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Abstract
Biologically, fruits are defined as seed-bearing reproductive structures in angiosperms that

develop from the ovary. The fertilization, development and maturation of fruits are crucial for

plant reproduction and are precisely regulated by intrinsic genetic regulatory factors. In this

study, we used Arabidopsis thaliana as a model organism and attempted to identify novel

genes related to fruit-associated biological processes. Specifically, using validated genes,

we applied a shortest-path-based method to identify several novel genes in a large network

constructed using the protein-protein interactions observed in Arabidopsis thaliana. The
described analyses indicate that several of the discovered genes are associated with fruit

fertilization, development and maturation in Arabidopsis thaliana.

Introduction
In botany, fruit usually refers to the seed-bearing structure in angiosperms and results from the
maturation of flowers, the gynoecium of which contributes to the formation of all fruit struc-
tures. The whole development and maturation processes of fruits are precisely regulated by
functional genes and can be artificially divided into three main steps: fertilization, development
and maturation. During the fertilization process, activation of the gibberellin signaling path-
ways contributes to fruit growth [1], and genes such as DELLA, ARFs and Aux/IAA have been
reported to participate in the gibberellin signaling pathways and to contribute to both mainte-
nance of the hormonal balance and the regulation of cell division and size alteration, functions
that are crucial in the fertilization process [2, 3]. In addition to the fertilization process, the
development stage of fruit also involves various functional genes. Fruits can be divided into fle-
shy and dry fruits, and the development of these different types of fruits involves different path-
ways and genes. For example, the development of tomato, as a fleshy fruit, involves cell
division and expansion of the ovary tissues, and several genes contribute to these processes,
including Fw2.2, which is responsible for approximately 30% of the variation in tomato size
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and contributes to the regulation of the size of fleshy fruits [4]. In addition, genes such as SUN,
OVATE and FASCIATED in tomato are associated with the shape of the tomato fruit during
its development [5–7]. Thus, the fertilization and development processes of fruits (including
tomato) are precisely regulated. The maturation process of dry fruits can be further separated
into two stages, namely maturation and dehiscence, whereas that of fleshy fruits can be sepa-
rated into maturation and ripening. During the maturation and dehiscence of dry fruits, genes
such as SHP1 and SHP2 are positively regulated by the IND gene, which further contributes to
the maturation process. All three genes (SHP1, SHP2 and IND) are further regulated by a core
gene for fruit maturation, FRUITFULL (FUL). The fertilization, development and maturation
processes of fruits are all regulated by specific genes, implying the need to identify functional
regulatory genes that contribute to the fruit-associated pathways activated during the fertiliza-
tion, development and maturation processes of fruits.

Arabidopsis thaliana (also known as thale cress, mouse-ear cress or Arabidopsis) is a small
cruciferous plant that originated from Eurasia [8]. Arabidopsis thaliana, which was first named
Pilosella siliquosa, was first discovered in 1577 in the Harz Mountains in Germany by Johannes
Thal, a German botanist [9]. During the 300 years following its discovery, Arabidopsis thaliana
was identified and confirmed to be native to Europe, Asia, and northwestern Africa [8]. In
1943, Friedrich Laibach first proposed Arabidopsis thaliana as a model organism. Since then,
the application of Arabidopsis thaliana in biological sciences, particularly the fields of mutation
and genomics, has gradually increased and become popularized [10, 11]. Arabidopsis thaliana
presents four main advantages regarding its use as a classical and functional model in the bio-
logical sciences, particularly genetics. First, Arabidopsis thaliana is short (7–40 cm), which
enables scientists to grow the plant on a large scale in a small amount of space. Second, Arabi-
dopsis thaliana has a strong reproductive ability [12], which permits the generation of a large
number of plant seedlings within a short time and reduces the cost of experiments. Addition-
ally, as Arabidopsis thaliana is a self-pollinated plant, its fertilization process is less affected by
the external environment than those of cross-pollinated plants, making it easier to control
extraneous variables during experiments [13]. Most of the genes of wild-type Arabidopsis thali-
ana are highly homozygous, making it easy to induce specific mutations and to precisely con-
struct the corresponding mutants via various physical and chemical methods [14].
Furthermore, as a cruciferous plant, Arabidopsis thaliana has a genome of only five chromo-
somes and approximately 100 million base pairs, which greatly decreases the difficulty and cost
of whole-genome sequencing (WGS) [15]. In addition, the WGS of Arabidopsis thaliana was
completed in 2000 by the Arabidopsis Genome Initiative, popularizing the application of Ara-
bidopsis thaliana as an experimental model and the study of functional genes of Arabidopsis
during the whole lifecycle of Arabidopsis thaliana [16].

In our daily life, we always pay attention to the fruits of plants, such as apples and pears. In
botany, a fruit is defined as the specialized seed-bearing structure designed to protect the seeds
[17]. The fruit of Arabidopsis thaliana is a silique or seedpod that develops from the fertilized
gynoecium and dehisces at maturity, allowing the seeds contained inside to spread. Because
Arabidopsis thaliana is a self-pollinated plant, intrinsic genetic regulatory factors play an irre-
placeable role during the fruit development and maturity processes of Arabidopsis thaliana.
For example, mutations in two functional genes, KANADI1 and KANADI2, directly contribute
to the development of the lateral organs (a crucial part of the fruit of Arabidopsis thaliana)
[18]. Additionally, CRABS CLAW (CRC) plays a specific role in the gynoecium, the develop-
mental source of the fruit, validating the crucial role of genetic factors in various aspects of
fruit development in Arabidopsis thaliana [19]. The differentiation of tissues necessary for the
opening and dehiscence of the fruit has been considered the core biological process during
fruit development [20]. Genes such as FUL contribute to the leaf development and meristem
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identity processes, the phenotype of which has been widely reported in the fruits of Arabidopsis
thaliana [21]. As we have mentioned above, the genetic contributions to the biological pro-
cesses of Arabidopsis thaliana, especially those of the fruit, have been widely studied and vali-
dated, indicating the significance of the identification of the core genes of the physiological
processes in Arabidopsis thaliana.

Recently, several studies adopted the shortest path algorithm to investigate some important
biological and medical problems, such as identifying the genetic determinants in yeast longev-
ity study [22], discovery of novel disease genes [23–28], prediction of novel carcinogenic chem-
icals [29], etc. In this study, using Arabidopsis thaliana as a research model as well as validated
functional genes, we propose a shortest-path-based method for the prediction of novel genes
that contribute to the biological processes related to fruit. A group of genes were accessed by
the shortest-path-based method, and several genes were confirmed to contribute to fruit devel-
opment and maturity through a review of recent publications. The new findings obtained in
this study will further promote investigations of the physiological mechanisms underlying fruit
development and maturation.

Materials and Methods

Materials
Validated genes. Validated fruit-associated genes in Arabidopsis thaliana were extracted

from Plant Ontology (PO, http://www.plantontology.org/download) [30]. First, we down-
loaded the plant_ontology.obo file from PO (accessed on March 24, 2015), which contained
the PO term structure. All of the terms related to fruit and their children terms were considered
fruit PO terms, which included fruit (PO:0009001) and its parts (PO:0004707, PO:0008001,
PO:0004536, PO:0004535, PO:0008002, PO:0025268, PO:0000033, PO:0008003, PO:0009087,
and PO:0009084). This analysis revealed 994 Arabidopsis thaliana genes annotated with these
PO terms, which are provided in S1 Table and are considered fruit-related genes. The set con-
sisting of these 994 genes was denoted Sv.

PPIs of Arabidopsis thaliana. PPIs play important roles in executing, modulating and
maintaining the activities and functions of organisms. Proteins that can interact with each
other share common functions [23–26, 31–34]. According to the validated genes mentioned in
Section “Validated genes”, we can search for novel fruit-related genes using the PPIs of Arabi-
dopsis thaliana. In this study, we adopted the PPIs reported in STRING (http://string-db.org/,
version 9.1) [35], which were collected from the following sources: genomic context, high-
throughput experiments, (conserved) coexpression, and previous knowledge. The PPIs indicate
not only the direct (physical) associations but also the indirect (functional) associations
between proteins. To extract the PPIs of Arabidopsis thaliana, we downloaded a file called
“protein.links.v9.1.txt.gz” from STRING, which contains the PPIs of several organisms, and
extracted the lines starting with "3702.". A total of 3,123,482 PPIs of Arabidopsis thaliana,
which included 25,123 proteins, were obtained. Each of these PPIs contains two proteins,
which are represented by their Ensembl IDs, and one score ranging from 150 to 999. This score
measures the strength of the interaction: an interaction with a high score indicates that the cor-
responding proteins have a high probability of interacting with each other. We denoted the
score of the interaction between proteins p1 and p2 as Q(p1, p2).

Network construction
The PPIs of Arabidopsis thaliana were used to construct a large network: the 25,123 proteins
were defined as the nodes of the network, and the 3,123,482 PPIs were the edges. To further
indicate the strength of the interactions in the network, an edge weight was assigned to each
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edge. The maximum value of the interaction score was 999, and according to the shortest-path
algorithm, a low weight suggests a strong association between the endpoints of the correspond-
ing edge. Thus, the weight of edge e was defined as follows:

wðeÞ ¼ 1000� Qðp1; p2Þ ð1Þ
where p1 and p2 are the proteins represented by the two endpoints of edge e. The information
of each edge in the network, including its end-points and its weight, is provided in S2, S3 and
S4 Tables.

Shortest-path-based method
A shortest-path algorithm is a classic graph algorithm that has been widely used in several
fields. For example, shortest-path algorithms have been adopted for the discovery of novel dis-
ease genes [23–28]. In this study, a shortest-path algorithm was used to discover novel fruit-
related genes based on the validated genes mentioned in Section “Validated genes”. The basic
theory is that proteins that can interact with each other have common functions [23–26, 31–
34]. If one further considers the interaction scores, this fact can be generalized to state that the
proteins in a protein-protein interaction with a high score are more likely to share common
functions than those in an interaction with a low score. For the network constructed as
described in Section “Network construction”, this statement can be converted into the follow-
ing: nodes (proteins) that are endpoints of an edge assigned a low weight are more likely to
share common functions than those that are endpoints of an edge assigned a high weight. Fur-
thermore, if there are several nodes, denoted n1,n2,� � �,nk such that ni and ni+1 are the endpoints
of an edge with a low weight, all of the nodes may share common functions. These nodes may
all lie on the shortest path connecting nodes n1 and nk, and all nodes other than n1 and nk may
share the functions shared by nodes n1 and nk. Thus, we searched all shortest paths connecting
any two of the validated genes and extracted the nodes included in these paths. Because the
endpoints of these paths represent genes in Arabidopsis thaliana that are related to the biologi-
cal processes of fruit, the genes corresponding to the extracted nodes may also be related to
these biological processes. The validated genes may also be found as inner nodes in these paths,
and these genes were retained to indicate the utility of the shortest-path-based method. The
extracted genes that were not validated genes were deemed candidate fruit-related genes in
Arabidopsis thaliana. In addition, we counted the number of paths containing each extracted
gene and termed this value as betweenness, which can indicate the associations between the
extracted genes and fruit development in Arabidopsis thaliana.

Based on the validated genes, we can identify novel genes in the constructed network. The
topological structure of the network is a potential factor that may influence the results because
some genes in Arabidopsis thaliana can exhibit general associations with other genes, suggest-
ing that the corresponding nodes in the network are general hubs. These genes are more easily
identified by the shortest-path algorithm but have less or no association with fruit development
in Arabidopsis thaliana and should thus be excluded. As a result, a permutation test was per-
formed to exclude these genes. A total of 1,000 gene sets, each with the same size of Sv, were
randomly produced. For each set, the shortest paths connecting any two genes in the set were
searched in the network to determine the betweenness of the genes extracted as described in
the above paragraph. Accordingly, 1,000 betweenness values were obtained for the 1,000 ran-
domly produced sets, and one betweenness value was found for Sv. The permutation false dis-
covery rate (permutation FDR) was then calculated for each obtained gene as follows:

FDRðgÞ ¼ M
1000

ð2Þ
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whereM is the number of betweenness values of randomly produced sets that are greater than
that found for Sv. A gene with a high permutation FDR exhibits general associations with the
1,000 randomly produced sets and is not specific to the validated gene set Sv. Thus, we set 0.05
as the threshold for the permutation FDR to exclude these genes, i.e., genes with permutation
FDRs less than 0.05 were selected as the candidate genes.

Results and Discussion
In this study, the shortest-path-based method was used to identify novel fruit-related genes in
Arabidopsis thaliana. The procedure and some of the key results are illustrated in Fig 1. This
section provides a detailed description of the results and analyses.

Results of the shortest-path-based method
As mentioned in Section “Shortest-path-based method”, all shortest paths connecting any two
genes in Sv were searched in the network. The genes corresponding to the inner nodes in these
paths were extracted, and their betweenness was determined. As a result, 3,375 genes were

Fig 1. Procedures of and results obtained using the shortest-path-basedmethod for the identification of novel fruit-related genes in
Arabidopsis thaliana.

doi:10.1371/journal.pone.0159519.g001
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obtained; of these, 381 genes were validated genes, and 2,294 genes were novel genes. Detailed
information for these genes is provided in S5 Table.

To control the general genes among the 3,375 genes, a permutation test was performed. We
thus calculated the permutation FDR for each gene (provided in S5 Table). After excluding
genes with permutation FDRs greater than or equal to 0.05, we identified 653 genes, including
136 validated genes and 517 novel genes, all of which are provided in S6 Table. The 517 novel
genes were deemed to exhibit associations with the biological processes of the fruit of Arabi-
dopsis thaliana and were considered candidate genes.

Analysis of the validated and candidate genes
The fruit of Arabidopsis thaliana has been widely studied, and the complex regulatory mecha-
nisms underlying its development and maturity have also been extensively studied. In this
study, based on the shortest-path-based method, several novel genes were identified and
deemed to contribute to the development and maturity of the fruit of Arabidopsis thaliana.
Furthermore, some validated genes were identified by our method, indicating the robustness of
the shortest-path-based method. This section provides a detailed analysis of some representa-
tive genes.

Analysis of the validated genes. The shortest-path-based method identified 136 validated
genes. The five genes with the highest betweenness values were singled out and are listed in
Table 1. These five genes are also extensively discussed in the following section.

AT5G63310 (encoding Arabidopsis nucleoside diphosphate kinase 2) is a functional gene
that contributes to the response to oxidative stress and UV and is involved in phytochrome-
mediated light signaling [36–38]. It has been confirmed that UV, as an extrinsic factor, may
interfere with the normal development of fruit in Arabidopsis thaliana [39]. Because this gene
has been found to be expressed in the flower and fruit of Arabidopsis thaliana, the responsive
and protective function of the gene may contribute to the fruit-associated biological processes
in Arabidopsis thaliana. The gene ontology analysis of known genes revealed that known fruit-
related genes are enriched in specific exogenous stimulus response-associated biological pro-
cesses, such as GO: 0006970 (response to osmotic stress) and GO: 0009416 (response to light
stimulus), indicating that the prediction of AT5G63310 is not a special case.

Another gene, AT1G75950 (encoding Arabidopsis Skp1 homologue 1) is also on the list of
known fruit-associated genes, encoding the core component of the E3 ubiquitin ligase and con-
tributes to the auxin-activated signaling pathway [40, 41]. As part of the SCF (Skp1-CUL1-F-
box protein) complexes, this gene contributes to embryogenesis and seedling development,
which is significant for the early development of Arabidopsis thaliana [42]. Another predicted

Table 1. Five validated genes identified by the shortest-path-basedmethod.

Gene Also known
as

Protein Function Reference

AT5G63310 ATNDPK2 Arabidopsis nucleoside
diphosphate kinase 2

GTP biosynthetic process, response to UV, response to hydrogen peroxide [38, 39,
75]

AT1G75950 ATSKP1 Arabidopsis Skp1 homologue 1 Core component of the SCF family of E3 ubiquitin ligases, embryogenesis and
seedling development

[40, 42]

AT5G57360 ZTL Clock-associated PAS protein
ZTL

SCF-dependent proteasomal ubiquitin-dependent protein catabolic process,
circadian rhythm, entrainment of the circadian clock by photoperiod, flower

development

[43, 44]

AT1G23190 PGM Phosphoglucomutase 3 Carbohydrate metabolic process, glucose metabolic process [45, 46]

AT4G33010 GLDP1 Glycine decarboxylase
P-protein 1

Oxidation reduction, glycine catabolic process, response to cadmium ion [47–49],

doi:10.1371/journal.pone.0159519.t001
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gene, AT5G57360, also contributes to the SCF-associated biological processes [43]. Due to its
interaction with both CRY1 and phyB, such gene contributes to the regulation of circadian
rhythms during the development of the gynoecium, validating its role in fruit development in
Arabidopsis thaliana [44]. Known fruit-related genes in Arabidopsis thaliana are enriched in
certain biological processes, including GO: 0009416 (response to light stimulus), indicating
that more functional genes in the list of known genes, such as the two above-mentioned genes,
contribute to the development and maturity processes of fruits.

Another gene, AT1G23190 [also known as phosphoglucomutase 3 (PGM3)], is also on our
list of known genes. Such gene not only participates in photosynthesis associated biological
processes and glucose metabolic processes as widely reported but according to recent publica-
tions, contribute to the development of reproductive tissues, including seeds and fruits [45, 46].
AT4G33010 [encoding glycine decarboxylase P-protein 2 (GLDP2)] in our prediction list con-
tributes to the dehydrogenation processes of glycine in the fruit [47]. This gene has been
reported to contribute to a specific biological process, GO: 0055114 (oxidation reduction), in
which our known genes are enriched, validating its core role during fruit development and
maturation [48]. Additionally, as a cadmium-associated gene (GO: 0046686), AT4G33010 has
been confirmed to contribute to the development and maturation processes of the fruits in var-
ious biological systems [49].

Analysis of novel genes. In addition to the validated genes, we obtained several novel
genes that may contribute to fruit development in Arabidopsis thaliana. We then similarly
selected the top six novel genes (listed in Table 2) with the highest betweenness values and ana-
lyzed these genes, as described in the following paragraphs.

The first predicted gene, AT1G09570 (encoding far-red elongated hypocotyl 2), contributes
to the regulation of photomorphogenesis [50]. Although no direct evidence confirms that
AT1G09570 contributes to fruit development and maturity, the biological process it regulates,
photomorphogenesis, plays an irreplaceable role during fruit maturation, implying that
AT1G09570 may also contribute to fruit associated biological processes, validating our predic-
tion of such light-detection-associated genes [51, 52]. Similarly to AT1G09570, AT2G18790
(encoding phytochrome B), which contributes to photomorphogenesis, is also on our list of
predicted genes [53]. As mentioned above, photomorphogenesis is crucial for fruit develop-
ment in Arabidopsis thaliana, validating the crucial fruit-related role of this gene [51]. Light is
one of the most crucial exogenous stimulants for plants. These two predicted genes contribute
to the biological processes associated with photo-stimulation, which can be clustered into the
specific biological process of response to endogenous stimulus (GO: 0009719), corresponding

Table 2. Six candidate genes identified by the shortest-path-basedmethod.

Gene Also known
as

Protein Function Reference

AT1G09570 FHY2 Far-red elongated
hypocotyl 2

Detection of visible light, gravitropism, negative regulation of translation,
photomorphogenesis

[50–52]

AT5G59440 ATTMPK Arabidopsis thaliana
thymidylate kinase 1

dTDP biosynthetic process, dTTP biosynthetic process, dUDP biosynthetic process [54]

AT2G18790 PHYB Phytochrome B Detection of visible light, entrainment of circadian clock, gravitropism, jasmonic
acid-mediated signaling pathway, photomorphogenesis

[51, 53]

AT4G02570 ATCUL1 Auxin-resistant 6 SCF complex assembly, auxin-activated signaling pathway, cell cycle, embryo
development ending in seed dormancy

[56, 58]

AT5G20570 ATRBX1 Regulator of cullins1 SCF-dependent proteasomal ubiquitin-dependent protein catabolic process [58–60]

AT4G29040 RPT2A Regulatory particle
AAA-ATPase 2A

Female gamete generation, leaf morphogenesis [64]

doi:10.1371/journal.pone.0159519.t002
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with the GO enrichment analysis of all of the predicted genes. Considering the validated role of
photomorphogenesis in fruit development, our newly predicted gene AT1G09570 and
AT2G187790 may definitely contribute to fruit associated signaling pathways. In addition to
these two genes, another gene, AT5G59440 (encoding Arabidopsis thaliana thymidylate
kinase), contributes to the TDP/TTP biosynthesis-associated biological processes, particularly
during the fruit-associated fertilization processes [54]. This gene has been widely identified in
reproduction-associated tissues of Arabidopsis thaliana, including the fruit, validating the rela-
tionship between this gene and the development and maturity processes of fruit. Validated in
rice, barley, maize and Arabidopsis thaliana, thymidylate kinase associated genes have been
identified in various reproductive tissues, implying their potential functions for fruit develop-
ment and maturation [55].

The SCF complex, as we mentioned above, contributes to the specific development and mat-
uration processes of the fruit of Arabidopsis thaliana [42]. Included in our list of predicted
genes, AT4G02570 (encoding Auxin-resistant 6) contributes to the SCF complex [56]. Consid-
ering the role of SCF complex for fruit development and maturation, such gene may further
participates in fruit-related regulatory processes [56]. In addition, this gene contributes to the
maturation of the reproductive structures and tissues in Arabidopsis thaliana, which is also
closely related to fruit-associated biological processes, validating our prediction [57]. Addition-
ally, another novel gene on our list of predicted genes, AT5G20570 (regulator of cullins 1),
contributes to the same biological processes as AT4G02570, indicating their similar contribu-
tion to fruit development in Arabidopsis thaliana [58]. In addition to its participation in the
SCF complex, AT5G20570, which is considered a multi-functional gene, also contributes to
CUL4-ROC1-DDB1-PRL1 E3 ligase [59, 60]. Such ligase has been reported to interact with
DWD proteins which has been confirmed to contribute to the fruit development and formation
of specific resistances in various plants including Arabidopsis thaliana, validating the irreplace-
able role of our predicted novel gene, AT5G20570 for fruit associated biological processes [61,
62]. Another gene, AT4G29040 (as known as regulatory particle AAA-ATPase 2A), a DNA
methylation associated gene, contributes to root meristem maintenance, gametogenesis, and
DNAmethylation [63]. This gene has been reported to contribute to fruit development by reg-
ulating cell division, proliferation and expansion [64]. The gene induces a weak defect in 26S
proteasome activity and leads to enlargement of the fruit (increased cell size and decreased cell
number), validating the prediction that our screened gene AT4G29040 contributes to fruit
development and maturation [64].

Cross-talk analysis of homological genes in rice and wheat
As we all know, during the evolution, the genome of related organisms (e.g. animals, plants,
etc.) share a fair degree of homology, implying that genes identified in one specie (e.g. Arabi-
dopsis thaliana) may function similarly in other species like rice or wheat. As we all know, not
the Arabidopsis thaliana but rice and wheat are two of the major food crops in the world,
implying that the identification of reproduction associated genes and pathways may contribute
to the genomic modification and further improve the output and quality of such crops. As we
have analyzed above, the genes we have identified above may all contribute to reproduction
associated pathways (e.g. fruit fertilization, development and maturation) in Arabidopsis thali-
ana, suggesting that the homologous genes of such screened genes in rice and wheat may also
contribute to fruit associated biological processes and may be one of the core production
related regulatory factors. Based on recent publications, we screened out the homologues genes
in rice or wheat of our predicted fruit associated genes in Arabidopsis thaliana and validated
their underlying functions for reproduction. AT5G63310, as we have mentioned above, is a
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validated fruit associated gene in Arabidopsis thaliana. According to the microarray data of
wheat germ extract, the homologous gene of AT5G63310 in wheat, NDPK2 has been con-
firmed to express in wheat germ extract and may play a similar role with AT5G63310, validat-
ing that the homologue of our screened genes may also contribute to fruit associated pathways
in other related plants [65]. Besides the homologous gene of such gene (AT5G63310) in rice,
Os12g0548300, has also been reported to contribute to fruit development and the formation of
specific resistance to the hazardous environment, tightly related to the quality and output of
such crop [66, 67]. Apart from such validated genes, the homologue genes of our newly pre-
dicted genes have also been identified to be candidate fruit associated genes. Take one of our
predicted gene, AT5G59440, which is also known as Arabidopsis thaliana thymidylate kinase
1, as an example. Based on current database for rice genome (e.g. RiceData, RiTE, etc.), we
identified the homologous gene of AT5G59440 in rice, named asOs07g44630 [68]. As a mem-
ber of thymidylate kinase family, such gene has been confirmed to be identified in the bran of
rice fruit and play an irreplaceable role in seed development [69]. As for wheat, the family of
thymidylate kinase has been confirmed to contribute to the head sprouting process in wheat,
implying its specific role in fruit associated biological processes [70]. Wheat blue dwarf (WBD)
is a severe disease for wheat, inducing reproductive abnormality [71, 72]. The homologous
gene of our predicted gene AT5G59440, TMK, as a member of the thymidylate kinase family,
has been identified to be dysregulated expressed in the abnormal tissues of such disease, vali-
dating its potential role for the fruit associated biological processes in wheat [70].

Just like we have analyzed above, some homologous genes in rice and wheat in our screened
out genes in Arabidopsis thaliana have been confirmed to contribute to reproductive associated
biological processes, according to some recent publications. Such results validates the efficacy
and accuracy of our newly presented computational methods and further provide a new
research method and perspective into the identification of fruit associated genes in industrial
crops.

Conclusions
This study used a shortest-path-based method for the analysis and prediction of fruit-related
genes in Arabidopsis thaliana. Based on Plant Ontology database, we identified a group of can-
didate fruit associated genes in Arabidopsis thaliana. Considering the protein-protein interac-
tions, several novel genes were identified using our method, and some of these genes were
confirmed to be related to fruit development and maturation. The proposed computational
method is a useful tool for the identification of novel genes. Further, comparing with some
commercial crops like wheat and rice, our screened out fruit associated genes in Arabidopsis
thaliana were further validated and showed specific inter-species functional conservation. All
in all, the newly found genes yielded our computational methods may provide new insights for
the investigation of the fruit of Arabidopsis thaliana and certain commercial crops. In this
study, we only used protein information to investigate fruit-related genes in Arabidopsis thali-
ana because the protein information is much abundant and complete. In future, some other
information, such as microRNA [73, 74], will be considered to add into our method to give a
more extensive study.
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