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Abstract
Neuroendocrine prostate cancer is a lethal variant of prostate cancer that is associated with

castrate-resistant growth, metastasis, and mortality. The tumor environment of neuroendo-

crine prostate cancer is heterogeneous and characterized by hypoxia, necrosis, and numer-

ous mitoses. Although acidic extracellular pH has been implicated in aggressive cancer

features including metastasis and therapeutic resistance, its role in neuroendocrine pros-

tate cancer physiology and metabolism has not yet been explored. We used the well-char-

acterized PNEC cell line as a model to establish the effects of extracellular pH (pH 6.5, 7.4,

and 8.5) on neuroendocrine prostate cancer cell metabolism. We discovered that alkaliniza-

tion of extracellular pH converted cellular metabolism to a nutrient consumption-dependent

state that was susceptible to glucose deprivation, glutamine deprivation, and 2-deoxyglu-

cose (2-DG) mediated inhibition of glycolysis. Conversely, acidic pH shifted cellular metabo-

lism toward an oxidative phosphorylation (OXPHOS)-dependent state that was susceptible

to OXPHOS inhibition. Based upon this mechanistic knowledge of pH-dependent metabo-

lism, we identified that the FDA-approved anti-helminthic niclosamide depolarized mito-

chondrial potential and depleted ATP levels in PNEC cells whose effects were enhanced in

acidic pH. To further establish relevance of these findings, we tested the effects of extracel-

lular pH on susceptibility to nutrient deprivation and OXPHOS inhibition in a cohort of cas-

trate-resistant prostate cancer cell lines C4-2B, PC-3, and PC-3M. We discovered similar

pH-dependent toxicity profiles among all cell lines with these treatments. These findings

underscore a potential importance to acidic extracellular pH in the modulation of cell metab-

olism in tumors and development of an emerging paradigm that exploits the synergy of envi-

ronment and therapeutic efficacy in cancer.
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Introduction
Warburg initially made the observation that cancer cells can generate energy through enhanced
uptake of glucose followed by its conversion to lactate despite having adequate oxygen with
which to further oxidize pyruvate in the mitochondria (Warburg effect or aerobic glycolysis)
[1]. However, glucose alone is insufficient to satisfy the diverse metabolic needs of the cancer
cell. Glutamine, for example, has emerged as a critical amino acid nutrient that supplies the cell
with ATP for energy, contributes carbon to cellular biomass, and provides a source of nitrogen
for anabolic reactions including nucleotide and hexosamine synthesis [2, 3]. Furthermore,
recent evidence demonstrates that cells prefer exogenous fatty acids for membrane biosynthesis
and lactate contributes to tricarboxylic acid (TCA) cycle anaplerosis [4, 5].

However, there is much evidence showing that nutrient utilization and the tumor microen-
vironment are closely linked. In addition to aerobic glycolysis, glucose uptake and lactate pro-
duction is enhanced by hypoxia (Pasteur effect). Therefore, the synergy of the Warburg and
Pasteur effects results in the excretion of lactic acid and acidification of the tumor microenvi-
ronment (pH 6.5–6.9) relative to the physiologic pH of normal tissue (pH 7.2–7.5) [6]. Thus,
acidification, a hallmark of solid tumors, plays a direct role in enhancing the malignant, aggres-
sive phenotype of cancer cells [7–11].

Acidity may not only play an important role in the enhancement of an aggressive tumor
phenotype, but also may play a role in the efficacy of therapeutics that target tumors. For exam-
ple, therapeutic strategies may fail as extracellular acidification can result in resistance to
immunotherapy and chemotherapy [12, 13]. Therefore, a more thorough understanding of the
effects of extracellular pH on cancer metabolism and physiology would facilitate the discovery
of “smart” therapeutics that can synergize with the microenvironment to inhibit tumor ener-
getics and viability.

Repeated studies both in vitro and in vivo have demonstrated that neutralization and alka-
linization of acidic pH with bicarbonate can have a therapeutic effect on cancer growth [12,
14–16]. This has led to the development of novel therapeutic agents (e.g. calcium carbonate
nanoparticles) that can neutralize extracellular pH and hinder tumor growth in vivo [17].
However, identification of clinically relevant pharmaceuticals that target the aggressive, treat-
ment-resistant acidic microenvironment of tumors is desperately needed to reduce tumor bur-
den and enhance survival.

Neuroendocrine carcinomas are a diverse array of neoplasms that arise in multiple organ
systems and display a spectrum of aggressiveness from benign to metastatic [18–22]. On one
end of the spectrum, “classic carcinoids” are well-differentiated, have a low index of prolifera-
tion and low rate of metastasis. Small cell carcinomas on the other hand, are poorly differenti-
ated, have a high mitotic index, are usually disseminated at the time of diagnosis, and resistant
to conventional therapy [23–25].

Neuroendocrine prostate cancer is a histologic variant of prostate cancer that is frequently
associated with metastatic potential, castrate-resistant growth and therapeutic resistance [26,
27]. Moreover, androgen deprivation therapy can promote the evolution from androgen-sensi-
tive prostate adenocarcinoma to neuroendocrine prostate cancer [28, 29]. Like high grade
neuroendocrine carcinomas, neuroendocrine prostate cancer is characterized by relatively
heterogeneous areas of proliferation and necrosis [30–32]. However, the role of tumor hetero-
geneity, specifically metabolic heterogeneity, in the development of therapeutic resistance in
neuroendocrine prostate cancer has not yet been explored.

The PNEC cell line is a well characterized model for studying neuroendocrine prostate can-
cer [33–36]. Herein, we use this model to characterize the effects of pH on neuroendocrine
prostate cancer cell metabolism. In particular, we characterize the effects of extracellular pH on
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PNEC cell metabolism and use mechanistic insights from this model to identify a novel thera-
peutic approach that is translatable across a range of castrate-resistant prostate adenocarci-
noma cell lines. Our findings underscore a potential importance to acidic extracellular pH in
the modulation of cell metabolism in tumors and development of an emerging paradigm that
exploits the synergy of environment and therapeutic efficacy in cancer.

Methods

Data Analysis
All data were analyzed with GraphPad Prism. Data obtained from toxicity studies were first
normalized to control or vehicle-treated groups and then plotted. To identify pH-specific
effects among groups, one-way ANOVA statistical tests with a Dunnett post-test using pH 7.4
as a control group were applied. Data were plotted as the mean ± standard deviation for all
groups. To ensure reproducibility, all experiments were repeated a minimum of three times
with the exception of liquid chromatography studies that were repeated twice.

Cell Culture
Cell culture media was obtained from USBiological Life Sciences (Salem, MA). PNEC mono-
layer cell culture was performed as previously described [34]. PNEC cells were grown in
DMEM F-12 medium containing 15mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES) buffer (Invitrogen) and 1.2 g/L sodium bicarbonate supplemented with 10% heat
inactivated FBS, (Sigma), 4 mM glutamine, 1x non-essential amino acids (Corning), 1x B27
serum supplement (Invitrogen), 5 ng/mL epidermal growth factor (Sigma), 5 ng/ml basic fibro-
blast growth factor (Sigma), and 0.1% penicillin-streptomycin (Invitrogen). PC-3 cells were
grown in RPMI-1640 media containing 2 g/L sodium bicarbonate supplemented with 2 mM L-
glutamine, 10% heat inactivated FBS, 1% sodium pyruvate (Corning), and 0.1% penicillin-
streptomycin. PC-3M cells derived from PC-3 liver metastasis in a xenograft model [37] were
obtained from Dr. William Oh’s laboratory at Mount Sinai School of Medicine and were
grown in DMEM F-12 media containing 15 mMHEPES and 1.2 g/L sodium bicarbonate sup-
plemented with 2 mM glutamine, 10% heat inactivated FBS, 1x non-essential amino acids, and
0.1% penicillin-streptomycin. C4-2B cells were grown in high glucose (4.5 g/L) DMEMmedia
containing 3.7 g/L sodium bicarbonate and supplemented with 10% heat inactivated FBS and
0.1% penicillin-streptomycin. All cells were grown to a maximum of 75% confluency. Cells
were rinsed with PBS, trypsinized, neutralized with growth media, and passaged. Conventional
cultureware was used for all cell lines with the exception of C4-2B cells that required poly-L-
lysine coating prior to cell seeding to prevent detachment.

Viability and Drug Toxicity Experiments
For drug toxicity experiments in all cell lines, DMEM/F-12 pH stress media was made as
described previously [34]. Glucose, glutamine, and pyruvate were present in the media at stan-
dard concentrations of 25 mM, 4 mM, and 0.5 mM, respectively. pH stress media was supple-
mented with 10% heat inactivated FBS, 1% non-essential amino acids, and 0.1% penicillin-
streptomycin. For acidic pH, 2-(N-morpholino) ethanesulfonic acid (MES), pH 6.5 was added
for a final concentration of 20 mM. For physiologic pH, HEPES, pH 7.4 was added for a final
concentration of 20 mM and sodium bicarbonate added for a final concentration of 0.34 g/L.
For alkaline pH, tris(hydroxymethyl)aminomethane (Tris), pH 8.5 was added for a final con-
centration of 20 mM and sodium bicarbonate added for a final concentration of 0.34 g/L.
Cells were then incubated in a humidified chamber without CO2 at 37°C for the duration of
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the experiment. Over the course of the PNEC experiments, there was minimal variation in
extracellular pH, with a variation of ± 0.1 pH unit relative to the pH at the beginning of the
experiment.

For nutrient deprivation pH stress experiments, DMEM/F-12 media free of glucose, gluta-
mine, pyruvate, HEPES, and bicarbonate was supplemented with 10% heat-inactivated dia-
lyzed FBS (Cambridge Isotope Labs), 1x non-essential amino acids, and 0.1% penicillin-
streptomycin. Glucose and glutamine were supplemented as needed at 10 mM and 4 mM con-
centrations, respectively. 2-DG toxicity studies were conducted in the presence of 10 mM glu-
cose. pH 6.5, 7.4, and 8.5 buffers were added to the nutrient-defined media as indicated above.

Cells were seeded into 96-well plates containing 100 μL of conventional growth media at the
following densities: PNEC, 40,000 cells per well; C4-2B, 20,000 cells per well; PC-3, 15,000 cells
per well; PC3-M, 15,000 cells per well. All cells were allowed to grow for 24 hours under con-
ventional cell culture conditions. Media was then carefully aspirated with a Pasteur pipet under
vacuum suction and replaced with 200 μL of the appropriate pH stress medium for either drug
toxicity or nutrient deprivation studies. Drugs were added at 10 x concentrations in 20 μL vol-
ume. DMSO vehicle in the media never exceeded 0.1% final concentration. Drug toxicity and
nutrient deprivation studies were conducted in a humidified chamber without CO2 at 37°C for
48 hours.

Seahorse Assay
PNEC cells were seeded into a Seahorse 96 well plate at 120,000 cells per well in 200 μL of con-
ventional growth media. Cells were incubated for one day in conventional culture conditions.
On the morning of the assay, the media was then carefully aspirated with a Pasteur pipet under
vacuum suction and replaced with 100 μL of pH stress media as described above. Cells were
then incubated in a humidified chamber without CO2 at 37°C for approximately 4 hours prior
to the Seahorse assay. Immediately prior to the Seahorse assay, media was carefully aspirated
from each well and replaced with 180 μL of Seahorse media (prepared according to assay speci-
fications) titrated to either pH 6.5, pH 7.4, or pH 8.5 with hydrochloric acid or sodium hydrox-
ide. The mitochondrial stress kit was used in which oligomycin, rotenone, antimycin A, and
carbonyl cyanide p-trifluoromethoxylphenyl hydrazine (FCCP) were used at a final concentra-
tion of 1 μM.

Sulforhodamine B Cell Viability Assay
Viability was determined using the metabolism-independent sulforhodamine B assay as previ-
ously described [38]. Briefly, 100 μL 10% ice-cold trichloroacetic acid was added to each well
with a multichannel pipettor and fixed overnight at 4°C. Plates were washed with room tem-
perature water three times and dried at room temperature. 50 μL sulforhodamine B (dye added
as 0.057% concentration in 1% acetic acid) was added and incubated for 30 min. Plates were
then rinsed three times with 300 μL of 1% acetic acid and allowed to dry at room temperature
[38]. Cells were lysed in 300 μL 10 mM Tris Base and incubated with gentle shaking for 8
hours. Plates were read in a FLUOstar Optima microplate reader (BMG Labtech). Absorbance
values were measured at 530 nm.

Mass Spectrometry Sample Preparation
Approximately 1 x 106 PNEC cells were seeded in 6 well plates in 2 mL of conventional growth
media and allowed to attach under conventional growth conditions. Following 24 hours, the
media was replaced with pH stress media and cultured for an additional 24 hours as described
above. Conditioned media was quickly pipetted from each well. Monolayers were quickly
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rinsed with 1 mL ice-cold PBS containing 20 mM of the MES pH 6.5, HEPES pH 7.4, or Tris
pH 8.5 buffer described above, depending upon the pH of the well. PBS was quickly aspirated.
For TCA cycle metabolite quantitation, 10 nmol succinic acid-d4 (Sigma) was added to each
well as an internal standard. The plate with the cell monolayers was transferred to a bed of dry
ice. 200 μL of dry ice-cold 80% methanol/20% water was added to the well, cells were removed
with a cell scraper, and lysates were transferred to a microfuge tube. This was repeated two
more times for a total cell extract volume of 600 μL. Samples were centrifuged at 20,000 x g for
10 minutes at 4°C to remove insoluble debris. 20 μl of ice-cold RIPA buffer (10 mM Tris pH
8.0, 1 mM EDTA, 0.5 mM EGTA, 140 mM sodium chloride, 0.1% sodium dodecylsulfate, 0.1%
sodium deoxycholate, and 1% Triton X-100) containing 1 mM sodium orthovanadate and phe-
nylmethylsulfonylfluoride was added to the insoluble protein pellet which was vortexed briefly,
sonicated on ice for 5 seconds, and centrifuged at 15000 x g for 10 minutes to remove the insol-
uble protein pellet. Protein was quantified with the bicinchoninic acid assay (Pierce) using a
bovine serum albumin standard curve. Protein quantity was used to normalize metabolite lev-
els to cell biomass.

For liquid chromatography/mass spectrometry (LC/MS) experiments, the methanol/water
extract was used without any additional manipulation. For gas chromatography/mass spec-
trometry (GC/MS) experiments, methanol/water extracts were dried under a stream of
nitrogen gas to complete dryness. 75 μL N-Methyl-N-trimethylsilyltrifluoroacetamide in
acetonitrile (1:3 ratio) was added to the vials. The reaction took place overnight at room
temperature.

GC/MS Analysis of TCA Cycle Metabolites
Derivatized samples were analyzed on a Agilent 7890A gas chromatograph interfaced to an
Agilent 5975C mass spectrometer. The GC column was a HP-5MS (30 m, 0.25 mm internal
diameter, 0.25 μm film coating; P.J. Cobert St. Louis, MO). A linear temperature gradient was
used. The initial temperature of 80°C was held for 2 minutes and increased to 300°C at 10°/
minute. The temperature was held at 300°C for 6 minutes. The samples were run in electron
ionization mode and the source temperature, electron energy and emission current were
230°C, 70 eV and 300 μA, respectively. The injector and transfer line temperatures were 250°C.
Selected ion monitoring was used to detect the TCA cycle metabolites. Identities of the metabo-
lites were established from retention times and fragmentation patterns of known standards.
Concentrations of TCA cycle metabolites were determined from the signal obtained from
known quantities of the internal standard and normalized to protein amount.

LC/MS Analysis of Amino Acids
5 μL of the cell extract was injected onto either a Phenomenex Kinetex hydrophilic interaction
chromatography (HILIC) (150 x 4.6 mm) column or Phenomenex Synergi reverse phase (RP)
(150 x 4.6mm) column. Solvents used for both HILIC and RP analyses consisted of 0.1% formic
acid in water (solvent A) and 0.1% formic acid in acetonitrile (solvent B). For RP analysis, a lin-
ear gradient was used from 95% A to 5% A over 20 minutes, and holding at 5% A for five min-
utes. For HILIC analysis, a linear gradient was used from 5% A to 40% A over 20 minutes, and
holding at 40% A for five minutes. Total analysis times for both RP and HILIC mode was 25
minutes. Flow rates for both analyses were held constant at 0.25 mL/min. The column com-
partment was held at 40°C for all analyses. Reference mass solution was orthogonally sprayed
into the source chamber simultaneously with the sample of interest to ensure mass accuracy.
Concentrations of amino acids were determined from the signal obtained from known quanti-
ties of the internal standards and normalized to protein amount.
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All mass spectra were collected in positive ion mode. Gas temperature was maintained at
275°C at a flow of 12 L/min while the nebulizer pressure was held constant at 30 psig. The
sheath gas temperature was 300°C at a flow of 12 L/min. The source nozzle and capillary volt-
ages were set to 2 kV and 3 kV, respectively. The fragmenter voltage was set to 70V.

ADP/ATP Assay
Cells were plated in a 96 well plate and incubated in pH-buffered media as described above.
Following 24 hours of incubation in the appropriate media, assays were performed with the
ADP/ATP Ratio Assay Kit (Sigma) according to manufacturer specifications. To determine the
effects of niclosamide on ATP levels, 10 μM niclosamide was added to the wells and measured
after 30 minutes of drug incubation.

NMR Sample Preparation
Tert-butanol, EMD™ internal standard was purchased fromMillipore. Deuterium oxide was
obtained from Cambridge Isotope Laboratories. Approximately 6 x 106 cells were grown in
60.1 cm2 dishes containing 10 to 12 mL of media, until near confluency. Following 24 hours of
pH stress, 1 mL of cell conditioned media from each dish was snap frozen with dry ice. For
preparation of the cell lysates, the media was aspirated and cells were washed with ice-cold
PBS. The PBS was aspirated and the dish with the cell monolayer was transferred to a bed of
dry ice. 300 μL of 80% methanol / 20% water was added to the well, cells removed with a cell
scraper, and transferred to a microfuge tube. This was repeated two more times for a total cell
extract volume of 900 μL. Samples were centrifuged at maximum speed (20,000 x g) for 10
minutes at 4°C to remove insoluble debris. Samples were lyophilized for at least 24 hours at a
constant –20°C. Protein estimation on the insoluble cell pellet was performed as described
above for mass spectrometry sample preparation.

The dried samples were reconstituted with 560 μL deuterium oxide with 1 mM tert-butanol
as an internal standard. The sample’s pH (pD) was carefully adjusted to 7.0. The sample was
centrifuged at 6,000 x g for 2 minutes to remove any particles. The homogeneous aqueous sam-
ple was loaded into 5 mmNMR tubes for NMR analysis.

For the [13C] NMR labeling studies, the media was prepared the same as outlined for the
nutrient deprivation experiments. DMEM/F-12 media free of glucose, glutamine, pyruvate,
HEPES, and bicarbonate was supplemented with 10% heat-inactivated dialyzed FBS (Cam-
bridge Isotope Labs), 1x non-essential amino acids, and 0.1% penicillin-streptomycin. Glucose
and glutamine were supplemented as needed at 10 mM and 4 mM concentrations, respectively,
except that U-[13C6] glucose or U-[

13C5,
15N2] glutamine (Cambridge Isotope Labs) was added

in place of the natural abundance nutrient. Buffers were then added to the media as described
above for the desired pH.

NMR Spectroscopy Analysis
NMRmeasurements were carried out at 25°C using a DD-II 11.75 Tesla spectrometer (Agi-
lent/Varian) equipped with a reverse-detection probe. Two NMR measurements were executed
for all samples. The first was a 16-transient CPMG (Carr-Purcell-Meiboom-Gill) with water
presaturation and 13C decoupling (where proton doublets bounded to 13C are collapsed to sin-
glets at a chemical shift identical to protons bound to 12C) under quantitative equilibrium con-
ditions. The sweep width was 6983 Hz and the preacquisition delay was 18 s. For cell growth
media the 90° pulse width was 9.4–9.8 μs and for cell extraction the 90° pulse width was 8.3–
8.6 μs empirically determined based upon sample concentration. Spectra were processed with
an exponential apodization function corresponding to 1 Hz line-broadening factor and zero-
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filling to 64K. Substrate and metabolite concentrations were determined from the CPMG data
through prior calibration relative to 1 mM tert-butanol established by equilibrium pulse and
collect conditions.

The second NMRmeasurement was a first increment gHSQC (gradient heteronuclear single
quantum coherence spectroscopy) experiment to effectively measure only the [13C]-enrich-
ment of substrates and metabolites. This acquisition was collected for 128 transients under
quantitative equilibrium conditions similar to the CPMG sequence with a 6983 Hz sweep
width, 18 s preacquisition delay and a [13C]-decoupling 90° pulse width of 12 μs. The same 90°
pulse width was used as in the CPMGmeasurements of the growth media and cell extraction
samples. The [13C]-enrichment was calibrated with regular and U-13C-labeled glucose, gluta-
mine, and lactate standards using similar parameters as above. The free induction decay values
were multiplied by a Gaussian apodization function with a 0.1 s time constant. The relative
amplitude of substrates or metabolites was calculated with Agilent CRAFT (Complete Reduc-
tion to Amplitude-Frequency Table) software incorporated in VnmrJ4.2 (Agilent).

Mitochondrial Potential Indicator Measurements
Following cell incubation at appropriate pH for 24 hours in a 96 well plate, the mitochondrial
potential indicator tetramethylrhodamine methyl ester perchlorate (TMRM; Molecular
Probes) in DMSO and nuclear dye Hoechst 33342 was added to wells at a final concentration
of 10 nM and 1 μg/mL respectively and incubated under conventional conditions for 1 hour.
Media containing dye was carefully replaced with fresh media. The Operetta High Content
Imaging System (Perkin Elmer) was then used to image the cells using 520-550/590-640 nm
ex/em filters for TMRM and 360-400/410-480 nm ex/em filters for Hoechst. Fluorescence of
both dyes was imaged for 200 ms. During imaging, cells were maintained at 37°C with no CO2.
For TMRM kinetic assays, niclosamide was added to the wells with a multichannel pipette at a
10 μM final concentration and sequential imaging was performed every minute for 30 minutes.
Data was exported and analyzed with ImageJ. Regions of interest were drawn around entire
cells to determine TMRM intensity. For kinetic assays, the intensity of each region of interest
was measured over the course of 30 minutes and plotted.

Confocal Microscopy of Mitochondria
PNEC cells were grown on LabTek microscope slides and incubated in pH stress media for 24
hour as described above. MitoTracker Green (ThermoFisher) was added to the dishes at a final
concentration of 20 nM and incubated for 1 hr. Labeling media was replaced with fresh pH
stress media and imaged with an Olympus FV1000 microscope using a 488 nm laser for
excitation. Z-stacked images through the cells were constructed to visualize mitochondrial
morphology.

Results

Global profiling of PNECmetabolism
Previously, we identified that shifting extracellular pH 1 unit above (pH 8.5) or below (pH 6.5)
physiologic pH modulated activity of the gamma-aminobutyric acid (GABA) shunt of the
TCA cycle in PNEC cells [34]. We hypothesized that extracellular pH would have global effects
on cellular metabolism. We used high resolution NMR spectroscopy to profile global changes
in PNEC metabolism when incubated in an acidic pH of 6.5 and alkaline pH of 8.5 relative to a
physiologic pH of 7.4.
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NMR spectroscopy of conditioned media following incubation at pH 6.5, 7.4, and 8.5 for 24
hours revealed that a shift toward alkaline pH depleted glucose within the media with concom-
itant increases in lactate and alanine (Fig 1A). These findings are consistent with enhanced glu-
cose metabolism where pyruvate, an endpoint in glycolysis can be metabolized into lactate and
alanine in addition to further metabolism in the TCA cycle [39, 40]. Quantification of the
NMR signals revealed an 8.3-fold decrease in media glucose levels at pH 8.5 relative to pH 6.5
(Fig 1B). Lactate was significantly enriched 9.5-fold at pH 8.5 relative to pH 6.5 (Fig 1C). Ala-
nine was also significantly enriched 1.9-fold at pH 8.5 relative to pH 6.5 (Fig 1D). We then
determined if consumption of other nutrients was enhanced with alkalinization. Glutamine,
for example, is a critical nutrient source for cancer cells [2, 3]. Glutamine levels, similarly to
glucose, decreased in conditioned media as a function of alkalinization (Fig 1E). Glutamine
consumption showed a trend similar to glucose with a 3.4-fold decrease in media from pH 6.5
to pH 8.5 (Fig 1F). Together, our findings supported the possibility that alkalinization of extra-
cellular pH resulted in a concomitant shift in cellular metabolism toward enhanced nutrient
uptake and metabolism.

Given that alkalinization enhanced amino acid uptake (i.e. glutamine) and amino acid pro-
duction (i.e. alanine), we used NMR of PNEC cell lysates to determine if quantities of addi-
tional amino acids were altered. We identified that alanine levels in PNEC cells (~1.5 ppm, Fig
2A) increased with alkalinization, mirroring the trends seen in conditioned media. We also
identified that glutamate paralleled alanine levels in cell lysates, increasing as function of extra-
cellular alkalinization (Fig 2A), thus supporting our previous results [34].

These findings prompted us to determine if there were other amino acids whose concentra-
tion varied with extracellular pH. We used LC/MS to quantify changes in amino acid levels in
PNEC cell lysates as a function of extracellular pH. We identified three amino acids with signif-
icant changes. Of the amino acids profiled in this study, arginine was the sole amino acid
whose levels were inversely proportional to extracellular pH with a significant decrease at pH
7.4 (0.7-fold relative to pH 6.5) followed by a 0.5-fold change at pH 8.5 relative to pH 6.5.
Conversely, glutamate and aspartate levels significantly increased with alkalinization with a
3.5-fold increase and 3.7-fold increase respectively at pH 8.5 (Fig 2B). Interestingly, the other
amino acids were statistically unchanged between the different pH treatments. However,
the concomitant enrichment of alanine, a transamination product of pyruvate, as well as gluta-
mate and aspartate, transamination products of the TCA cycle metabolites oxaloacetate and
alpha-ketoglutarate respectively, suggested that TCA cycle flux might also be affected by extra-
cellular pH.

Effects of pH on glycolytic and glutaminolytic flux
To address the possibility that extracellular pH could modulate both glycolysis and the TCA
cycle, we investigated the role of each of these pathways in lactate synthesis. Although we
assumed that lactate production was a function of enhanced glucose consumption, the possibil-
ity remained that lactate could also be produced from metabolism of glutamine (glutaminoly-
sis) into TCA cycle intermediates, followed by conversion of malate to pyruvate via the malate
aspartate shuttle and the conversion of pyruvate to lactate via lactate dehydrogenase (LDH)
[41]. To quantify the relative contributions of glucose and glutamine to lactate production, we
incubated PNEC cells in the presence of stable isotope labeled precursors [13C6] glucose and
[13C5] glutamine at pH 6.5, 7.4, and 8.5 for 24 hours. Assays of [13C] lactate in conditioned
media following incubation identified that lactate was generated from both glycolysis and glu-
taminolysis and was enhanced with alkalinization. Interestingly, the change from pH 6.5 to 7.4
resulted in the largest significant increase in [13C] lactate production via glycolysis from 7% to
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Fig 1. Increasing extracellular pH enhances nutrient uptake andmetabolism in PNEC cells. (A) [1H] NMR analysis of conditioned media
demonstrating increased glucose (Glc) consumption and metabolism with alkalinization. (B-D) NMR-based quantification of glucose consumption,
alanine (Ala) production and lactate (Lac) production with alkalinization. (E) [1H] NMR analysis of conditioned media demonstrating increased
glutamine consumption with alkalinization. (F) NMR-based quantification of glutamine consumption. Statistical comparisons performed relative to pH
7.4 in each group. N = 3 samples per group. *p<0.05, **p>0.01, ***p<0.001. t-Bt: t-butanol standard.

doi:10.1371/journal.pone.0159675.g001
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47% [13C] lactate labeling (Fig 3A). Moreover, interrogation of [13C] glutamine metabolism to
[13C] lactate disclosed a similar trend. Although the overall magnitude of [13C] lactate labeling
from glutaminolysis was smaller than the labeling from glycolysis, there was a statistically sig-
nificant increase in lactate production from glutamine when pH was increased from 6.5 (no

Fig 2. Increasing extracellular pH enhances selected amino acid levels in PNEC cells. (A) NMR of PNEC cell lysates identifies increases in
alanine and glutamate and decrease in GABA. 1, valine/leucine/isoleucine; 2, t-butanol (internal reference); 3, lactate; 4, alanine; 5, lysine; 6 and 9,
gamma-aminobutyric acid (GABA); 7 and 10, glutamate; 8 and 11, glutamine and reduced glutathione (GSH)/oxidized glutathione (GSSG). (B)
Targeted LC/MS quantitation of selected amino acids reveals significant increases in aspartate and glutamate levels and a significant decrease in
arginine levels in PNEC cells as a function of alkalinization. Statistical comparisons performed relative to pH 7.4 for each metabolite. N = 6 samples
per group. *p<0.05.

doi:10.1371/journal.pone.0159675.g002
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[13C] lactate production) to 7.4 where 3.2% of lactate produced contained [13C] from glutamine
(Fig 3B). Together, these findings demonstrated that the majority of lactate produced in PNEC
cells came from glycolysis, with smaller contributions from glutamine as extracellular pH
increased.

Effects of Extracellular pH on the TCA Cycle
Aerobic glycolysis describes the generation of lactate from glycolysis with comparatively low
flux of glucose into the TCA cycle despite the presence of oxygen for respiration [1]. Glutami-
nolysis, on the other hand, describes the enhancement of glutamine metabolism into the TCA
cycle and the resultant production of lactate [41]. We determined the effects of extracellular
pH on the TCA cycle through GC/MS-based quantification of malate, fumarate, and succinate.
In each case, we identified statistically-significant increases of these metabolites that directly
correlated with extracellular pH. Malate and fumarate were enriched under alkaline conditions
by 25.0 and 3.2-fold respectively (Fig 4A and 4B). Despite robust increases in these TCA cycle
metabolites; however, there was only a modest but significant increase in succinate (1.3-fold;
Fig 4C). This finding was intriguing as succinate is not only a substrate for succinate dehydro-
genase (SDH; complex II of OXPHOS), but is also the end product of the GABA shunt [33].
This finding supported our previous observation that GABA levels were decreased in alkaline
pH [34]. It also suggested that at least part of the succinate pool in PNEC cells could be derived
from the GABA shunt. Moreover, the intersection of succinate metabolism by SDH/complex II
of OXPHOS and the reliance of OXPHOS on the proton motive force within the inner mito-
chondrial membrane suggested that extracellular pH could have effects on mitochondrial
potential and OXPHOS activity. Collectively, these findings were also supported by signifi-
cantly enriched ATP/ADP levels in PNEC cells that directly correlated with extracellular pH
(Fig 4D). This supported our metabolic model where the combination of enhanced aerobic gly-
colysis and TCA cycle metabolism provided more ATP in an alkaline environment. These data
also supported our findings that alkalinization enhanced glutamate and aspartate levels that
are derived directly from TCA cycle metabolites.

Fig 3. Lactate derived from glucose and glutamine increase with increasing extracellular pH. Extracellular lactate measured in the C3 position
from (A) 13C6 glucose and (B) 13C5 glutamine significantly increases from pH 6.5 to pH 7.4 and demonstrates an increasing trend from pH 7.4 to H 8.5.
Statistical comparisons performed relative to pH 7.4. N = 3 samples per group. **p<0.01. ND: not detected.

doi:10.1371/journal.pone.0159675.g003
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Effects on extracellular pH on mitochondria
To assess the effects of extracellular pH on mitochondrial function, we applied TMRM, a fluo-
rescent probe to measure mitochondrial potential, to PNEC cells cultured at pH 6.5, 7.4, and
8.5 for 24 hours. We identified that alkalinization of extracellular pH enhanced TMRM inten-
sity in PNEC cells (Fig 5A–5C). Quantification of TMRM intensity disclosed a 1.7-fold increase
in TMRM intensity from pH 6.5 to 7.4 and 2.5-fold increase from pH 6.5 to pH 8.5 (Fig 5D).

Interestingly, we also identified a qualitative alteration in mitochondrial morphology that
changed with extracellular pH. At pH 6.5, mitochondrial staining was diffusely distributed
throughout the cell body (Fig 6A). However, the transition to pH 7.4 and pH 8.5 resulted in
mitochondrial aggregation (Fig 6B and 6C). Together, this supported our findings that extra-
cellular pH could modulate mitochondrial metabolism and suggested that extracellular pH
could modulate the cell’s dependence on specific energetic pathways.

Fig 4. Extracellular pHmodulates TCA cycle metabolism. Targeted GC/MS quantification of TCA cycle metabolites (A) malate, (B) fumarate, and
(C) succinate in PNEC cells demonstrate that TCA cycle metabolite levels increase with alkalinization. (D) The ATP / ADP ratio, a marker for cellular
energetics also increases with alkalinization. Statistical comparisons performed relative to pH 7.4 for each metabolite. N = 6 samples per group.
*p<0.05, **p>0.01, ***p<0.001.

doi:10.1371/journal.pone.0159675.g004
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Next, we investigated the effects of extracellular pH on OXPHOS activity. Interestingly,
there were no differences in basal oxygen consumption rate (OCR) between PNEC cells cul-
tured at pH 6.5, 7.4, or 8.5 (Fig 7A). However, there was enhancement of the extracellular
acidification rate (ECAR) with alkalinization (Fig 7B), further supporting our findings that lac-
tate production from both glucose and glutamine metabolism increased as extracellular pH
increased. The change in ECAR coupled with constant OCR resulted in an OCR/ECAR ratio
that decreased with alkalinization (Fig 7C). Together, these results signified two important
findings: (i) PNEC cells cultured in physiologic and alkaline pH could derive energy from both
glycolysis and OXPHOS and (ii) PNEC cells cultured in acidic pH were dependent primarily
upon OXPHOS. The dependence of PNEC cells on OXPHOS in acidic pH suggested that this
could be used as a therapeutic strategy.

We tested the hypothesis that OXPHOS inhibition synergizes with acidic extracellular pH to
enhance PNEC toxicity. Following a two day inhibitor challenge, we identified pH-dependent

Fig 5. Extracellular pHmodulatesmitochondrial potential. Tetramethylrhodamine (TMRM) staining of PNEC cells following 24 hours of incubation
at given pH values demonstrate increasing mitochondrial potential with increasing extracellular pH. (A-C) Photomicrographs of TMRM (red) staining of
PNEC cells (Hoechst nuclear stain = blue). (D) Quantified TMRM intensity as a function of pH. Statistical comparisons for TMRM performed relative to
pH 7.4. N = 10 samples per group. *p<0.05. A.U.: arbitrary units.

doi:10.1371/journal.pone.0159675.g005
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Fig 6. Extracellular pHmodulates mitochondrial morphology in PNEC cells.Confocal imaging of PNEC
cells stained with mitotracker green following 24 hours of incubation at given pH values demonstrate
increasing aggregation of mitochondria with alkalinization. (A) pH 6.5, (B) pH 7.4, (C) pH 8.5.

doi:10.1371/journal.pone.0159675.g006
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cell toxicity of these inhibitors with greatest effects at pH 6.5. Interestingly, antimycin A and car-
bonyl cyanide m-chlorophenyl hydrazine (CCCP) had significant toxic effects on PNEC cells at
pH 6.5 where, 49% of antimycin A-treated PNEC cells and 44% of CCCP-treated PNEC cells
were viable relative to vehicle-treated cells (Fig 7D). Rotenone, on the other hand, had a less-
robust pH-dependent effect where cells cultured at pH 8.5 were less susceptible with 80% viabil-
ity (Fig 7D). Oligomycin toxicity was especially intriguing as this drug was the most toxic to
PNEC cells at all extracellular pH values. At pH 6.5, there was only 27% viability in oligomycin-
treated cells whose effect plateaued at pH 7.4 and 8.5 with 47% viability (Fig 7D). These findings
further supported the OCR and ECAR data, demonstrating the reliance of PNEC cells cultured
in acidic pH on OXPHOS for cell energetics and survival. Moreover, the highest and least pH-
dependent toxicity seen with oligomycin further demonstrated the importance of complex V-
derived ATP synthesis for PNEC cells cultured in all pH conditions, further supporting our
finding that OCR was not directly affected by extracellular pH, and that PNEC cells cultured in

Fig 7. Acidity promotes an OXPHOS-dependent state in PNEC cells. (A-C) Seahorse analysis of PNECmetabolism as a function of extracellular
pH. (D) OXPHOS inhibitor toxicity studies in PNEC cells as a function of extracellular pH. Statistical comparisons performed relative to pH 7.4 in each
group. N = 10 samples per group for Seahorse studies, N = 4 samples per group for toxicity studies. *p<0.05, **p<0.01, ***p<0.001. OCR: Oxygen
Consumption Rate, ECAR: Extracellular Acidification Rate.

doi:10.1371/journal.pone.0159675.g007

Extracellular pHModulates Prostate Cancer Cell Metabolism and Niclosamide Susceptibility

PLOS ONE | DOI:10.1371/journal.pone.0159675 July 20, 2016 15 / 26



physiologic and alkaline conditions could derive additional ATP from aerobic glycolysis relative
to PNEC cells in acidic conditions.

Synergistic effects of niclosamide and extracellular pH in PNEC cells
There is abundant data demonstrating that acidic extracellular pH enhances aggressive tumor
features [10, 16, 42, 43]. Our data demonstrating that OXPHOS inhibitors could selectively tar-
get PNEC cancer cells in acidic pH led us to identify clinically-relevant pharmaceuticals that
could synergize with acidic extracellular pH and thus target aggressive features of tumors. We
searched the literature for pharmaceuticals that could inhibit mitochondrial function and iden-
tified the anti-helminthic drug niclosamide. Although many mechanisms of action have been
attributed to this drug, one mechanism includes protonophoric activity or the ability to abolish
the proton gradient in intracellular organelles [44–46]. Because this mechanism is similar to
that of CCCP, we hypothesized that niclosamide could exert pH-dependent effects on mito-
chondrial potential and cell energetics in PNEC cells.

First, we investigated the time and pH-dependent effects of niclosamide on mitochondrial
potential. Following labeling with TMRM dye, we added 10 μM of niclosamide to cells at each
respective extracellular pH. Time-resolved imaging of PNEC cells exposed to either DMSO
vehicle or 10 μM niclosamide disclosed pH-dependent mitochondrial depolarization induced
by niclosamide (Fig 8A). As expected, niclosamide had the most robust effects on depolariza-
tion at pH 6.5 (30% of initial potential at 5 minutes) versus pH 7.4 (69% initial potential at 5
minutes) versus pH 8.5 (90% of initial potential at 5 minutes). Interestingly, niclosamide had
rapid effects on PNEC cells as evidenced by 100% depolarization within 12 minutes of niclosa-
mide administration at pH 6.5 (Fig 8A).

Because mitochondrial depolarization abolishes the proton motive force required by the
complex V ATP synthase to synthesize ATP, we investigated the effects of niclosamide on ATP
levels in PNEC cells. Following addition of 10 μM niclosamide for 30 minutes at pH 6.5, 7.4,
and 8.5, niclosamide treatment (relative to vehicle) resulted in significantly decreased ATP lev-
els at all extracellular pH values. However, these effects were most pronounced at pH 6.5 where
niclosamide treatment significantly reduced ATP levels by 86% compared to 80% at pH 7.4
and 44% at pH 8.5 (Fig 8B). These findings paralleled the mitochondrial complex inhibitor
results and suggested that niclosamide treatment could be selectively toxic to PNEC cells at
acidic pH. Moreover, given the dependence of cancer cells on nutrient consumption, glycolysis,
and mitochondrial activity, we hypothesized that the pH-dependent metabolic effects seen in
PNEC cells could be translated to other prostate cancer cell models.

Synergizing extracellular pH and metabolic inhibition to enhance cell
toxicity in PNEC and prostate adenocarcinoma cell lines
First, we determined if nutrient deprivation could synergize with physiologic and alkaline
extracellular pH to enhance cell toxicity in other cancer cell models. In addition to PNEC cells,
we used three human models for castrate-resistant prostate adenocarcinoma: C4-2B, PC-3, and
PC-3M cell lines.

We cultured all four cell lines for two days under nutrient-defined conditions where two
key nutrients glucose and glutamine were independently manipulated. We also tested the effi-
cacy of 10 mM 2-DG (in the presence of 10 mM glucose) as an inhibitor of glycolysis to deter-
mine if chemical inhibition of metabolism could synergize with extracellular pH. We identified
similar trends among all four cell lines where nutrient deprivation or glycolytic inhibition with
2-DG enhanced cell toxicity with alkalinization. In the case of PNEC cells, significant trends
were identified with all treatment groups. PNEC cells incubated at pH 6.5 were the least
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susceptible to the toxic effects of glucose and glutamine deprivation and 2-DG treatment rela-
tive to other pH treatments. Conversely, PNEC cells cultured at pH 8.5 were more susceptible
to the same treatments, further supporting our model (Fig 9A). Interestingly, glutamine-
deprived PNEC cells were significantly less viable compared to glucose deprived PNEC cells at
all three pH values and was most pronounced at pH 8.5 (54% viability in glucose-deprived
media vs. 21% viability in glutamine-deprived media) (Fig 9A). Moreover, combined glucose
and glutamine deprivation exerted the largest negative impact on PNEC cell viability and was
also most pronounced in alkaline pH, resulting in 8% viability (Fig 9A). Together, these find-
ings pointed to the potential importance of synergistic lethality of inhibiting both glucose and
glutamine consumption in neuroendocrine cancer cells. Although glucose and glutamine dep-
rivation had the greatest negative effect on PNEC cell viability in alkaline pH, there was also a
significant decrease in viability at pH 6.5 in the absence of glucose and/or glutamine relative to

Fig 8. Niclosamide inhibition of mitochondrial function is enhanced with acidic pH in PNEC cells. (A)
Kinetics of mitochondrial potential following addition of either vehicle (0.1% DMSO) or 10 μM niclosamide as
a function of pH. (B) ATP levels in PNEC cells obtained 30 minutes following addition of either vehicle or
10 μM niclosamide. Significance calculated relative to pH 7.4 for panel A and relative to vehicle treatment for
panel B. N = 10 samples per group for kinetics and N = 3 samples per group for ATP assay. ***p<0.001,
****p<0.0001. A.U.: arbitrary units.

doi:10.1371/journal.pone.0159675.g008
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cells cultured with both nutrients (Fig 9A). These findings suggest that both glucose and gluta-
mine are required for cell viability in acidic pH, and at least in acidic pH, glucose may be
engaged in non-lactate generating metabolism.

Similarly, the C4-2B cell line showed similar pH toxicity profiles. Statistically significant dif-
ferences (relative to pH 7.4) were seen in all nutrient-deprived groups (Fig 9B). Notably, as
with PNEC cells, combined glucose and glutamine deprivation with alkaline extracellular pH
had the most potent synergistic effects with 7.5% viability (Fig 9B). These effects were seen in
PC-3 and PC-3M cells as well. Although glutamine and combined glutamine and glucose-
deprived PC-3 cells did not demonstrate significantly decreased viability at pH 8.5 relative to
pH 7.4, there was a significantly robust difference between pH 6.5 and 7.4 in glutamine-
deprived PC-3 cells (100% viability at pH 6.5 vs. 37.7% viability at pH 7.4) (Fig 9C). Although
PC-3M cells are derived from a liver metastasis from its parental cell line, PC-3, we identified
subtle differences in their toxicity profiles. pH-dependent toxicity from nutrient deprivation

Fig 9. Nutrient deprivation has pH-dependent toxicity in castrate-resistant prostate cancer cell lines. Cell viability determined using the
sulforhodamine B assay in (A) PNEC, (B) C4-2B, (C) PC-3, and (D) PC-3M prostate cancer cells demonstrate that inhibition of glucose and glutamine
metabolism enhance cell toxicity with alkalinization. Statistical comparisons performed relative to pH 7.4 in each group. N = 4 samples per group.
*p<0.05, **p>0.01, ***p<0.001. 2-DG: 2-deoxyglucose.

doi:10.1371/journal.pone.0159675.g009
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was more evident in PC-3M cells, with acidic pH conferring significantly-enhanced viability
relative to pH 7.4 in all groups. As in PNEC and C4-2B groups, combined glucose and gluta-
mine deprivation resulted in the greatest toxicity in PC-3M cells with 7.9% viability (Fig 9D).
Together, these findings suggested: (i) the effects of extracellular pH and glucose and glutamine
dependence could be translated across multiple castrate-resistant prostate cancer cell lines and
(ii) mechanisms that increase intratumoral pH towards physiologic pH in concert with inhibi-
tion of glucose and/or glutamine consumption and metabolism could be used to enhance ther-
apeutic efficacy.

Although there are current agents that have the ability to increase extracellular pH in
tumors [47], we determined if niclosamide could be used to kill prostate cancer cells in acidic
pH. Evaluation of niclosamide toxicity from pH 6.0 to 8.5 demonstrated significant effects on
PNEC viability at acidic pH with only 0.2% viability at pH 6.5 (Fig 10A). Moreover, only 27.7%
of PNEC cells were viable at physiologic pH (Fig 10A). Interestingly, PNEC cells were relatively
resistant to niclosamide toxicity at pH 8.0 (68.2% viability) and pH 8.5 (82.6% viability). Vehi-
cle-treated (and untreated) PNEC cells exposed to pH 6.0 were not viable (Fig 10A).

C4-2B and PC-3 cells showed a weaker pH-dependent response with significant toxicity rel-
ative to pH 7.4 seen only at pH 6.0. However, the overall range in viability across the pH spec-
trum of 6.0 to 8.5 in these two cell lines was not as robust as in PNEC cells. For example, C4-2B
cells demonstrated only 84.6% viability at pH 8.5 (Fig 10B) and PC-3 cells demonstrated only
60% viability at pH 8.5 (Fig 10C). Interestingly, compared to the parental PC-3 cells, PC-3M
cells had a much different pH-dependent niclosamide toxicity profile characterized by a rela-
tively steep drop in toxicity at pH 6.5 (1.9% viability) from pH 7.0 (87.3% viability) (Fig 10D).
Overall, the PC-3M response to extracellular pH was similar to that of PNEC cells character-
ized by (i) relative resistance to niclosamide toxicity at alkaline pH, (ii) significantly decreased
viability at pH 6.5 and pH 7.0, and (iii) no viability at pH 6.0. These findings suggest the possi-
bility that niclosamide could be used as an anti-cancer therapeutic that could selectively target
the acidic extracellular environment in prostate cancer.

Discussion
Multiple studies of the effects of normoxic acidosis on the phenotypes of various cancer cell
models have demonstrated that acidity enhances cell invasion, a stem cell phenotype, resistance
to immunotherapy, and resistance to chemotherapy [10, 12, 13, 42, 48]. Here, we have found
that an acidic, normoxic environment can enhance susceptibility of cancer cells to OXPHOS
inhibitors. This finding is potentially important, given that OXPHOS and mitochondrial func-
tion may enhance the energetics of therapy-resistant stem-like cancer cells and that acidity-
induced conversion to an OXPHOS-dependent state may contribute at least in part to thera-
peutic resistance in tumors [49–52]. By developing a mechanistic understanding of the effects
of extracellular acidity on PNEC cell metabolism, we have identified niclosamide as a potential
drug that could be used to treat the acidic compartment of tumors that harbor cells with a
malignant phenotype.

Our findings illustrate that acidic extracellular pH has direct effects on mitochondrial mor-
phology and energetics. These findings are supported by recent evidence that mild extracellular
acidosis (pH 6.5) can preserve ATP levels independent of oxygen levels in post-mitotic neu-
rons. Moreover, acidosis restructures neuronal mitochondria, resulting in increased total
length [53]. Although our data showed significantly lower ATP in PNEC cells cultured at pH
6.5 versus pH 7.4 and 8.5, PNEC cells compared to neurons are not post-mitotic and the lower
ATP levels may represent a complex balance between enhanced ATP production from
OXPHOS and enhanced ATP utilization in multiple pathways to maintain cell viability. In fact,
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extracellular acidification (independent of hypoxia) may specifically activate ATP-consuming
metabolic pathways such as fatty acid synthesis mediated through fatty acid synthase (FAS)
[54]. Thus, there may be specialized requirements for nutrients aside from glucose and gluta-
mine required to power cellular metabolism at acidic pH in normoxia [55].

ATP synthesis driven by the proton motive force in mitochondria is governed by both mito-
chondrial membrane potential (ΔCm) and the proton chemical gradient (ΔpHm). Although
ΔCm contributes most of the proton motive force, ΔpHm drives flux of substrates needed for
respiration [56]. ΔCm has also been used as a measure of mitochondrial fuel availability where
ΔCm declines with nutrient withdrawal, conversely increases with nutrient supplementation,
and is also positively regulated by Akt/mTOR signaling [57–59]. Our data demonstrating that
increasing extracellular pH also enhances ΔCm supports these previous findings. Conversely,
acidification-induced decrease in glucose and glutamine consumption as well as ΔCm also fits
the current model where cancer cells cultured under acidic conditions maintain an autophagic

Fig 10. Niclosamide has pH-dependent toxicity in castrate-resistant prostate cancer cell lines. Cell viability determined using the
sulforhodamine B assay in (A) PNEC, (B) C4-2B, (C) PC-3, and (D) PC-3M prostate cancer cells demonstrate that niclosamide enhances cell
toxicity with acidification. Statistical comparisons performed relative to pH 7.4 in each group. N = 4 samples per group. *p<0.05, **p>0.01,
***p<0.001. NV: Untreated PNEC and PC-3M cells are not viable at pH 6.0.

doi:10.1371/journal.pone.0159675.g010
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state that can similarly be induced from growth factor and nutrient deprivation [60, 61]. How-
ever, it is still not known if the change in extracellular pH directly affects ΔCm and thus the
proton motive force. Previous evidence suggests that intracellular pH is highly buffered and the
effects of extracellular acidification are not mediated by intracellular acidification in T lympho-
cytes [62]. It remains possible that the effects of extracellular pH on cancer cell metabolism
may be from cell signaling pathways involving pH sensors including the G-coupled protein
receptor T cell-associated gene 8 (TDAG8) that has the ability to modulate metabolic drivers
such as MYC [63, 64].

The impact of extracellular alkalinization on cancer metabolism is an intriguing one that is
relevant to therapeutic development, including the popular use of sodium bicarbonate as an
agent to alkalinize the tumor microenvironment [16, 65, 66]. However, the ability to alkalinize
the tumor microenvironment, at least with bicarbonate, may be mathematically challenging
[16, 65]. Thus, the ability to therapeutically reach pH 8.5 in the tumor microenvironment may
be unachievable. However, our data suggest that elevation of extracellular pH to at least physio-
logic levels (pH = 7.4) may be sufficient to take advantage of therapeutic approaches that target
nutrient consumption pathways. This paradigm would not only be relevant to bicarbonate-
based therapies, but novel agents such as calcium carbonate nanoparticles (nano-CaCO3) that
have the ability to neutralize tumor pH to physiologic levels and reduce tumor growth [47].
Our data suggest that the anti-tumor activity of alkalinization may be a secondary effect that
results from enhancing nutrient consumption in tumor cells that are in an environment where
nutrients are already scarce, thus enhancing cancer cell death.

However, the presence of both genotypic and phenotypic heterogeneity within tumors is
hypothesized to give rise to malignancy and treatment resistance, and thus proposes why single
targeted therapy does not work [67]. Our data suggest that inhibitors that target both OXPHOS
and glycolysis could have an additive effect in reducing tumor burden in both metabolic com-
partments. In fact, there is evidence that starvation in combination with metformin, a complex
I OXPHOS inhibitor, can significantly reduce tumor growth in colon and breast cancer models
[68]. Because tumors can develop resistance mechanisms to chemotherapeutics including met-
formin the identification of drugs that target other components of critical pathways such as
OXPHOS are urgently needed [69, 70]. For example, the anti-helminthic niclosamide has been
applied as an anti-tumor agent to a variety of cancers, including castrate-resistant prostate can-
cer androgen receptor variants [44, 71, 72]. Our data suggest that niclosamide, in combination
with other pharmaceuticals or even diets that modulate metabolic pathway flux such as glycol-
ysis could have an additive effect on cancer therapy.

We demonstrated that niclosamide can depolarize mitochondria and deplete ATP within
minutes of addition to cells in a pH dependent manner. These findings potentially correlate
with previously described actions of niclosamide that demonstrate disruption of pH homeosta-
sis in flukes, cytoplasmic acidification with dissipation of proton gradients across intracellular
organelles, and suppression of acidic lysosome function and trafficking [73–77]. Thus, the pro-
tonophoric activity of niclosamide is expected to be inversely proportional to the extracellular
pH and is therefore more toxic in acidic pH. Furthermore, the pH-dependent effects of niclosa-
mide and the acidic environment of tumors relative to physiologic pH may allow some degree
of tumor specificity and reduced toxic side effects. This is further supported by in vivo studies
of niclosamide that demonstrate that oral administration is sufficient to induce a mild mito-
chondrial uncoupling that can reverse diabetic symptoms in mice [45]. The more robust
differences in niclosamide activity seen in PNEC and PC-3M cell lines in this study suggest a
possible correlation with the inability of these cells to maintain viability in extreme acid stress
(pH 6.0). Moreover, there may also be implications in how the glycolytic capacity of the cancer
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cell impacts its ability to survive extreme acidic extracellular pH, as PNEC cells demonstrate
weak acidification of media under conventional culture conditions.

Although an extracellular pH of 8.5 may be considered solely an “artificial”means of inves-
tigating metabolism in an in vitro system, it should be noted that this could be a physiologically
relevant system for studying cancer metabolism. Bone (a common site for metastasis from
prostate and many other cancers) is alkaline where osteoblast activity has been reported to
peak around an extracellular pH~8 and whose extracellular alkaline phosphatases required
for bone formation have peak activity around pH~9 [78–80]. Therefore, the development of
tools that facilitate the investigation of cancer cell interactions with these alkaline matrices
and the development of agents that can effectively measure the pH of these environments are
necessary.
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