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Abstract

Identification of dysregulated microRNAs (miRNAs) in prostate cancer is critical not only for
diagnosis, but also differentiation between the aggressive and indolent forms of the dis-
ease. miR-9 was identified as an oncomiR through both miRNA panel RT-gPCR as well as
high-throughput sequencing analysis of the human P69 prostate cell line as compared to its
highly tumorigenic and metastatic subline M12, and found to be consistently upregulated in
other prostate cell lines including DU-145 and PC3. While miR-9 has been characterized
as dysregulated either as an oncomiR or tumour suppressor in a variety of other cancers
including breast, ovarian, and nasopharyngeal carcinomas, it has not been previously eval-
uated and proven as an oncomiR in prostate cancer. miR-9 was confirmed an oncomiR
when found to be overexpressed in tumour tissue as compared to adjacent benign glandu-
lar epithelium through laser-capture microdissection of radical prostatectomy biopsies. Inhi-
bition of miR-9 resulted in reduced migratory and invasive potential of the M12 cell line, and
reduced tumour growth and metastases in male athymic nude mice. Analysis showed that
miR-9 targets e-cadherin and suppressor of cytokine signalling 5 (SOCSS5), but not NF-kB
mRNA. Expression of these proteins was shown to be affected by modulation in expression
of miR-9.

Introduction

Prostate cancer (CaP) is the most common cancer for men in the United States other than skin
cancer, and the second leading cause of cancer deaths in the US, with over 29,000 fatalities each
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year [1]. The current standard for diagnosis of a potential prostate cancer is a rise in prostate-
specific antigen (PSA) levels as a screening test, followed by manual examination, and ultra-
sound-guided transrectal biopsy [2]. Interventions tend to have drastic consequences for the
diagnosed male; radical prostatectomies, cryosurgery, and androgen ablation therapy signifi-
cantly affect patient quality of life through high levels of incontinence, psychological, and sex-
ual side effects [3]. Thus, the identification of new screening practices is critical to diagnosing
not only prostate cancer, but also differentiating between the aggressive and indolent forms of
the disease.

microRNAs are a class of small RNAs that were described in C. Elegans in 1993 [4], and
have since emerged as major regulators of protein levels through attenuation of translation
at the ribosome [5-8]. microRNAs, or miRs, are 19-22 nucleotide single-stranded RNA
sequences that are guided by a protein complex to their mRNA targets, typically in the 3>-UTR
of the mRNA. microRNA transcription is often driven by standard transcription factor activa-
tion, including c-Myc and NF-kB [9-11], and most miRs are transcribed by RNA Polymerase
IT [12]. microRNAs can bind either perfectly or imperfectly to an mRNA target, thus making it
possible for one miR to attenuate the translation of tens to hundreds of different targets. Addi-
tionally, miRs have been shown to impact all aspects of the proteome, from cell proliferation
and apoptosis to mitochondrial and metabolic processes, to cytoskeleton and secreted products
[8,13]. Thus, microRNAs have recently been subject to intense scrutiny as modulators of pro-
tein levels in cancer, as they are increasingly being shown to influence carcinogenesis and
tumour progression.

The previously described progression cell lines P69 and M12 are a unique model for pros-
tate cancer, in that P69, having been immortalized from a human non-neoplastic prostate epi-
thelium section [14,15], is poorly tumorigenic and non-metastatic in nature. Having originated
from a basal cell lineage, P69 and its sublines do not express the androgen receptor, and are
thus androgen independent [15]. In contrast to its poorly tumorigenic P69 parent line, the
M12 cell line, which was derived from 3 sequential subcutaneous injections of P69 cells into
male nude athymic mice, is highly tumorigenic and metastatic upon orthotopic injection. The
M12 cell line was found to harbour a chromosome 16:19 translocation resulting in the loss of
one copy of chromosome 19, the restoration of which resulted in the F6 variant, which is mildly
tumorigenic and not metastatic [16]. Thus, it is proposed that this set of cell lines can serve as
amodel for prostate cancer research, in that the M12 and F6 variant are derived from P69 cells,
and therefore share a common basic genetic complement which has developed a tumorigenic/
metastatic phenotype mimicking what happens during tumour progression in man.

While prostate cell lines can act as good models for prostate cancer, any one cell line alone
should not be used as a discovery tool for novel modulated species, including microRNAs.
Moreover, a balanced discovery should include not only the easily obtainable cell lines, but also
patient samples. In this way, confirmation of the preliminary results obtained from cell-line
analysis can be confirmed as also occurring in the prostate cancer patient, and thus will not
only be more relevant in identifying new biomarkers, but also in developing new therapeutics
against prostate cancer. In this study, we proposed to identify microRNAs that have been mod-
ulated in prostate cancer through a progressive, sequential analysis that begins at the global
miRNA level through both high-throughput sequencing (HTS) and RT-qPCR analysis, and
proceeds through single-miR confirmatory analysis followed by evaluation of miR expression
in multiple additional prostate cancer cell lines. Finally, the modulated microRNA is validated
in human patient samples through laser capture microdissection (LCM) of benign and tumor
tissue, and consequence of modulating microRNA expression on cell behaviour is analysed in
vitro and on tumor growth in vivo, as well as the analysis of relevant mRNA targets for micro-
RNA binding by in vitro and in vivo experiments.
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Materials and Methods
Cell Culture

The establishment, maintenance, and characterization of the SV40 T antigen-immortalized
human prostate epithelial cell P69 and its sublines, M2182, M12, and F6 have been described
previously [15-17]. Briefly, two types of tumors were formed from the subcutaneous injection
of the P69 glandular epithelial cell line into 18 male, athymic nude mice and designated as line-
age I and lineage II [15]. The M2182 cell line is from Lineage I, derived from an early passage
(T5-T1o) of the P69 cell line soon after immortalization. Subsequent analysis showed it was
non-metastatic and weakly tumorigenic. The M12 subline was also derived from Lineage I
cells, but following three sequential cycles of subcutaneous growth in male, athymic nude mice.
Upon intra-prostate injection the M12 variant was shown to readily metastasize to lungs or
diaphragm (5/5 mice) and was verified to have lost one copy of chromosome 19. Restoration of
the second copy of chromosome 19 resulted in the F6 variant, which exhibited a notable decline
in tumorigenicity and the loss of metastatic capability [16]. These cell lines, as well as DU-145,
were generous gifts from Dr. Joy Ware, Virginia Commonwealth University, Richmond, VA.
The PC-3 cell line was a gift from Dr. Zheng Fu, Virginia Commonwealth University. All cell
lines were authenticated using STR analysis and were kept in culture for less than 2 months.
PC-3 and DU-145 cell lines were maintained according to established protocols [18,19]. Stable
transformations of an early passage of the M12 cell line with a vector containing a miR-9 inhib-
iting sequence or scrambled control (pEZX-AMO03, Geneocopeia Inc.) were performed using
TransIT™-LT1 Transfection Reagent (Mirus BIO LLC) according to the manufacturer’s
instructions.

Locked-Nucleic Acid miR Panel Analysis

RNA extracted from M12 and P69 cell pellets was subjected to reverse transcription for analysis
on Exigon miRCURY LNA™ Universal RT microRNA PCR Panels I and IT (Verson 2.M) (Exi-
qon A/S) and qPCR was conducted in an Applied Biosystems 7900HT real-time PCR instru-
ment (Life Technologies) according to the manufacturer’s instructions. Threshold and baseline
settings were set according to protocol recommendations. The data was corrected for interplate
variability using on-plate calibrators, and normalized against the global mean using Exiqon
GenEx software. Expression changes were calculated in Microsoft Excel™ as using the 27 A
method [20] as M12 expression relative to P69.

High-Throughput Sequencing of Cell Lines

Small RNA was extracted from duplicate P69 samples, and single M2182, M12, and F6 samples
using the miRVana™ RNA isolation method (Ambion-Life Technologies) according to the
manufacturer’s specifications for the extraction of small RNA and eluted in 100 ul. Sample
RNA Integrity and quantitation was analysed using the 2100 Bioanalyzer and Small RNA
quantitation method (Agilent Technologies Inc) according to the manufacturer’s recommen-
dations. RNA samples were sent to the Nucleic Acids Research Facility at Virginia Common-
wealth University for paired end sequencing on the Illumina platform. Briefly, Small RNA
library preparation was conducted using the NEBNext™ Multiplex Small RNA Library Prep
Set for Illumina™ (Set 1) (New England Biolabs). High throughput sequencing was conducted
using the HiSeq 2500 (1x150) (Illumina®™). Adapter trimming and sequence analysis was con-
ducted using Flow, v3.0 (Partek™ Incorporated, St. Louis, Missouri, USA) using Bowtie 2
(v2.1.0) and miRbase v20 for alignment and annotation. miR sequencing reads were
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normalized using the reads per million (RPM) formula: (read counts of an individual miRNA/
sum of read counts of all mappable miRNAs) multiplied by 1x10°.

Laser-Capture Microdissection

Frozen radical prostatectomy samples (n = 5) were obtained from the University Tissue and
Data Acquisition and Analysis Core after informed written consent and following approved Vir-
ginia Commonwealth University Institutional Review Board (IRB) protocols (HM13417_CR1).
Each sample was reviewed and scored by a board certified pathologist with expertise in prostate
cancer diagnosis. Frozen tissue slices (8 um) from the biopsy cores were placed on uncharged
glass slides, and stained with hematoxylin and eosin (H&E) using a standard protocol. Laser
capture microdissection (LCM) was performed using the Arcturus Veritas™ laser capture micro-
dissection system (Life Technologies). Each tissue type (benign, tumour) was separately cap-
tured onto CapSure™ Macro LCM caps (Life Technologies). At least ten slides were captured
for each patient included in the study. Total RNA was isolated from LCM caps using the ARC-
TURUS™ PicoPure®™ RNA Isolation Kit (Life Technologies), following the manufacturers pro-
tocol. RNA quality and quantity were estimated using an Agilent RNA 6000 Pico chip with the
Bioanalyzer 2100 (Agilent Technologies) using the manufacturer’s instructions.

Constructs and transient transfections

A portion of the 3’-UTR of e-cadherin was previously cloned into pmiR-Report, the seed
region subsequently mutagenized [10] and both wild type and mutated clones were obtained
through Addgene (Plasmids 25038 and 25039; http://www.addgene.org). Transient co-trans-
fections of the 3’-UTR fragments cloned into the luciferase reporter vector along with a renilla
luciferase vector (Promega) for normalization were performed using TransIT™-LT1 Transfec-
tion Reagent (Mirus BIO LLC) according to the manufacturer’s instructions. Briefly, cells were
plated such that they would reach approximately 50% density after 24 hours. The cells were
then rinsed with 0.5 mL PBS, and serum-containing media replaced. The cloned 3’-UTR:vector
(0.5 ug) was mixed with 50 uL of RPMI media and 1 pg of Renilla plasmid with no serum or
additives and 1.5 uL of TransIT®-LT1 reagent at room temperature for 15 minutes. The solu-
tion was added dropwise to each well, and gently rocked back and forth. The transfections
were incubated for 24 hours under standard cell culture conditions and lysed as described
below.

A sixty nucleotide portion of the miR-9 binding site in the 3’-UTR of SOCS5 and the mutated
analog were synthesized through Invitrogen for oriented cloning into pmiR-Glo (Promega).
Mutations of the seed recognition site (S1 Table) were synthesized as indicated, and failure of
the mutated target site to bind miR-9 was verified through RNAHybrid [21,22]. Transient trans-
fections of the 3’-UTR dual reporter vectors were performed using TransIT"®-LT1 Transfection
Reagent using the plating conditions described above.

Luciferase assays were conducted using the Dual-Luciferase Reporter Assay System (Pro-
mega Corporation). 100 pL of 1X Passive Lysis Buffer (Promega Corporation) was pipetted
into each well, and lysed according to the manufacturer’s instructions. Luciferase and Renilla
measurements were taken in a GloMax™ 20/20 luminometer (Promega Corporation).

RNA Isolation and quantitative real-time PCR

RNA was isolated using the miRVana™ RNA isolation method (Ambion-Life Technologies).
Messenger RNA expression was determined using iScript™ cDNA Synthesis kit (Bio-Rad Labo-
ratories), followed by qPCR reactions using 1X FastStart Universal SYBR Green Master Mix
(Roche Diagnostics, Indianapolis, IN) and 10 uM primer pairs for the relevant mRNA target
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(GAPDH: Forward: 5 —ACCACAGTCCATGCCATCAC; Reverse: 5 —TCCACCACCCTGTTGCT
GTA. E-Cadherin: Forward: 5 ~-GGTGCTCTTCCAGGAACCTC; Reverse: 5 ~GAAACTCTCTC
GGTCCAGCC. SOCS5: Forward: 5/ ~CCTCCTTCGGCCTTCACCTA; Reverse: 5 —~TATAAAAT
CGTGACCAATAGCAGGC) with 3 uL of cDNA reaction and brought to 20 pL volume with
nuclease-free water. QPCR was conducted in an Applied Biosystems 7300 real-time PCR
instrument (Life Technologies) using standard conditions. Data was analyzed using SDS soft-
ware v1.3.1 (Life Technologies), using automatic threshold and baseline settings. Each mRNA
evaluated was analyzed in triplicate using a minimum of three separate cell passage RNA
extractions. GAPDH was used as a normalization control, and relative expression was calcu-
lated using the comparative Ct method [20].

Expression of miRNA targets was determined using the miRCURY LNA™ Universal reverse
transcription reaction according to the manufacturer’s instructions (Exiqon A/S). The cDNA
was diluted and qPCR undertaken in an Applied Biosystems 7300 real-time PCR instrument
(Life Technologies) using recommended cycling conditions. Data was analyzed using SDS soft-
ware v1.3.1 (Life Technologies). Threshold and baseline settings were set according to protocol
recommendations, with baseline correction between cycles 3 and 12 and an automatic threshold.
miR-9 (Exiqon # 202240:MIMAT0000441) was analyzed against a cell line with a minimum of
one biological and three technical replicates. SNORD48 (Exiqon # 203903) was used as a normal-
ization control, and relative expression was calculated using the comparative Cy method [20].

Western Blotting

Cultured cell pellets were lysed in 4% sodium dodecyl sulfate (SDS) in phosphate-buffered
saline (PBS) with 1X PhosSTOP phosphatase inhibitor (Roche Diagnostics) and COMplete
protease inhibitor (Roche Diagnostics), followed by sonication for five minutes at 4°C. Western
blot analysis was performed using the following antibodies: anti-B-actin (C4) produced in
mouse (Santa Cruz Biotechnologies), anti-e-cadherin (CDH1) produced in mouse (Sigma
Aldrich), anti-NF-kB produced in rabbit (Santa Cruz), and anti-SOCS5 (M-300) produced in
rabbit (Santa Cruz). f-actin was used as a loading control.

Cell proliferation assay

The effect of miR-9 on cell growth was determined through proliferation assays. M12 and M12
cells transformed with the miR-9 inhibitor plasmid were plated (5 x 10° cells) onto a 24-well
plate. The adherent cells were released by incubating with 0.25% Trypsin-EDTA (Gibco-Life
Technologies) after which the trypsin was inactivated by washing the cells in serum-containing
media. The cells counted using a Coulter Counter™ Analyzer (Beckman Coulter, Inc) or Vi-
Cell™ XR Cell Viability Analyzer (Beckman Coulter, Inc) using a trypan blue solution. Cells
were >90% live when analyzed in this fashion.

Migration and Invasion Assays

For evaluation of migratory capabilities, 5 x 10* M12 cells stably transformed with either a
scrambled control or miR-9 inhibitor were added to a ThinCert™ TC membrane support insert
(Greiner Bio-one BVBA/SPRL) placed in the well of a 24-well plate. For invasion assays, 30 pL
of a 10% solution of Cultrex™ Basement Membrane Extract (Growth Factor Reduced), (R&D
Systems™) in RPMI 1640 was pipetted onto the membrane support insert, and incubated at
37°C for 1 hour prior to adding 1.25 x 10° cells to the upper chamber. For both assays, cells
were plated in medium without serum, and medium supplemented with 5% FBS and 10 ng/mL
EGF in the lower chamber of the well as chemoattractant. The unit was incubated for 24 hours.
Cells that did not invade were removed by a cotton swab, and the cells on the lower surface of
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the membrane were fixed with 0.025% gluteraldehyde, followed by staining with 0.1% leuco-
crystal violet in 10% EtOH and PBS. The membranes were excised and mounted to a micro-
scope slide, and cell counts were performed in 5 random fields for each replicate, averaged, and
expressed as relative to the control. Data was the result of a minimum of 3 independent experi-
ments, each performed in triplicate.

In-vivo studies

All experiments were conducted in strict accordance with the recommendations in the Guide
for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol
was approved by the Institutional Animal Care and Use Committee of Virginia Commonwealth
University (VCU) (Protocol Number: AM10131). All surgery was performed under ketamine
and xylazine anesthesia, and Carprofen was administered daily for three days after surgery and
subsequently as needed to minimize suffering. All animals were housed in an IACUC approved
barrier controlled vivarium in enclosures containing a single animal, and the animals were
housed in ventilated enclosures with HEPA filtration to prevent spread of infectious disease.
The Vivarium was under administration of the VCU Department of Animal Resource (DAR)
and access to the facility was strictly controlled. Animals were monitored daily by study person-
nel and DAR animal husbandry staff. Researchers ensured that each animal was provided with
adequate food, water and clean enclosures. Enclosures were changed at least once per week and
as needed for water spills, excess elimination etc. All animal areas were equipped with diurnal
lighting, set for 12 hour on/off cycles. Five mice were assigned to each experimental group and
were injected with 2.0 x10° cells into the subcutaneous space on the back of each mouse. Follow-
ing injection of cells into mice, they were monitored daily for signs of distress and discomfort
using an JACUC approved moribundity scale (54 Table). Mice with a score of >2 on the scale
were euthanized using CO, asphyxiation. No animals in the experimental group died before
euthanization. One mouse in the experimental group was euthanized prior to the experimental
endpoint. All other mice were euthanized at the end of the experiment.

To assess tumorigenicity, M12 and M12 cells transformed with the miR-9 inhibitor plasmid
were subcutaneously (SC) injected into the dorsal flank of male athymic nude mice (2x10° cells
per mouse, five mice per treatment) (Harlan Laboratories, Inc., Indianapolis, IN). Tumour
growth was monitored weekly using caliper measurement, and tumour volume calculated as
length x width®/2 (mm®) over a period of 45 days until sacrifice. The tumors were excised fol-
lowing euthanization.

To assess metastatic potential, 3 male athymic nude mice were orthotopically injected with
(10° cells per mouse) of M12 or M12 cells transformed with the miR-9 inhibitor plasmid. The
mice were sacrificed at 76 days, and peritoneal metastatic sites were counted.

Data Analysis

Data are presented as the mean + standard deviation. Statistical analyses were conducted in the
Microsoft™ Excel software platform, using the independent Student's t-test, assuming equal
variance between the two groups. Statistical significance was defined as p < 0.05.

Results

High-Throughput Sequencing and Microarray Panel Analysis of M12
and P69 cell lines

Locked-nucleic acid (LNA) RT-qPCR panel analysis of the M12 versus the P69 cell line was the
starting point for our search for microRNAs that are truly modulated, not only in cell-line
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models, but also in human tumours. A large number of microRNAs dysregulated between the
P69 and metastatic M12 subline were identified through the miR panel analysis. Out of 736
microRNAs assayed using the RT-qPCR panel analysis of the M12 versus the P69 cell line, 231
were found to be OncomiRs (>2 fold increase in M12 vs. P69 cell lines), 150 were found to be
Tumour Suppressors (<0.5 fold decrease in M12 vs. P69 cell lines), with the remaining micro-
RNAs (355) within the normal range (S1 Fig). Even though the majority of microRNAs
remained within the normal range, this still left many potential tumour suppressors and
oncomiRs to evaluate (S2 Table). Because of the high numbers of dysregulated miRNAs identi-
fied, we chose to further narrow and verify candidate miRNAs through HTS analysis of the
same cell lines. By HTS analysis, 161 dysregulated miRNAs were identified (S3 Table). Com-
parison of the two data sets resulted in a final list of candidate dysregulated miRs to be further
evaluated.

The choice of which microRNAs to investigate further was accomplished through an evalua-
tion of not only differences in the expression levels between P69 and M12 cell lines, but also liter-
ature reviews and analysis of potential targets using microRNA-target databases including
TargetScan, DIANA, and miRDB [21-27]. Literature searches were conducted in order to deter-
mine whether the microRNAs in question had been previously identified as modulated in pros-
tate or any other neoplasias, and single-miR analysis via RT-qPCR was conducted to confirm
expression differences. Confirmatory RT-qPCR analysis of the selected miRs showed correlative
results in fold expression differences from P69 to M12 for most, but not all, microRNAs selected.

miR-9 was chosen for further analysis, given its known role in other neoplasias and well-
characterized proven targets [10,28-36]. A substantial increase in miR-9 levels was noted in
the M12s versus the parental P69 cell line. Both HTS and panel analysis identified miR-9 as a
potential oncomiR, with 3.017-fold (p =.000295) and 6.676-fold increases in M12 vs. P69,
respectively (52 and S3 Tables). This result was further verified through single-miR RT-qPCR
analysis; miR-9 levels were high in M12, but not found to be significantly higher than the
parental line when evaluated in the non-metastatic, poorly tumorigenic M2182 and F6 derivate
(Fig 1a). RT-qPCR analysis of miR-9 against additional model cell lines showed significant
upregulation in DU-145 and PC-3 cell lines in correlation to the observed upregulation in the
M12 progression model (Fig 1b). LCM samples were captured from 5 patient biopsies at vary-
ing stages of prostate cancer classified as Gleason 4-7. RT-qPCR analysis showed that in the
majority of patient samples (3 out of 4) miR-9 was elevated, but in patient 5 it was not detected
in either benign or tumor tissue and thus could not be included in the analysis (Fig 1c). As
expected, there is considerable variability in the nature of individual patient samples, most
likely due to the heterogeneous nature of solid tumours, but miR-9 was elevated in 75% of the
detected samples analyzed.

Evaluation of miR-9’s effect on the tumorigenic potential of the M12 cells was performed
through inhibition of miR-9 via stable transfection of a miR-9 sponge sequence. Inhibition of
miR-9 had significant effects on migratory and invasive potential of the highly metastatic M12
cell line as compared to the scrambled control (p <0.0001 for both assays) (Fig 2a and 2b);
however, miR-9 inhibition did not affect cell proliferation rates (Fig 2c). This is not surprising,
given that the M12 cell line was immortalized using the SV40T antigen, which binds Rb, pre-
ventingthetumour suppressor protein from controlling cell cycle progression at the G1 check-
point [14,37].

Subcutaneous injection of M12 cells stably transfected with miR-9 inhibitor into the flanks
of male nude athymic mice showed a significantly lower level of tumour growth (p <0.0001)
compared to mice injected with M12 cells (Fig 3a). Four of the five M12 injected mice devel-
oped tumours, but only two of the five M12+miR-9 inhibited mice developed tumours, which
grew at a slower rate and size. Intraprostatic injection resulted in 7 metastatic sites for M12-
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Fig 1. miR-9 levels are upregulated in all prostate cancer cell line models. A: miR-9 levels were significantly upregulated in
M12 cells as relative to the parental P69 line (p = .002). Data is the mean of 3 independent experiments, each performed in
duplicate (F6) or triplicate (P69, M2182, M12). B: miR-9 levels in DU-145 and PC3 cells are upregulated as relative to P69 cells
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doi:10.1371/journal.pone.0159601.g003

injected mice, while neither of the M12+miR-9 inhibited mice had any observed metastatic
sites by 76 days after injection (Fig 3b).

Given the strong evidence for miR-9’s contribution to oncogenic potential from these data,
we felt confident that the miR has at least one significant target in prostate cancer that would
prevent tumour progression when released from suppression. We therefore focused our efforts
on evaluating miR-9’s proven targets in prostate cancer using the P69 and M12 progression
model. As a known effector of the epithelial to mesenchymal transition (EMT), we were first
interested in evaluating e-cadherin (CDHI1), one of the proven targets for miR-9. In the early
tumour cell’s transition to a motile phenotype, the change in expression from e-cadherin to
vimentin is well known and described [10,38-40]. Previous work showed that vimentin is upre-
gulated in the M12 cell line as compared to P69, and that vimentin upregulation is caused in
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part by loss of miR-17-3p in the M12 cell line [41]. Evaluation of e-cadherin mRNA levels was
consistent with regulation by miR-9, exhibiting a reduced expression of mRNA levels in M12
compared to P69 (Fig 4a), which suggested cleavage activity upon miRNA binding to E-cad-
herin mRNA, even though miR-9 is not a perfect match to CDHI. Inhibition of miR-9 (M12
+miR-9-Inh) resulted in rescue of e-cadherin mRNA. One miR-9 binding site in e-cadherin was
identified through an RNAHybrid analysis of the entire mRNA (Fig 4B). This site, found in the
3’-UTR, has been shown previously to be directly bound by miR-9, and impacting its translation
[10,38]. Interestingly, based on a TargetScan [25-27,42] analysis, miR-9 is the only conserved
microRNA that binds to e-cadherin’s 3’-UTR. Western blot analysis confirmed that e-cadherin
was highly expressed in P69 cells, but is almost completely lost in the M12 cells, with a corre-
sponding change in vimentin protein levels, fitting with an EMT transition in M12 relative to
the P69 cell line. Inhibition of miR-9 resulted in a corresponding rescue of CDH1 levels (Fig 4c),
which upon correction for unequal loading by normalization to the internal control B-actin (Fig
4d), was considerably greater (~3-fold) than that detected in the parental P69 cell line. Transient
transfections of luciferase constructs with the wild type or mutated target for seed recognition
within a portion of CDH1's 3’-UTR verified that blockage of miR-9 binding resulted in loss of
suppression as observed through a notable increase (~2.5-fold) in luciferase activity (Fig 4e).

NF-kB, another mRNA target known to be regulated by miR-9, is typically only shown as
modulated when miR-9 suppression is lost, as is seen in carcinomas that exhibit a loss of miR-9
expression [28,31,33,43,44]. In these instances, relief of suppression of NF-kB results in initia-
tion of transcription of a variety of pro-oncogenic and angiogenic genes. However, a concomi-
tant decrease in NF-kB has not been observed in cancers where miR-9 is overexpressed.
Similarly, no difference between NF-kB levels was observed between the M12 or M12+miR-9
inhibited cells (Fig 4f and 4g). Thus, control of NF-kB in prostate cancer cells may not be a rele-
vant target for miR-9 regulation in prostate cancer as characterized by these model cell lines.

As a negative regulator of EGFR and JAK signaling pathway, the suppressor protein of cyto-
kine signaling-5 (SOCS5) was recently identified as a direct target of miR-9 regulation [36].
Suppression of SOCS5 levels has been shown to attenuate signal transduction and ultimately
transcription of a variety of pro-oncogenic, pro-angiogenic genes [45,46]. Evaluation of SOCS5
mRNA levels showed no significant differences between P69, M12, M12 cells stably trans-
formed with a scrambled RNA sequence (M12+Scr) or stably transformed with the miR-9
inhibitor (M12+miR-9-Inh) (Fig 5a). However, western blot analysis indicated a strong differ-
ence in SOCS5 protein levels between the different cell types (Fig 5b and 5¢). miRNA binding
does not always result in a decrease of mRNA levels, as perfect seed matches to the miR and
Argonaute 2 are required for message cleavage [47]. An evaluation of the previously identified
SOCS5 mRNA target sequence in RNAHybrid against the miR-9 sequence showed binding
with a large negative free energy value (Fig 5d), as well as high sequence conservation for the
seed region binding across species (S2 Fig). Interestingly, although the matches between miR-9
and E-cadherin or SOCS5 mRNAs are not perfect, both exhibit a stable mfe structure, yet only
CDHI binding results in detectable cleavage of mRNA and not SOCS5, which adds to the com-
plexity of what defines mRNA cleavage by the Argo/RISC complex. Transient transfections of
luciferase constructs with the wild type or mutated target region within a portion of the SOCS5
3’-UTR showed that mutation resulted in the loss of suppression as observed through a small
but statistically significant increase in luciferase activity (Fig 5E).

Discussion

In this report, we identified microRNAs as oncomiRs or tumour suppressor miRs through a
unique set of genetically related cell lines wherein the highly tumorigenic/metastatic cell line
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Fig 4. messenger RNA and protein levels of CDH1 are increased upon miR-9 inhibition. A: RT-qPCR analysis shows that mRNA levels are
impacted by miR-9, and miR-9 inhibition relieves mRNA and protein levels (p<0.03 for P69 and miR-9 inhibited lines vs. M12). mRNA is normalized to
GAPDH and reported as relative to the M12 cell line using the comparative C+ method. Results are compiled data from two biological replicates, each
performed in triplicate. B: Proven binding site for miR-9 in e-cadherin. Adapted from RNAHybrid [21,22] analysis of CDH1 mRNA (NM_004360.3). miR-9
is the left sequence, and hybridized on the right is the complementary region of the 3-UTR of CDH1. C: Western blot analysis and D: quantitation. Blot is
representative of 5 independent experiments, Quantitation the average of 3 independent experiments normalized to 3-Actin and reported as relative to
the M12 cell line (p<0.05). (E) e-cadherin expression is suppressed by miR-9. M12 cells were transiently transfected with a firefly luciferase reporter
construct containing a portion of the CDH1 3'-UTR, with the wild type or mutated miR-9 binding seed region along with a renilla luciferase plasmid. Firefly
luciferase expression is reported as normalized to renilla luciferase activity and relative to mutated seed region expression. Results are the mean of 2
independent experiments, each performed in triplicate. (p <0.01). Western blot analysis shows that NF-kB levels do not change significantly between
M12 or M12 cells stably transfected with miR-9 inhibitor. Blot (F) is representative of 3 independent experiments and quantitation (G) is from one
representative experiment.

doi:10.1371/journal.pone.0159601.g004
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Fig 5. While protein levels of SOCS5 are increased upon miR-9 inhibition, messenger RNA levels are not significantly different. SOCS5
expression in the P69, M12, and M12 stably transformed with vector expressing miR-9 inhibitor. A: messenger RNA relative quantitation shows that
mRNA levels are not significantly impacted by miR-9. mRNA is normalized to GAPDH and reported as relative to the M12 cell line; results are compiled
data from three independent lysates, each performed in triplicate. Regardless of similar SOCS5 mRNA levels, (B) Western blot analysis and (C)
quantitation show that miR-9 inhibition results in increased levels of SOCS5. Blot is representative of 6 independent experiments, Quantitation the
average of 3 independent experiments normalized to 3-Actin and reported as relative to the M12 cell line (p<0.05). (D) The proven SOCS5 mRNA:miR-9
hybrid [21,22]. miR-9 is the top sequence, and hybridized below is the complementary region of the 3'-UTR of SOCS5. (E) SOCS5 expression is
suppressed by miR-9. M12 cells were transiently transfected with a dual luciferase reporter construct containing a portion of the SOCS5 3’-UTR, with the
wild type or mutated miR-9 binding seed region. Firefly luciferase expression is reported as normalized to renilla luciferase activity and relative to mutated
seed region expression. Results are the mean of 2 independent experiments, each performed in triplicate. (p = .016).

doi:10.1371/journal.pone.0159601.g005

M12 is derived from the normal P69 glandular epithelial cell line through male athymic nude
mice as a relevant model for tumor progression. Once identified through both high-throughput
sequencing and RT-qPCR analysis, we sought to confirm miR-9 as an oncomiR through evalu-
ation of other well-established prostate cancer cell lines followed by confirmation in human
biopsy samples via laser-capture microdissection. Inhibition of miR-9 in M12 cells resulted in
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significantly reduced migratory and invasive potential in vitro, as well as reduced tumour
growth in vivo. Moreover, no metastatic sites were observed in male, athymic nude mice
injected orthotopically with M12+miR-9-Inh cells compared to injection with the parental
M12 cell line. Evaluation of the expression signatures of known miR-9 targets indicated that
while NF-kB is not modulated in this model, e-cadherin and SOCS5 are both affected by miR-
9, resulting in increased levels when miR-9 is inhibited in M12 cells. Luciferase constructs of
the e-cadherin and SOCS5 3’-UTRs showed that miR-9 suppression is effective in this prostate
cancer model and is due to direct binding of miR-9 to mRNA target sequences.

Identification of dysregulated miRNAs

RT-qPCR panel analyses of cell lines, while they should not be used as the sole method for
identifying miRs that are modulated in neoplasias, can be an excellent launching point for
identifying potential candidates, provided that the cell line model is accurate to in-vivo pro-
cesses. In prostate cancer studies, various cell lines can serve different purposes. For example,
the LNCaP series is an excellent model for identifying miRs that could contribute to the path-
ways required for androgen independence. However, since the LNCaP cell lines require coin-
jection with MS fibroblast cells for tumorigenesis and metastasis, they are not as good a model
for initial tumour development. The P69/M12 progression model is a well characterized experi-
mental system for studying initial aspects of human prostate cancer tumorigenesis [15,17,48],
and thus we felt that a miR RT-qPCR panel comparing miR expression in these cell lines
would best catalogue modulated miRs in a manner most faithful to human tumorigenesis. Var-
iation between technical duplicates is well-known in miR RT-qPCR panel analysis; a study
comparing data to single-miR analysis found anywhere from 0 to 10-fold differences in expres-
sion between the two platforms [49], similar to our observations. Thus, identified dysresgulated
miRs were those that were consistently modulated (up or down) in duplicate panel analyses of
both M12 and P69 cell lines.

To further narrow the field of candidates and gain additional confidence in the preliminary
data, high-throughput small RNA sequencing of the same cell lines was performed. A smaller
number of miRs were identified as dysregulated between the M12 and P69 cell lines using Illu-
mina®™ sequencing. This decrease in sensitivity was not unexpected and has been observed
between the two platforms in other studies [50]. Using both sets of data, we could confidently
narrow the list of candidate miRNAs for further analysis.

miR-9

miR-9 was not a surprising find as dysregulated in prostate cancer. However, given its
described role as oncomiR or tumour suppressor depending on the type of neoplasia [28-36],
its validation as an oncomiR to drive prostate cancer progression has not been previously
explored or proven. Here, miR-9 was overexpressed in all prostate cancer cell lines analyzed,
and in 3 of the 4 patient LCM samples in which miR-9 was detected. Overexpression was also
observed in canonical CaP cell lines DU145 and PC3, as well as M12 and patient samples (2.5-
78 fold higher than benign). The dramatically higher miR-9 levels in DU145 as compared to
that observed in PC3 and M12 cell lines correlate to a recent finding that overexpression of
miR-9 and other miRNAs could be used as an indicator of neuroendocrine differentiation
(NED) in CaP. Thus, high miR-9 levels could be expected to be observed in DU145, a prostate
cell line derived from a brain tumour [19,51]. Besides this work and the report focusing on
NED in CaP, there are only two other reports on miR-9 in prostate cancer, one being a micro-
array study and the others focused on the Androgen Receptor (AR). The microarray study
found that miR-9 was consistently upregulated in prostate cancer, in tumour as compared to
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normal tissue. Additional upregulation has been observed in high-grade tumours as compared
to lower-grade tumours [51, 52]; however, no specific work to validate the role of miR-9 as an
oncomiR in prostate cancer progression was conducted in any of the three studies. miR-9 has
many well-established protein targets, in particular, e-cadherin, NF-kB, SOCS5 and ETS-1. A
modest but consistent decrease in the androgen receptor level has been shown when miR-9
was overexpressed in vitro [52], which could allow for an eventual switch from the early andro-
gen-dependent tumour to a hormone-refractory state.

E-Cadherin message and protein levels are suppressed by miR-9

Dysregulation of miR-9, although initially assumed as being overexpressed in carcinoma in
general, has been shown through recent literature to be cancer type-specific; while in breast
cancer, neuroblastoma and prostate cancer it is observed to be up-regulated [8,10,52], it is
downregulated in metastatic melanomas. In these cell types, miR-9 suppresses expression of
NF-KB, which results in increased levels of Snaill and subsequent activation of e-cadherin [53].
Interestingly, higher levels of miR-9 have been associated with a better outcome in ovarian can-
cer, where it was shown to directly target BRCA1 [31].

The difference in miR-9 expression by cancer type could be due to promoter activity of
miR-9, whether through PROXI1, Snaill, or hypermethylation. miR-9 is also down-regulated in
nasopharyngeal carcinoma (NPC), where it is implicated in the inflammatory response, specifi-
cally the Interferon-induced genes [54]. In this case, hypermethylation of the miR-9 promoter
reduces transcription of the miRgene resulting in loss of suppression of CXCR, a chemokine
receptor that has been shown to be expressed in a number of different types of tumors [30]. A
second recent report showing the direct effect of miR-9 on CXCR identified that this loss of
suppression resulted in accumulation of B-catenin through the Wnt pathway [40,55], and the
subsequent transcription of JAK/STAT proliferative pathways [35].

E-cadherin is known to sequester B-catenin, which also works to assist in dynamically con-
necting the adherens junctions to the cytoskeleton [38,40,56]. Loss of e-cadherin through miR-
9 suppression would free B-catenin from the adherens complex, permitting movement into the
nucleus and interaction with zinc finger transcriptional factors of the Tcf/Lef family to activate
transcription of pro-metastatic, pro-angiogenic genes including VEGFA, Siamois, c-Myc and
cyclin D1 [10,40] (Fig 6). Loss of e-cadherin has also been shown to reduce phosphorylation of
B-catenin, which results in increased stability through lowered movement to the proteasome
for degradation [38].

SOCSS5 protein levels are suppressed by miR-9

As a recently identified direct target for miR-9, loss of the tumour suppressor SOCS5 results in
increased and prolonged activation of JAK/STAT pathways. The full function and target of
RTK and JAK/STATS for SOCSS5 is still unknown. However, it shares strong homology with
the other members of the SOCS family, which are known to interfere with both JAK kinase and
STAT protein activity, as well as promote their degradation through ubiquitination [46,57]. In
the original report identifying miR-9 as a regulatory mechanism, SOCS5 expression was shown
to be down-regulated when miR-9 was overexpressed, resulting in increased JAK1, STAT1 and
STAT3 phosphorylation levels [36]. SOCS transcription is also known to be part of a negative
feedback loop, in that STAT binding sites activate SOCS5 transcription for ultimate suppres-
sion of the signal transduction [46,57]. Even though the JAK/STAT pathway has been shown
to be activated in M12 cells [14,15,58], the negative feedback loop that would ultimately attenu-
ate JAK/STAT signaling is being prevented through suppression of SOCS5, as we have shown
that SOCSS5 protein levels in the M12 cells are lower than those observed in P69 (Fig 6).
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Fig 6. miR-9’s mode of action on tumour progression through e-cadherin and SOCSS5. In the presence of miR-9 (left), e-cadherin message is
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activate transcription factors and drive pro-survival, pro-proliferation transcription including c-Myc and Cyclin D1. c-Myc then initiates additional miR-9
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catenin, preventing activation of transcriptional events. Likewise, SOCS5 is produced and works to prevent phosphorylation of JAK kinase and STAT
while also promoting ubiquitination, thus attenuating the JAK/STAT signaling cascade, and resulting in decreased transcription of survival, proliferation,
and invasion genes.

doi:10.1371/journal.pone.0159601.9g006

Conclusions

Analysis of a panel of over 700 miRs certainly generates a great deal of information, such that
one research laboratory couldn’t begin to track down each of the modulated microRNAs. The
majority of the miRs selected for further investigation are, for the most part, not well-described
in prostate cancer, and the challenge will be to identify those mRNA targets that are suppressed
through increased miR levels, or loss of microRNA expression leading to uncontrolled onco-
protein synthesis and the subsequent downstream effects.

The action of miR-9 is multifaceted; through suppression of miR-9, the e-cadherin that
comprises cell-cell interactions characteristic of an epithelial lineage is suppressed. Thus, pro-
motion from a stationary, embedded cell to a more motile phenotype is stimulated by the over-
expression of miR-9, as is readily observed in the EMT transition in a variety of cancers. Loss
of e-cadherin also results in release and stabilization of B-catenin, which can then move to the
nucleus and activate transcription of VEGFA, c-Myc, Cyclin D1, and other pro-angiogenesis,
proliferative genes. Given that c-Myc is a known activator of miR-9-3, this too represents a
feedback loop that could further induce more miR-9 expression. Finally, action of miR-9 on
SOCSS5 results in loss of attenuation of the JAK/STAT pathways, which ultimately transduce
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growth signals to promote cell survival and proliferation. This is the first report to show a
multi-targeted mode of action for miR-9 in a cancer; results observed in vivo indicate that both
tumour growth and metastases are severely impacted by miR-9 inhibition. For those carcino-
mas in which miR-9 is overexpressed, inhibition of miR-9 could be a very effective therapeutic
target, both in early neoplasias to prevent the EMT transition, but also in advanced, aggressive
cancers to reduce proliferation and further metastasis.
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