anti-HcESP. (c) Control using normal rat serum as the primary antibody.

doi:10.1371/journal.pone.0159796.g001
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the early and late adult stage. The distribution of the interacting proteins at different develop-
mental stages is summarized in S1 Table and Fig 3.

The identified proteins were further categorized according to stage-specific (S2 Table); 98
(24%) interacting proteins were identified at L4 including heat shock protein 90 (HSP90), alde-
hyde dehydrogenase, nematode cuticle collagen, carbohydrate kinase, glucose-methanol-cho-
line oxidoreductase and eukaryotic translation initiation factor 3. At the L5 developmental
stage, 107 (26.3%) HcESP stage-specific interacting proteins were identified, including enolase,
acyltransferase choActase, phosphotyrosyl phosphatase activator, myosin-10, glutamine ami-
dotransferase, annexin, saposin type B and telomerase activating protein Est1. Only 13 inter-
acting proteins were stage-specific in the early adult stage; these proteins included alanine
racemase, amino acid transporter domain-containing protein, aminotransferase, and conden-
sation and AMP-dependent synthetase ligase. In the present study, 48 (11.54%) late adult
stage-specific proteins were identified, these proteins included CK1/WORM6 protein kinase,
protein synthesis factor and translation elongation factor EFTu EF1A and translation

Fig 2. SDS PAGE and western blot analysis of the Co-IP of in vivo interacting HcESPswith goat PBMCs at
different developmental stages.Marker (M), Immunoprecipitates (IP) and normal rat serum Control (C). (A) L4, (B) L5,
(C) early adult and (D) late adult.

doi:10.1371/journal.pone.0159796.g002
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elongation factor EFG EF2, selectin-like protein, short-chain dehydrogenase reductase SDR,
EVL-14, transcription factor jumonji 1 and tyrosine protein kinase.

Gene Ontology (GO) analysis
The GO signatures of 234 of the 407 proteins identified in vivo were available in the database.
To further understand the functions of the proteins identified in this study, we queried the
InterPro databases. The identified proteins were classified by molecular function, biological
process and cellular component according to the GO hierarchy using a Web Gene Ontology
Annotation Plot (WEGO).

Among the 47 shared proteins by all developmental stages, 41 were annotated based on
molecular function, and 5 terms were identified. Most were assigned to binding and catalytic
activity. For biological processes, 29 proteins were associated with 9 terms. Most of the proteins
were related to metabolic, cellular and single organism processes. Among the cellular compo-
nent annotation, 16 proteins were assigned to 5 cellular component terms, and16 proteins were
located in the cell as well as in organelles (Fig 4). GO analysis of the interacting proteins shared

Fig 3. Venn diagram of the interacting proteins shared among different developmental stages in vivo.

doi:10.1371/journal.pone.0159796.g003
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Fig 4. Comparative molecular function, biological process and cellular component GO terms of stage-specific HcESP interacting proteins
at different developmental stages and shared among all developmental stages.

doi:10.1371/journal.pone.0159796.g004
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between the L4 and L5 stages resulted in the annotation of 7 molecular functions; most of the
proteins were assigned to binding and catalytic activity. For biological processes, 10 terms were
identified, primarily metabolic, cellular and single organism processes.

An identical distribution of GO terms was observed for the proteins shared between the L5
and early adult stages. Eight terms were identified and binding and catalytic activities were the
major molecular functions. Among the proteins shared by the early and late adult stages, 39
were assigned to binding and 31 to catalytic activity. The distribution of GO terms was nearly
identical for the early and late adult stages (Fig 5).

Among the 98 L4 stage-specific proteins, 35 were assigned to 8 molecular function terms.
The most abundant terms were catalytic and binding activity. For biological processes, 11
terms were identified. Cellular, metabolic, single-organism and localization were the most
abundant terms. According to the cellular component annotation, 7 cellular locations were
assigned to 21 proteins. Cell part, membrane, membrane part and macromolecular complexes
were annotated as the major cellular components. The results of the GO analysis for the 108 L5
stage-specific proteins revealed that 35 proteins were annotated with 9 molecular functions.
Binding and catalytic activity were the major terms. For biological processes, 39 proteins were
assigned 8 terms; metabolic, cellular process, single-organism process and localization were the
most abundant biological processes. In the case of cellular component annotation, 28 proteins
were annotated with 8 cellular locations, and most of the annotated proteins were membrane,
cell part and membrane part. Among the 13 early adult stage-specific interacting proteins, only
2 terms related to molecular function were annotated, and 3 proteins were assigned to binding
and catalytic activity. Metabolic processes were a major biological process at this stage, and
only one protein was annotated as a membrane part. GO analysis of 48 late adult stage-specific
proteins revealed a molecular function annotation for 18 proteins. The same pattern of func-
tional distribution described above was observed, and 5 GO terms related to molecular func-
tion were identified. Catalytic and binding activity were the most abundant terms. Seventeen
proteins were annotated as biological process, and 7 terms were attained. Metabolic, cellular
and single-organism processes were the major terms. For cellular components, 7 terms were
identified for 6 proteins. Protein complex and cell part were highly represented terms (Fig 4).

Improvement of functional annotation by protein clustering
The sequences of 173 unassigned interacting proteins were retrieved from UNIPROT-KB and
subjected to protein clustering analysis to determine their functional association network in
the STRING database. In the STRING database, 118/173 (68.20%) proteins were available, and
80 functional associations were predicted. Fig 6 illustrates the functional interaction between
protein orthologues in the nearest organism (Caenorhabditis elegans) and their predicted func-
tional partners. The resultant orthologous protein groups were used to predict function. The
results of the protein clusters and corresponding functional information are summarized in S3
Table and Fig 7.

Based on the protein clustering, we discovered new HcESP proteins previously annotated as
hypothetical proteins in the database. An unnamed protein (U6NP15) identified at the L4 and
L5 stages matched WHiTe (Drosophila)-related ABC transporter family member (wht-8) with
56% similarity. An unnamed protein (W6NHX8) identified at the L4 stage matched the P-gly-
coprotein subclass of the ATP-binding cassette (ABC) transporter super family with 66%
homology. ADP-ribosylation factor (arf-1.2) family matched hypothetical protein (U6PBJ7).
The identified protein had 97% similarity with C. elegans.

Protein cluster analysis enabled the functional characterization of 42 additional proteins
based on GO analysis of homologous proteins. Binding activity was a highly represented
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Fig 5. Comparative molecular function, biological process and cellular component GO terms of
proteins shared between the L4 and L5, L5 and early adult, and early adult and late adult stages.

doi:10.1371/journal.pone.0159796.g005
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molecular function including ion binding, cytoskeleton protein binding and DNA binding.
Thirty-six biological process terms were identified for 56 proteins. Anatomical structure devel-
opment, embryo development, reproduction, locomotion and transport were highly repre-
sented terms.

Validation of proteomic data by assessing recombinant HcESPs
interacted with PBMCs
To validate the proteomic data, we purified 6 recombinant proteins (rHc-ftt, rHc-arf, rHc-
scp, rHc-stp, rHc-act and rHcGPDH) identified at different developmental stages as inter-
acting proteins with goat PBMCs. Interaction of the recombinant proteins with goat
PBMCs was confirmed by immunofluorescence. Nuclei were stained with DAPI (blue fluo-
rescence), and confocal microscopy images revealed that the recombinant proteins were
interacted with the cell surface (red fluorescence). In the control group, no red fluorescence
was observed (Fig 8).

Fig 6. Improvement of functional annotation based on protein clustering. (A) STRING functional protein association network of the predicted
associations of unassigned proteins. Nodes of different colors indicate clustering proteins matching our queries. (B) Co-expression graph from C. elegans.
(C) Predicted protein functional partners.

doi:10.1371/journal.pone.0159796.g006
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Discussion
Excretory and secretory products (ESPs) are produced and released by parasites during in vitro
cultivation [11] and in vivo [12].H. contortus excretory and secretory products (HcESPs) con-
tain many proteins [16] and performed diverse functions such as tissue penetration and host
protein degradation [14]. It was previously reported that early expression of TH2 cytokine IL-4
and upregulation of genes that recruit neutrophils (CXCL1) and macrophages (MCP1) was
associated with the resistance to H. contortus [41]. Estrada-Reyes et al. [42] reported the high
regulation of IL-5 at 2, 7 and 14 days post-infection (PI) and IL-6 at 14 days PI ofH. contortus.
In our previous study, HcESPs displayed suppressive potential on the goat PBMCs in vitro.
They inhibited the productions of IL-4, IFN-γ, nitric oxide, cell proliferation, whereas
increased the production of suppressive cytokine IL-10, inflammatory modulator IL-17 and
cell migration [30]. However, the protein or proteins of HcESPs that govern the functions of
HcESPs in vitro or in vivo are unknown. In the present study, the interactions of HcESP at dif-
ferent developmental stages with goat PBMCs in vivo were evaluated by Co-IP followed by
LC-MS/MS. A total 407 non-redundant H. contortus proteins that interacted with goat PBMCs
in vivo were identified by searching theH. contortus Uniprot database. This study is the first to
report the in vivo identification of HcESP interacting proteins from the L4 to adult stage of
worms living in the goat host. We purified 6 recombinant HcESP interacting proteins to vali-
date the proteomic data and the interaction of these proteins with goat PBMCs by IFA.

In our study, 47 HcESP interacting proteins were common among all developmental stages.
Among them, 4 peptidase proteins including cysteine peptidase (C46), serine peptidases (S9 &
S28) and metalloprotease (M13) were identified. Significant expression of all three classes of
peptidases in the parasitic L4 to adult stages has been reported [43]. Schwarz et al. reported
more than 120 upregulated peptidase genes inH. contortus parasitic stages, and various clans
were predicted to be secreted peptidases, including metallopeptidases (M 12A, M01, M13,
M12A, M10A), aspartic peptidases (A01A) and cysteine peptidases (CA01A) [10]. The identifi-
cation of secreted proteins related to the peptidase family in the current research supports
these reports, which indicated that these proteins play a crucial part in the catabolism of globin

Fig 7. Distribution of Gene Ontology terms improved by protein clustering of 173 unassigned HcESP proteins that bound goat PBMCs at
different developmental stages.

doi:10.1371/journal.pone.0159796.g007
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by hemoglobin cleavage [1]. Development from L3 to L4 in vitro leads to the release of a metal-
loprotease enzyme that inhibits blood clotting and thus facilitates blood feeding [1, 44]. We
confirmed the above finding in vivo and report for the first time the presence of these peptidase
proteins in the blood circulation. These findings support previous genomic studies reporting
that genes encoding peptidase proteins are transcribed at a higher level in the host compared to
free-living stages [10, 16].

In the present study, a key glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase
(GPDH), was identified as interacting protein with goat PBMCs in vivo in all developmental
stages. GPDH plays an important role in host invasion of the worm in addition to its glycolytic
activity [45, 46]. This protein could play a key role in immune modulation by binding comple-
ment (C3) and thus inhibiting complement activity [2]. GPDH is essential for inducing the T
helper (Th1 and Th17) immune response during natural infection [47]. Our findings suggested
that GPDH plays an important role in immune modulation and is one of the most important
HcESP proteins.

In the present study, the serine/threonine kinases (PKs) were also identified in all stages.
This finding is in agreement with the results of previous studies [10, 48]. PKs play a vital role in

Fig 8. Interaction of recombinant proteins (A): rHc-ftt, (B): rHc-arf, (C): rHc-scp, (D): rHc-stp, (E): rHc-act and (F): rHcGPDH) to PBMC. PBMCs were
untreated as controls or treated with the recombinant proteins. The cell nuclei were visualized by DAPI (blue) staining. Staining of the target proteins (red)
was visualized by a Cy3-conjugated secondary antibody.

doi:10.1371/journal.pone.0159796.g008
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the cellular signaling transduction involved in cell proliferation, differentiation, cell-cycle pro-
gression, transcription, DNA replication, metabolic processes, phosphorylation, apoptosis,
autophagy and inflammation [49–52]. The interaction of H. contortus PKs to goat PBMCs sug-
gests that this kinase might also play a significant role in the functional regulation of goat
PBMCs.

We identified the secreted H. contortus 14-3-3 protein as a goat PBMC-interacting protein
in all parasitic stages. Gene sequences of 14-3-3 have been reported for several protozoan and
metazoan parasites, including Plasmodium falciparum, Trypanosoma cruzi, Toxoplasma gondii,
Neosporacaninum, Eimeria tenella, Schistosoma japonicum, Echinococcus granulosus,Meloido-
gyne incognita [53–59]. 14-3-3 proteins are phosphoserine-binding proteins that control the
actions of a wide range of targets via direct protein–protein interactions. In animal cells, the
majority of the known targets of 14-3-3 proteins are involved in signal transduction, transcrip-
tion and proliferation [60–62]. Our findings indicate that the H. contortus 14-3-3 protein may
act in signal transduction.

The cytoskeletal protein actin was identified as an interacting protein in all stages. Actin has
been detected in different helminths [63, 64] and is involved in very important cellular func-
tions, including cell division, secretion, signaling, cellular shape and volume regulation, move-
ment and phagocytosis [65, 66]. The effects of the interaction of H. contortus actin with host
PBMCs merits further study.

We observed thatH. contortusHSP70 interacted with goat PBMCs in vivo in all develop-
mental stages. HSP70 proteins are molecular chaperones that play important roles in the pro-
cess of invasion, response to stress and survival in nematodes. HSP70 has been identified in
several parasitic nematodes [67–69], but there is minimal information available for H. contor-
tus [70, 71].

The transition from the L3 to L4 stage is key to the establishment of parasitism byH. contor-
tus. ESPs play a very important role in pathogenesis and induce immune modulation at the
early stage of infection. L4 is the first blood-feeding stage of H. contortus, and at this stage,
genes related to motor activity and metabolism occur in the parasite [72]. Here, we observed
high proteomic complexity of the HcESPs that interacted with goat PBMCs at different devel-
opmental stages. HcESP interacting proteins were more abundant at the L4 and L5 stages than
at the early and late adult stages [73]. A previous study reported that 234 proteins were upregu-
lated in the L4 stage compared to L3 [10]. In our study, 209 and 217 proteins were identified at
the L4 and L5 stages, respectively, and 94 interacting proteins were shared between the 2 stages.
Most of the shared proteins were related to binding (n = 51), catalytic activity (n = 41) and
metabolism (n = 51).Our findings suggest the active involvement of these proteins in parasit-
ism and immunemodulation.

SCP-like extracellular-domain-containing protein (vap-1) was identified as an interacting
protein in the L4 and L5 stages. Vap-1 encodes a predicted secreted protein that is similar to the
venom allergen-like proteins reported in a number of invertebrates, including parasitic nema-
todes [74–76]. Schwarz et al. identified 82 genes related to SCP proteins including 54 upregu-
lated genes in the parasitic stages [10]. Previously, two proteins related to the SCP-like proteins
Hc24 and Hc40 were reported in the ESPs of adult H. contortus [12, 77]. Our findings support
these previous results, and the interaction of these proteins with goat PBMCs at multiple stages
in vivo suggests a critical role of SCP-like proteins in infection and may be immunomodulatory
factors.

Elongation factor-1α protein is involved in signaling activity and was identified in our study
at L4 and L5. EF-1α is highly conserved and ubiquitously expressed in all eukaryotic cells [78].
EF-1α proteins has been reported in parasites including Cryptosporidium hominis,
Trichomonas vaginalis, Trypanosoma brucei, Clonorchis sinensis and Brugia malayi [79–83]
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Functionally, EF-1α transfers aminoacylated tRNAs to the ribosome A site in a GTP-depen-
dent reaction [84]. In addition, EF-1α appears to have a number of other functions associated
with cell growth, motility, protein turnover, and signal transduction [85, 86], DNA replication/
repair protein networks [87] and apoptosis [88]. The interaction of EF-1α with host PBMCs
indicates its active role as an immune depressant and warrants further investigation.

A total of 102 proteins were identified at the early adult stage, and 76 were shared between
the L5 and early adult stages. Fewer HcESPs interacted at the adult stage compared to the L4
and L5 stages. Thus, the parasite releases more ESPs in the early stages of infection to modulate
immune function for parasite survival. Studies of expressed sequence tag (EST) data have pro-
vided transcriptional and genomic insights on the different developmental stages ofH. contor-
tus [10, 59, 72, 89]. We identified 3 ribosomal proteins (S8, S5 and L2) at the L5 and early adult
stages. Zamanian et al. [83] identified 14% ribosomal proteins of the B.malayi exosome-like
vesicles (ELVs) released from the infective L3 stage. Ribosomal proteins actively participate in
cellular processes other than protein biosynthesis and can act as components of the translation
apparatus, cell proliferation and apoptosis [90]. Cantacessi et al. employed an in silico subtrac-
tion approach to identifyH. contortus L3 and xL3 genes and predicted that H. contortus L3-spe-
cific genes encoding ribosomal proteins [91] were required for phagocytosis [91, 92]. Our
findings confirm these previous reports, and the participation of ribosomal proteins in cellular
processes should be further investigated.

We identified 137 proteins at the late adult stage. Fifty-nine proteins were shared between
the early and late stages. Among them, serine/threonine-protein phosphatase (STPs) was iden-
tified as an important interacting protein. STPs from various parasites have been functionally
characterized [93–95]. Protein phosphatases are involved in major biological processes such as
cell division, apoptosis and exocytosis [96]. STPs are often involved in signal transduction and
transcriptional activation [97–99]. Our findings suggest thatH. contortus STPs might be
involved in various biological processes, particularly signal transduction.

We identified 98 stage-specific HcESP interacting proteins in the L4 developmental stage,
including heat shock protein 90, extracellular ligand-binding receptor, aldehyde dehydroge-
nase, carbohydrate kinase, myosin-4, aldehyde dehydrogenase and glucose-methanol-choline
oxidoreductase. A total of 107 L5 stage-specific proteins were identified, including enolase,
saposin type B, myosin-10, aromatic amino acid beta-eliminating lyase threonine aldolase and
annexin. Genes or ESTs transcribed during different developmental stages have been investi-
gated previously [10, 72]. Hartman et al. reported that the cysteine protease, Hc42, Hc60 and
vitellogenin genes were transcribed at the adult stage, whereas glutathione peroxidase, alpha-
tubulin, Hc43 and Hc38 were transcribed at the L3 and adult stages [44]. The immunological
involvement of these stage-specific HcESP proteins remains to be further characterized.

Scaffold proteins are essential components of signaling functions such as the trafficking,
anchoring and multimerization of glutamate receptors and act as adhesion molecules [100–
102]. We identified 53 HcESP scaffold proteins that interacted with goat PBMCs at different
developmental stages in vivo, including 27 in L4 and 28 in L5. Interestingly, only 5 and 10 scaf-
fold proteins were observed at the early and late adult stages. Low concentrations of scaffold
proteins increase the output of cascades, but as the concentration of the scaffold proteins
increases, the output of the cascade decreases. At an elevated concentration of scaffold proteins,
one molecule can bind only one kinase molecule, and thus the output of the signaling cascade
is also very low [103, 104]. The high concentration of scaffold proteins observed at the L4 and
L5 stages in the present study could represent a mechanism of immune modulation by combi-
natorial inhibition of the signaling cascade.

We identified the hypothetical H. contortus protein (U6PBJ7) as a member of the ADP-
ribosylation factor (arf-1.2) family by STRING protein clustering. This highly conserved family
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is involved in a wide range of cell functions. ARF proteins are N-myristoylated GTPases, which
are involved in membrane trafficking, actin cytoskeleton, regulation of apoptotic fate and acti-
vation of phospholipase D1 (PLD1) and phosphatidylinositol 4-phosphate 5-kinase [105–107].
The present study is the first to report interaction of the HcESPARF-1.2 protein with goat
PBMCs in vivo at multiple developmental stages. In our study, another hypothetical HcESP
protein (W6NHX8) identified at the L5 stage was confirmed as P-glycoprotein-9 (pgp-9), part
of the ATP-binding cassette (ABC) or traffic ATPase subclass, by STRING protein clustering
analysis. The H. contortus Pgp gene may be involved in host-parasite interaction, particularly
in eosinophil granule product detoxification [108, 109]. Nematode parasites undergo impor-
tant adaptations during the transition from free-living to parasitic stages, such as evasion of the
host immune reaction, metabolism and growth. Issouf et al. [108] compared the expression
level of Pgps in free and parasitic stages and reported that Hco-pgp-9.2, Hco-pgp-11, Hco-pgp-
3 and Hco-pgp16 mRNAs were over expressed in the L4 and adult stages. Here we report for
the first time thatH. Contortus P-glycoprotein-9 (pgp-9) interacted with goat PBMCs at the L5
stage in vivo.

Secreted extracellular vesicles (EVs) play an important role in parasite-host interactions.
Exosomes considered highly bioactive EVs that facilitated cell to cell communication in many
eukaryotes and prokaryotes [110]. Several studies on various parasites including helminths
demonstrated that EVs could carry and deliver virulence factors such as proteins and sRNAs to
the host [111–115]. In the present study, various HcESPs interacting proteins including annex-
ins, GAPDH, actin, HSP70, HSP90, 14-3-3 proteins, tubulin, ras-related protein, histone, ATP
synthase subunit alpha, HSP DnaJ, eukaryotic translation initiation factor 3, enolase, ribosomal
proteins and acyltransferase ChoActase were identified at various developmental stages in vivo.
In the previous studies these interacting proteins were recognized as members of EVs [83, 116,
117]. The interaction of these EVs related HcESPs with goat PBMCs suggested their important
regulatory role in host–parasite interaction.

To provide a comprehensive understanding of the roles of the H. contortus proteins that
interact with host PBMCs, the identified proteins were functionally categorized based on the
GO annotation of molecular functions, biological processes and cellular components. Of the
407 proteins identified in vivo, 173 (42.50%) did not have assigned GO terms. These unanno-
tated proteins were further analyzed by clustering of homologous proteins via STRING data-
bases to enhance the functional annotation prediction.

For molecular function GO annotation, the most enriched functions of the HcESPs were
related to binding activity. Proteins associated with these functions are involved in ATP bind-
ing, nucleotide binding, protein binding, GTP binding, DNA binding, motor activity, transla-
tion elongation factor activity, GTPase activity, protein kinase C inhibitor activity, protein
hetero- and homodimerization activity, protein polymerization and signaling activity [16, 118,
119]. The biological process GO results revealed that the most represented categories were
annotated as transport, metabolic, catabolic and phosphorylation processes. A nearly identical
profile of biological process annotation was reported by Moreno et al. for Heligmosomoides
polygyrus ESPs [118].

The functional annotation of proteins can be predicted and improved by clustering of
homologous proteins. The functional annotation of parasite proteins is often constrained by
the small proportion of genes with homologs in model organisms [120]. However, based on
the clustering of homologous proteins [50, 121], we were able to enrich the GO annotations of
173 unannotated proteins identified at different developmental stages. Clustering the homolo-
gous proteins increased the GO annotation by 24.27% for molecular function annotation,
23.36% for biological process and 22.54% for cellular components.
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In conclusion, we analyzed the interaction ofHcESPs with host PBMCs in vivo at different
developmental stages. Many of the identified proteins were highly developmentally specific
proteins. The large numbers and the complexity of the interacting proteins indicated that the
HcESPs interact with the host immune cells in complex ways and result in complex regulation
of the host immune cells. Our data provide a baseline for understanding the relationship
between the parasite and host. However, the interacting partners and the regulatory mecha-
nisms of specific proteins remain to be further investigated. The functions of the novel interact-
ing proteins and the nature of the unassigned proteins also require further study.
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