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Abstract
This paper introduces an optimal sizing algorithm for a hybrid renewable energy system

using smart grid load management application based on the available generation. This

algorithm aims to maximize the system energy production and meet the load demand with

minimum cost and highest reliability. This system is formed by photovoltaic array, wind tur-

bines, storage batteries, and diesel generator as a backup source of energy. Demand pro-

file shaping as one of the smart grid applications is introduced in this paper using load

shifting-based load priority. Particle swarm optimization is used in this algorithm to deter-

mine the optimum size of the system components. The results obtained from this algorithm

are compared with those from the iterative optimization technique to assess the adequacy

of the proposed algorithm. The study in this paper is performed in some of the remote areas

in Saudi Arabia and can be expanded to any similar regions around the world. Numerous

valuable results are extracted from this study that could help researchers and decision

makers.

1. Introduction
In recent years, interest in renewable energy sources (RES) for power generation is progres-
sively gaining significance in the entire world due to fossil fuel depletion, high cost, and
increasing environmental concerns. Therefore, there is a big trend to use RES to address the
power generation especially for the isolated or remote areas. Utilization of different RES with
storage and backup units to form a hybrid renewable energy system (HRES) can give a more
economic and reliable source of energy [1]. But, due to the non-linear response of system com-
ponents and the random nature of RES and load profile, smart grid is utilized to suit and incor-
porate these units in order to move the power around the system as efficiently and
economically as possible [2].

One of the most important issues in the recent studies is to optimize the components of
HRES to meet the load requirements with possible minimum cost and highest reliability. In
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view of the complexity of optimization of the HRES, it was imperative to discover effective
optimization methods ready to get accurate optimization results. Particle swarm optimization
(PSO) algorithm is recommended as a standout amongst the most valuable and promising
methods for optimizing the HRES because of using the global optimum to locate the best solu-
tion [3]. PSO algorithm is designed based on swarm intelligence and used to handle the com-
plex optimization problems [4]. Like other population-based optimization algorithms, PSO
begins with a random initialization of particles in the search space. Every particle is invested
with a random position and a random velocity at the beginning, and then adjusts its search pat-
terns in view of its own experience and experiences of other individuals [5].Owing to its sim-
plicity, effectiveness and low computational cost; PSO has gained significant popularity and
improvements [6]. In the last decade, numerous authors developed PSO to fulfill several HRES
optimization objectives and constraints [7–15]. Boonbumroong et al. [7] utilized PSO to mini-
mize the life-cycle cost of a stand-alone PV/wind/diesel system to feed a certain load. The opti-
mization constraint was that the hourly energy demand must be satisfied by the amount of
generated energy. A PSO algorithm was applied in [8–12] for optimum sizing of a hybrid
energy system for supplying a certain load. The optimization objective was to minimize the sys-
tem cost with the constraint of having specific reliability. The HRES includes PV/wind/battery
as in [8, 10, 12], PV/wind/fuel cell in [9], and PV/wind/tidal/battery energy sources in [11].
Hakimi et al. [13] used PSO to minimize the total cost of a stand-alone hybrid energy system
formed by wind units, electrolyzers, a reformer, an anaerobic reactor, fuel cells and some
hydrogen tanks in order such that the demand is met. The optimization constraint was the
stored energy in hydrogen tanks. An optimization problem using PSO to solve the PV/wind
capacity coordination for a time-of-use rate industrial user was introduced in [14] with the aim
of maximizing the economic benefits of investing in the wind and PV generation systems. The
optimization constraint was that the generation from HRES must not to be greater than the
maximum annual load. Wang et al. [15] used multi-objectives PSO algorithm to optimize a
hybrid PV/wind/battery energy system on the basis of cost, reliability, and emission criteria
without considering load management.

Demand response and demand profile improvement have been the center of consideration
by numerous researchers [16–19]. Conejo et al. [16] carried out the demand response by
adjusting the hourly load level in response to the hourly electricity prices. The authors in [17]
proposed an optimum and automatic scheduling framework using linear programming opti-
mization, to accomplish a trade-off between minimizing the electricity payment and minimiz-
ing the waiting time for the loads operation, in the presence of a real-time pricing tariff.
Incentivizing consumers to achieve an ideal load profile suitable for utilities was one of the pro-
posed solutions for demand profile improvement [18]. Barley et al. [19] accomplished sizing of
the HRES components and control the generated energy price based on the trade-off between
the system cost and the percent unmet load. The authors utilized Hybrid2 software in conjunc-
tion with a disentangled time-series model.

In summary, although PSO has been used in several studies and delivers promising results,
most of these studies focus on one issue like sizing, emission control, reliability or cost only [7–
14] and they didn’t address multi-objectives or multi-constraints analysis of HRES. Further-
more, all of the optimization approaches used in the above studies [7–19] didn’t take into
account the smart grid applications like load shifting and management and relied on the con-
sumer’s endeavors or encouragement consumers to improve the load profile or decrease peak
demand, which makes it hard to be accomplished. Most of these approaches depend on the
presence of a real-time pricing tariff for cost or peak demand reduction which is not an ideal
solution. In addition, the above studies ignored the dummy energy and didn’t provide
approaches to exploit it [7–19].
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In this paper, an optimal sizing algorithm based on smart grid applications is introduced to
determine the optimum size of stand-alone hybrid PV/wind/battery/diesel energy systems so as
to meet the load requirements with minimum cost and highest reliability. Load shifting-based
load priority is presented as one of smart grid applications by dividing the load into two factions,
high priority load (HPL) and low priority load (LPL). HPL is due to essential activities and the
appliances involved in these activities have fixed scheduling requirements. Therefore, HPL must
be supplied whatever the generation conditions. LPL is due to flexible activities and the appli-
ances involved in these activities can have flexible scheduling requirements. Therefore, LPL can
be shifted and supplied from the surplus generation time of RES. Also, a proposed methodology
for exploitation of the dummy energy is exhibited. Furthermore, a PSO algorithm is employed
for seeking the optimum size of HRES and minimum cost of energy of the system under study. A
comparison between the results obtained from PSO algorithm and those from the iterative opti-
mization techniques (IOT) is introduced. IOT is a mathematical procedure that generates a
sequence of improving approximate solutions for a class of problems. In order to find the optimal
solution of a system, the IOT uses an initial guess to generate successive approximations to a
solution. IOT is used to solve problems of nonlinear programming differ according to the objec-
tive functions and constraints. In some cases, the evaluation of the complex objective function
using IOT requires a large computational effort and increases the computational time of each
iteration. Parallel implementation of PSO (PIPSO) is a modern method utilized in this paper to
distribute the evaluation of the fitness function and constraints among the ready-made proces-
sors or cores, and to speed up the optimization process. A comparison between utilizing PIPSO
and utilizing a serial implementation of PSO (SIPSO) is presented.

2. Modeling of Hybrid Renewable Energy System
The schematic drawing of the proposed stand-alone hybrid PV/wind/battery/diesel energy sys-
tem is shown in Fig 1. As shown in this figure, wind turbines (WT) are connected to AC-bus,
PV array is connected to DC-bus, and battery charger is connected to the DC-bus to charge the
battery bank from the respective WT and PV array through a bi-directional AC/DC converter.
Diesel generator (DG) is connected to AC-bus as a backup source of energy. Finally, a group of
loads, HPL, LPL, and dummy load are connected to AC-bus as the load demand for the HRES.

A mathematical modeling of the proposed HRES parts is detailed in the following subsections:

2.1 Resources and Load Data
The hourly data of the wind speed, solar radiation, and temperature for five sites in Saudi Ara-
bia are used as a case study. These sites are Yanbu, Dhahran, Dhalm, Riyadh, and Qaisumah
[20]. These sites represent the climatic conditions variety in Saudi Arabia with different solar
radiation and wind speed potentials. Yanbu is a major Red Sea port in Al Madinah province of
western of Saudi Arabia. It is around 300 km northwest of Jeddah at (24°050 N 38°000 E). Dhah-
ran is situated in the eastern part of Saudi Arabia close to the Arabian gulf coast and just a few
blocks south of Dammam at (26°160N 50°090E). Dhalm is situated in the east of Taif and just
about 230 km rounded at (22° 43' 0" N 42° 10' 0" E). Riyadh is the capital and largest city of
Saudi Arabia. It is situated in the center of the Arabian Peninsula on a large plateau at (24°380N
46°430E). Qaisumah is a village belonging to the city of Hafar Al-Batin, in the eastern province,
Saudi Arabia. It is located at around (28°18035@N 46°7039@E). A modified wind speed and hori-
zontal solar radiation maps of these sites are shown in Figs 2 and 3, respectively [21].

A load demand of Addfa city in Al Jouf province is used for the system under study and has
the hourly demand as shown in Fig 4. This load is assumed to be the same on each site of the
sites under study. The values of HPL and LPL have been selected based on load survey. The
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load survey illustrated that it has an agricultural nature and there is a preferred scheduling time
slot for the flexible activities (i.e. LPL). Customers feel most convenient if these activities are
performed according to their preferences. However a generalized framework has been assumed
that if some activity or task is declared as flexible then it can be scheduled in time slots either
before or after the preferred time slot for this activity. This paper introduces a detailed design
of HRES in case of shifting the load from the low generation periods to high generation peri-
ods. This can happen in the real life by increasing the tariff in low generation period and reduce
it in high generation period. The response from customers will different depending on many
factors. In this paper, for design purpose we assumed 25% of the load can be shifted as a
response from customers (LPL), and 75% of the load cannot be shifted and must be supplied
whatever the generation conditions (HPL). A sensitivity analysis has been introduced to show
the effect of these percentages on the cost of energy generated from the proposed system.

TenWT from different producers are used in this paper and have the technical characteris-
tics as shown in Table 1 [22].

2.2 Modeling of Wind Energy System
Wind speed at the hub height of WT is calculated by the power law equation using the wind
speed data collected at the anemometer height as shown in the following equation [23]:

uðhÞ ¼ uðhgÞ
h
hg

 !a

ð1Þ

Fig 1. Schematic drawing of the proposed system.

doi:10.1371/journal.pone.0159702.g001
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where, u(h) and u(hg) are wind speeds at hub height (h) and anemometer height (hg), respec-
tively, α is the roughness factor and has been taken in this paper as 0.14 [23].

Fig 2. Wind speed in Saudi Arabia at the height of 100 m.

doi:10.1371/journal.pone.0159702.g002

Fig 3. Global horizontal radiation in Saudi Arabia.

doi:10.1371/journal.pone.0159702.g003
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The output power of WT is described in terms of wind speed as follows [24]:

PW uð Þ ¼

(
0; u < uc or u > uf

Pr

u2 � uc
2

ur
2 � uc

2
; uc � u � ur

Pr; ur � u � uf

ð2Þ

where, PW is the WT output power, Pr is the rated output power of WT, uc is the cut-in wind
speed, ur is the rated wind speed, and uf is the cut-off wind speed.

The average power generated of each WT in a certain site can be calculated in terms of Wei-
bull parameters and capacity factor as shown in the following equation:

PWT;av ¼ CF � Pr ð3Þ

CF ¼
exp½�ðuC=cÞk� � exp½�ður=cÞk�

ður=cÞk � ðuC=cÞk
� exp½�ðuf=cÞk� ð4Þ

Fig 4. The hourly load demand.

doi:10.1371/journal.pone.0159702.g004

Table 1. The technical characteristics of the WT under study.

WT No. Manufacturer Pr (kW) D (m) uc (m/s) ur (m/s) uf (m/s) h (m)

WT 1 Enercon-1 330 34 3 13 34 50

WT 2 ACSA-1 225 27 3.5 13.5 25 50

WT 3 Fuhrlander-3 250 50 2.5 15 25 42

WT 4 Ecotecnia-2 600 44 4 14.5 25 45

WT 5 ITP-1 250 30 3 12 25 50

WT 6 NEPC-3 400 31 4 15 25 36

WT 7 Southern Wind Farms 225 29.8 4 15 25 45

WT 8 Enercon-2 330 33.4 3 13 34 37

WT 9 NEPC-2 250 27.6 4 17 25 45

WT 10 India Wind Power 250 29.7 3 15 25 50

doi:10.1371/journal.pone.0159702.t001
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where, PWT,av is WT average power, CF is the WT capacity factor, c, and k are the Weibull
parameters of WT and can be calculated using the statistical analysis method mentioned in
[25].

The average number of WT (NWT) required to supply an average annual demand (PL,av)
can be calculated from the following equation:

NWT ¼ PL;av

PWT;av

ð5Þ

2.3 Modeling of PV Energy System
The solar radiation on tilted surface (Ht) can be estimated considering the solar insolation,
ambient temperature, and manufacturer’s data of the PV panels, slope of the PV panels and lat-
itude and longitude of the site [26]. The output power of the PV array (PPV) is calculated as
expressed in the following equation [27]:

PPV¼Ht � PVA� mcðtÞ ð6Þ

where, μc(t) is the instantaneous PV cell efficiency, PVA is the total solar cells area required to
supply the load demand and can be calculated from the following equation:

PVA ¼ 1

24

X24
t¼1

PL;avðtÞFs

HtmcðtÞZpcVF

ð7Þ

where, Fs is the safety factor which includes the possible allowance of insolation data inaccu-
racy, VF is the factor of variability which considers the impact of yearly radiation variation,
their values are around1.1and 0.95, respectively. ηpc is the power conditioning system efficiency
[26].

2.4 Battery Storage Model
The state of charge (SOC) of the battery after certain time (t) is calculated based on the energy
balance between the wind, PV energy systems and the load as shown in the following equa-
tions:

EBðt þ 1Þ ¼ EBðtÞð1� sÞ þ surpluspower � ZBC Charging mode ð8Þ

EBðt þ 1Þ ¼ EBðtÞð1� sÞ � deficit power=ZBD Discharging mode ð9Þ
where, EB is the energy of the battery, ηBC and ηBD are the charging and discharging efficiency
of the battery (in this paper ηBC and ηBD have been considered as 90% and 85%, respectively)
[28]. σ is the battery self-discharge rate; it is prescribed to be 0.2% per day for most batteries
[29].

2.5 Diesel Generator Model
DG is the conventional source of energy which is used as a backup to supply the power defi-
ciency in HRES. The hourly fuel consumption of DG is assessed using the following equation
[30]:

Df ðtÞ ¼ aDPDgðtÞ þ bDPDgr ð10Þ
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where, Df(t) is the hourly fuel consumption of DG in L/h, PDg is the average power per hour of
the DG, kW, PDgr is the DG rated power, kW, αD and βD are the coefficients of the fuel con-
sumption curve, L/kWh, these coefficients have been considered as 0.246 and 0.08145, respec-
tively [31].

3. A Proposed Power Management Strategy for HRES
The following operational algorithm is proposed for power management of the HRES:

The HPL is supplied primarily fromWT and afterward PV array, respectively. In the case of
the generated power from the RES surpasses the required power for the HPL (PLHP), the excess
power will be used to charge the batteries up to its maximum level (EB,max). The abundance
power above EB,max will be used to supply the LPL, PLLP. If the power exceeds the LPL demand;
the surplus power will be used to supply a typical dummy load (Pdummy). Dummy loads, for
example, cooling and heating purposes, water pumping and charging batteries of crisis lights.
If there is an unmet LPL demand; it will be shifted to the time of surplus generation. This logic
is condensed in the following points:

3.1 Battery Charge Mode

▪ If PW(t)> PLHP(t) and SOC< EB,max, then;

PBCðtÞ ¼ ½ðPWðtÞ � PLHPðtÞÞZinv þ PPVðtÞ� ZBC ð11Þ

▪ If PW(t)< PLHP(t), [PW(t) + (PPV(t)ηinv)]> PLHP(t) and SOC< EB,max then;

PBCðtÞ ¼ PPVðtÞ �
ðPLHPðtÞ � PWðtÞÞ

Zinv

� �
ZBC ð12Þ

In all cases of battery charge mode the amassed value of the unmet LPL, PLLP_sum and SOC of
the battery can be calculated from the following mathematical statements:

PLLP sum ¼ PLLP sum þ PLLPðtÞ ð13Þ

EBðt þ 1Þ ¼ EBðtÞð1� sÞ þ PBCðtÞ ð14Þ

3.2 Feeding the Low Priority Load

▪ If PW(t)> PLHP(t) and SOC� EB,max then;

PL lowðtÞ ¼ ½ðPWðtÞ � PLHPðtÞÞ þ PPVðtÞZinv� ð15Þ

▪ If PW(t)< PLHP(t), [PW(t) + (PPV(t)ηinv)]> PLHP(t) and SOC� EB,max then;

PL lowðtÞ ¼ ½ðPWðtÞ þ ðPPVðtÞZinvÞÞ � PLHPðtÞ� ð16Þ
In all cases of feeding LPL, the accumulation of the unmet LPL and SOC of the battery can be
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computed from the following equations:

PLLP sum ¼ PLLP sum þ PLLPðtÞ � PL lowðtÞ ð17Þ

EBðt þ 1Þ ¼ EBðtÞð1� sÞ ð18Þ

3.3 Feeding the Dummy Load
Dummy load can be used to absorb the surplus renewable generation that exceeds the LPL
demand, and battery demand as shown in the following equations:

▪ If PL_low(t)> PLLP_sum

PdummyðtÞ ¼ PWðtÞ þ PPVðtÞZinv � PLHPðtÞ � PLLP sum ð19Þ

3.4 Battery Discharge Mode
If the RES couldn't meet the power required for the HPL, batteries will be utilized to cover the
HPL demand until reductions to their minimum level, EB,min. The unmet LPL will be shifted to
the time of surplus generation. This logic is summarized in the accompanying equations:

▪ If [PW(t) + (PPV(t)ηinv)]< PLHP(t) and SOC> EB,min then;

PBDðtÞ ¼
½PLHPðtÞ � PWðtÞ � ðPPVðtÞZinvÞ�

Zinv ZBD
ð20Þ

EBðt þ 1Þ ¼ EBðtÞð1� sÞ � PBDðtÞ ð21Þ

PLLP sum ¼ PLLP sum þ PLLPðtÞ ð22Þ
where, PBC and PBD are charging and discharging power of the battery, respectively, ηinv is the
inverter efficiency (in this paper ηinv has been taken as 95% in both directions) [32] and PL_low
is the accessible power used to supply the LPL.

3.5 Diesel Generator Operation
If the produced power from HRES is not adequate to supply HPL, the deficit power in HPL
will be compensated using the DG as expressed in the following equations:

▪ If [PW(t) + (PPV(t)ηinv)]< PLHP(t) and SOC� EB,min then;

PDgðtÞ ¼ ½ðPLHPðtÞ � PWðtÞ � ðPPVðtÞZinvÞÞ� ð23Þ

4. Problem Statement
The aim of this paper is to introduce an algorithm based on smart grid applications to solve the
problem of sizing of HRES to supply the load demand with considering the minimum cost and
satisfying a defined reliability index. Demand profile improvement as one of the essential
smart grid applications has been covered in this paper. Demand profile improvement helps in
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smoothing the demand profile, and/or reducing the peak demand or the total energy demand.
This will diminish the overall plant and capital cost prerequisites, the cost of the generated
energy, and furthermore will increase the system reliability. Demand profile improvement is
carried out in this paper by shifting the LPL from low generation to high generation time of
RES. In the proposed algorithm, cost estimation is created based on the concept of levelized
energy cost (LEC) and the reliability of the HRES is produced in view of the concept of loss of
load probability (LOLP). Cost estimation and reliability assessment of the HRES are detailed in
the following subsections:

4.1 Reliability Assessment
In the case of the generation from HRES components is insufficient to sustain the HPL and/or
LPL, then the load will not get its pressing need and the system will lose its reliability. LOLP is
viewed as a specialized executed model for the system reliability and can be characterized as
[33]:

LOLP ¼
Pt

0Def icit Load Time
8760

100% ð24Þ

On account of unmet HPL, the LOLP counter will increment when this circumstance hap-
pens. The following equations clarify the system operation amid this condition:

▪ If PW(t) + PPV(t)ηinv + PDg(t) + PBD(t)< PHPL(t) then;

LOLP HP ¼ LOLP HP þ 1 ð25Þ
where, LOLP_HP is the counter for loss of load probability of HPL.

For this situation, the counter PLLP_sum will increase as given in the mathematical statement
(22).

4.2 Cost Estimation
LEC is a standout amongst the most well-known and utilized indicator of economic analysis of
HRES and it can be calculated from the following equation [34]:

LEC ¼ TPV � CRF
LAE

ð26Þ

where, TPV is the total present cost of the entire system, LAE is the annual load demand,
and CRF is the capital recovery factor. CRF and TPV are expressed as shown in the following
equations:

CRF ¼ rð1þ rÞT
ð1þ rÞT � 1

ð27Þ

TPV ¼ IC þ OMC þ RC þ FC � PSV ð28Þ
where, r is the net interest rate (the interest rate for the genuine monetary condition in Saudi
Arabia is 2% [35]), and T is the system lifetime in years and IC is the initial capital cost of the
HRES components, the later can be determined from the following equation:

IC ¼ 1:4� PVP � CPV þ 1:2�WTP � PR � NWT þ EBR � BP þ Pinv � INVP þ PDgr

� DGp ð29Þ
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where, PVP is the PV price per kW ($/kW), CPV is the rated power of the PV system (kW),
WTP is the WT price per kW ($/kW), EBR is the battery capacity (kWh), BP is the battery bank
price per kWh ($/kWh), INVP is the inverter price per kW ($/kW), and DGP is the DG price
per kW ($/kW). OMC is the operation and maintenance cost of the HRES segments and can be
resolved using the accompanying equations [36]:

OMC ¼ OMC0

1þ i
r � i

� �
1� 1þ i

1þ r

� �T
 !

r 6¼ i ð30Þ

OMC ¼ OMC0 � T r ¼ i ð31Þ

RC is the replacement cost of the HRES components and can be determined as shown in the
following equation [37]:

RC ¼
XNrep

j¼1

CRC � CU � 1þ i
1þ r

� �T�j=ðNrepþ1Þ !
ð32Þ

where, i is the inflation rate of replacement units (the inflation rate in Saudi Arabia is 2.3%
[38]), CRC is the capacity of the replacement units, CU is the cost of replacement units, and Nrep

is the number of units replacements over the project lifetime T.
FC is the DG fuel cost and can be calculated from the following mathematical statement:

FC ¼ Df ðtÞ DGh Pf ð33Þ

where, DGh is the total operation hours of the DG during T and Pf is the fuel price per liter
($/L), (fuel price has been considered in this paper as 0.8 $/L).

PSV is the present value of scrap and can be expressed in terms of the value of scrap of the
system components (SV) as shown in the following equation [39]:

PSV ¼
XNrepþ1

j¼1

SV
1þ i
1þ r

� �T�j=ðNrepþ1Þ
ð34Þ

The economic and technical parameters of HRES components are shown in Table 2 [40, 41].

5. Formulation of the Optimum Sizing Problem
Size estimation of the hybrid PV/wind/battery/diesel energy system is formulated as an optimi-
zation problem and the objective function is formulated corresponding to system constraints
and performances. The discussion on the objective function and the constraints is detailed in
the following subsections:

Table 2. The economic and technical parameters of the HRES components.

Item Price ($) OMC (%) RC ($) T SV (%) Nrep Salvage times

WT, kW 3000 3 2400 20 20 1 2

Civil work, wind, kW 20% 3 20% 25 20 0 1

PV, kW 2290 1 2000 25 10 0 1

Civil work, PV, kW 40% 1 40% 25 20 0 1

Inverter, kW 711 null 650 10 10 2 3

DG, kW 850 3 850 10 20 2 3

Batteries, kWh 213 3 170 4 20 6 7

doi:10.1371/journal.pone.0159702.t002
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5.1 Objective Function
The objective function of the optimization problem is to minimize the overall system cost TPV
(X). TPV(X) incorporates capital cost IC(X), operation and maintenance cost OMC(X), the
replacement cost RC(X) and the cost of the diesel generator (DGc), throughout the lifetime of
the installed system. The system lifetime is assumed in this paper to be 25 years. The objective
function for optimally designing the HRES must be minimized as expressed by the following
equation:

minX TPVðXÞ ¼ minXfICðXÞ þ OMCðXÞ þ RCðXÞ þ DGcg ð35Þ
where, X is the vector of sizing variables; X = NWT, PVA, PDgr, and EBR.

5.2 Design Constraints
To solve the optimization problem, a set of constraints that must be satisfied with any feasible
solution throughout the system operations as the following:

▪ At any time, the SOC of the battery bank should satisfy the following constraints:

EB;min � EBðtÞ � EB;max ð36Þ

EBðt þ 1Þ ¼ EBðtÞð1� sÞ ð37Þ

▪ At any time, the hourly power generated by DG, PDg should be less than or equal the DG
rated power, PDgr as shown in the following equation:

PDgðtÞ � PDgr ð38Þ

▪ LOLP of the system should be less than allowable LOLP reliability index as shown in the
following equations:

LOLP HP < LOLP HPindex ð39Þ

PLL sum < PLL sumindex
ð40Þ

▪ Dummy energy (Edummy) should satisfy the following constraint:

Edummymin
< Edummy < Edummymax

ð41Þ

where, LOLP_HPindex and PLL sumindex
are the designed values of the counters LOLP_HP and

PLL_sum, respectively which are specified by the user. Edummymin
and Edummymax

are the minimum

and maximum allowable values of the dummy energy and designed by user.

5.3 A Proposed Optimization Algorithm for HRES
In this section, a proposed optimization algorithm has been designed to follow the intended
values of LOLP and Edummy of the HRES to fulfill an aggregate load demand with minimum
LEC. In this paper, the value of LOLP_HPindex has been considered to be 4% and PLL sumindex

has
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been taken by (8 days of average LPL, 8×PLave_low). Edummymin
and Edummymax

have been consid-

ered to be 0%, 4% of LAE, respectively. Along these lines, if (0< Edummy < 0.04 × LAE),
(PLLP_sum < 8 × 24 × PLave_low) and (LOLP_HP< 0.04), then the optimum size of the HERS
components can be obtained. The following step after deciding the optimum size of HERS
component is to compute the LEC. A PSO algorithm has been utilized as a part of this paper to
carry out the optimization problem and decide the optimum problem’s solution.

5.4 Implementation of Particle Swarm Optimization Algorithm
PSO is a multi-agent parallel search optimization technique, which was presented in 1995 by
Kennedy and Eberhart [42]. PSO is an evolutionary technique which is inspired by the social
behavior of bird flocking, fish schooling and swarm theory [43, 44]. The PSO idea relies on
imposing various particles for searching the optimum solution. Each particle in the PSO algo-
rithm represents a potential solution; these solutions are assessed by the optimization objective
function to determine their fitness. In the next iteration, the solutions number doubles until it
gets the optimum one. Imposing more particles in each iteration encourage coming to the opti-
mum solution, furthermore decreases the number of optimization iterations. In order to move
to the optimum solution, particles move around in a multidimensional search space. The best
experience for each particle is stored in the particle memory (pbesti) and the best global
obtained among all particles is called as a global best particle (gbest). During flight the current
position (xi) and velocity (vi) of each particle (i) is adapted according to its own experience and
the experience of neighboring particles as described by the following equations:

vi
ðgþ1Þ ¼ ovi

ðgÞ þ c1a1ðpbesti � xi
ðgÞÞ þ c2a2ðgbest � xi

ðgÞÞ ð42Þ

xi
ðgþ1Þ ¼ xi

ðgÞ þ vi
ðgþ1Þ ð43Þ

where, g is the counter of generations, and ω is the inertia weight factor in a range of [0.5, 1] and
almost 1 encourages the global search [45]. c1 and c2 are positive acceleration constants in a range
of [0, 4], designated as self-confidence factor and swarm confidence factor, respectively [45], a1
and a2 are uniform randomly generated numbers in a range of [0, 1] [45]. Swarm size, number of
particles, ω, c1 and c2 are the main parameters of the PSO algorithm, which are initialized by the
users, based on the problem being optimized. The process of the PSO algorithm is shown in Fig 5.

To execute the proposed management and optimization procedures of the HRES, a new
proposed program based-PSO (NPPBPSO) has been developed. NPPBPSO has been written
using MATLAB software in a flexible fashion that is not available in the recent market software
such as HySys, HOMER, iHOGA, iGRHYSO, HYBRIDS, RAPSIM, SOMES, HySim, IPSYS,
ARES, and SOLSIM [46]. To run NPPBPSO the following information must be accessible:

▪ Initial values of PSO parameters, swarm size, the number of particles, ω, c1 and c2.

▪ The optimum design values; LOLP_HPindex, PLLsumindex, Edummymin and Edummymax.

▪ The geographic data of the sites under study and meteorological data of wind speed, solar
radiation, and temperature at these sites.

▪ Specification of WT, PV modules, inverter, batteries, and diesel generator.

▪ The load power data, HPL, and LPL.

▪ Technical and economic data of system components; T, r, and i.
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5.4.1 Parallel Implementation of Particle Swarm Optimization. Parallel implementation
of particle swarm optimization (PIPSO) can automatically distribute the evaluation of the fit-
ness function and constraints among the ready-made processors or cores. PIPSO is likely to be
faster and time saver than the serial implementation of particle swarm optimization (SIPSO);
when the fitness function is time-consuming to be computed, or when there is in many parti-
cles. Otherwise, the overhead of distributing the evaluation can cause PIPSO to be slower than
SIPSO [47]. To use PIPSO a license for parallel computing toolbox software and a parallel
worker pool (parpool) must be available.

6. Results and Discussion
A PSO-based MATLAB algorithm has been created to determine the optimum size of a PV/
WT/batteries/DG system in order to supply a certain load in different remote sites in Saudi
Arabia. As indicated in the literature and according to the nature of the problem under study;
the suitable values for PSO parameters have been set to make the PSO faster, and exact. The
population size has been set to be 20, a maximum number of iterations have been set to be 100,
c1 and c2 have been chosen as 2, a1 and a2 have been picked as 0.02, and ω has been set as 0.7.

The NPPBPSO gives the possibility to change the penetration ratio (The proportion of wind
generation to the total renewable generation (PR)) with certain increment to decide the opti-
mum contribution from HRES. Likewise, the program can chooses the best site out of the sites
under study and select the most economic WT for this site.

After initiating the PSO parameters, the PSO algorithm is applied to get the optimum case,
the first and last optimization iterations until it gets the optimum design appear in Figs 6 and
7, respectively. The hourly variation of load power (PL), dummy power (Pdummy) are shown in
Figs 6(A) and 7(A), DG power (PDg), battery accumulated power (PB) are shown in Figs 6(B)
and 7(B), and the accumulated unmet power of LPL (PLLP_sum) is shown in Fig 6(C) and 7(C).
As appeared in Fig 6(A) Edummy didn’t satisfy the optimum value, therefore, applying
NPPBPSO the optimum value can be acquired as is clear from Fig 7(A). The NPPBPSO guar-
antees to supply the LPL demand as the year progressed, and also can permit low rate of unmet
LPL demand to be shifted to the following year, as shown in Figs 6(C) and 7(C). Moreover, the

Fig 5. The process of the PSO algorithm.

doi:10.1371/journal.pone.0159702.g005
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NPPBPSO seeks to distribute the LPL demand through the year using load shifting, to ensure
the load not to be concentrated and to reduce the peak load demand, as appeared in Figs 6(C)
and 7(C).

The outcomes acquired from NPPBPSO have been compared with those got from IOT. The
comparison results are shown in Table 3. As seen in this table, the results obtained from the
IOT and NPPBPSO are almost the same. However, there are obvious differences between these
two methods summed up in the accuracy and the speed of access the optimum solution as the
following:

▪ The solution obtained from PSO is the one satisfy all the optimization constraints and
objective function, which thusly make it the exact solution. But, the solution got from IOT
is that one satisfies the optimization constraints and objective functions, yet this solution
may be away from the optimum solution (global minimum cost). In this way, the most
minimal cost acquired with the IOT is not the optimum solution but rather it will be the
best plausibility from the accessible solutions.

▪ PSO imposing more particles for each iteration which in turn speed up the access of the
optimum solution, but, the IOT impose one solution for each iteration relying upon the
experimentation strategy, which in turn may raise the number of iterations until getting
the optimum solution. In addition, PSO has the advantage of its ability to solve the com-
plex certifiable problems, high adaptability and ability to manage nonlinearity, non-differ-
entiable functions and functions with an expansive number of parameters. But, the IOT

Fig 6. The first optimization iteration of the optimum case.

doi:10.1371/journal.pone.0159702.g006
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can’t solve variant optimization problems attributable to poorly known objective func-
tions and that have multi-constraints.

The NPPBPSO results affirmed that the minimum LEC for the specified limits of LOLP and
Edummy was in Yanbu site and the best WT for this site was ITP-1. Additionally, the best share
from the RES was at 50% PR. The hourly data of the wind speed at a height of 10 m above the
ground level and the insolation on optimum tilt angle surface for Yanbu site appear in Figs 8
and 9, respectively.

Fig 10 demonstrates the convergence process of the PSO algorithm during the minimization
of the LEC for 4 autonomous runs. As illustrated in this figure, the optimum solution is
acquired after around 30 iterations, and the 100 iterations are considered as a reasonable end
measure. In addition, it can be noted that the optimum solution almost converges to the same
optimum value (global minimum) for all runs. Fig 11 shows the convergence process for one
run of the IOT. As shown in this figure, the optimum solution is obtained after around 215

Fig 7. The last optimization iteration of the optimum case.

doi:10.1371/journal.pone.0159702.g007

Table 3. The comparison results of IOT and NPPBPSO.

Tools c k NWT PVA PSV FC OMC RC LEC

IOT 5.78 1.97 91 3.80*104 1.80*108 7.18*106 1.2*108 2.9*108 0.2417

NPPBPSO 5.72 1.95 90 3.78*104 1.70*108 6.89*106 1.1*108 2.8*108 0.2334

doi:10.1371/journal.pone.0159702.t003
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iterations and this solution not important to be the optimum one. It is also observed that the
time taken to find the optimum sizing by using PSO is lower than the one taken by using IOT.
Therefore, the optimization utilizing PSO is quicker and more precise than utilizing IOT.

PIPSO is a granulated approach to speed up the optimization process, to activate PIPSO,
parallel choice should set to true. When this condition is true, the NPPBPSO assesses the objec-
tive function of the optimization problem in parallel population. Fig 12 shows how to speed up
the optimization process by utilizing the PIPSO. Intel1 Core™ i5-2410M processor with clock

Fig 8. Hourly wind speed for Yanbu site.

doi:10.1371/journal.pone.0159702.g008

Fig 9. Hourly solar radiation on optimum tilt angle surface for Yanbu site.

doi:10.1371/journal.pone.0159702.g009
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speed: 2.30/2.90 Turbo GHz, 3rd level cache: 3 MB and front side bus: 1333 MHz has been
used to run the optimization process. The optimization process has been carried out in a serial
manner as appeared in the first part of Fig 12 (SIPSO), and carried out in the second part of Fig
12 using (PIPSO).

As clear from this figure, utilizing the PIPSO can save more time during the optimization
process.

Fig 10. The convergence process of the PSO algorithm for 4 autonomous runs.

doi:10.1371/journal.pone.0159702.g010

Fig 11. The convergence process of the IOT.

doi:10.1371/journal.pone.0159702.g011
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The NPPBPSO has been applied to design and optimize the HRES to ensure the load
demands in two cases, one for feeding the full load demand and the other one for feeding the
load demand with dividing the load into two categories, HPL and LPL. A comparison between
these two cases is shown in Fig 13. This figure shows that utilizing load shifting-based load pri-
ority reduces the whole system cost, LEC and reduces the size of the HRES components, DG
capacity, and the battery capacity. Additionally, it lessens the aggregate operation hours of the

Fig 12. The comparison results of SIPSO and PIPSO.

doi:10.1371/journal.pone.0159702.g012

Fig 13. A comparison between full load performance and load shifting performance of HRES with penetration ratio.

doi:10.1371/journal.pone.0159702.g013
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DG through the system lifetime, and thus diminishes the CO2 emission and environment
contamination.

Fig 14 describes the sensitivity analysis of the proposed algorithm with the help of quadratic
curve fitting. This figure shows the DG performance with relation to the rate of load shifting, at
50% penetration ratio. As shown in this figure, there is an opposite relation between load shift-
ing rate (LPL energy (LPLE)/ annual load energy (LAE)) and the DG capacity (PDgr).

7. Conclusions
Amethodology for optimum sizing of stand-alone hybrid PV/wind/battery/diesel energy sys-
tems utilizing PSO has been presented in this paper. The optimization goal was to minimize
the system cost with the state of insuring the load demand and satisfying a set of optimization
constraints. Load shifting as one of smart grid applications has been introduced to get a distrib-
uted load profile, reduce the entire system cost and reduce CO2 emission. Moreover, a method-
ology to characterize, manage the dummy energy and their exploitation has been presented.
Sensitivity analysis has been carried out in this paper to predict the system performance under
varying operating conditions. The PSO technique has been implemented in this paper to carry
out the optimization process. The simulation results affirmed that PSO is the promising opti-
mization techniques due to its ability to reach the global optimum with relative simplicity and
computational proficiency contrasted with the customary optimization techniques. Finally,
parallel implementation of PSO has been utilized to speed up the optimization process, and the
simulation results confirmed that it can save more time during the optimization process com-
pared to the serial implementation of PSO.
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