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Abstract
Recently, a new type of small interfering RNAs (qiRNAs) of typically 20~21 nucleotides was

found in Neurospora crassa and rice and has been shown to regulate gene silencing in the

DNA damage response. Identification of qiRNAs is fundamental for dissecting regulatory

functions and molecular mechanisms. In contrast to other expensive and time-consuming

experimental methods, the computational prediction of qiRNAs is a conveniently rapid

method for gaining valuable information for a subsequent experimental verification. How-

ever, no tool existed to date for the prediction of qiRNAs. To this purpose, we developed the

novel qiRNA prediction software package qiRNApredictor. This software demonstrates a

promising sensitivity of 93.55% and a specificity of 71.61% from the leave-one-out valida-

tion. These studies might be beneficial for further experimental investigation. Furthermore,

the local package of qiRNApredictor was implemented and made freely available to the aca-

demic community at Supplementary material.

Introduction
Small non-coding RNAs (sRNAs) of 20~30 nucleotides (nt) have gained significant attention
in recent years as they are widely involved in various biological processes such as the embry-
onic, neuronal, muscle, and germline development [1–3]. QDE-2-interacting small RNAs (qiR-
NAs) of typically 20~21 nt are a new class of sRNAs. qiRNAs are induced by DNA damage [4]
and mediate gene silencing in the DNA damage response (DDR) pathway in Neurospora crassa
by inhibiting protein translation [4]. Although qiRNAs were first discovered in 2009, only little
is known about their biogenesis and functionality. It has been demonstrated that the biogenesis
of qiRNAs requires DNA-damage-induced aberrant RNAs (aRNAs) as precursors [4]. More-
over, RNA-dependent RNA polymerase QDE-1, the Werner and Bloom RecQ DNA helicase
homologue QDE-3, as well as dicers have been previously shown to be involved in the produc-
tion of qiRNAs [4]. After DNA damage, aRNAs are highly induced and then specifically
recognized by RNA-dependent polymerases to produce double-stranded RNAs (dsRNAs).
Subsequently, dsRNAs are converted to qiRNAs by dicers [4, 5]. However, the detailed
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mechanism for the generation of qiRNAs is largely unknown and requires elucidation in fur-
ther experimental studies.

Previously, novel qiRNAs in Neurospora crassa [4] or rice were identified almost exclusively
by immunoprecipitation followed by sequencing. However, this conventional approach for the
identification of qiRNAs is time-consuming, labor-intensive, and inefficient and even holds the
risk of not detecting lowly expressed or issue-specific qiRNAs. Computational methods can
overcome these experimental hurdles and extract general information from known qiRNAs to
predict novel qiRNAs for further experimental manipulation [6]. However, as far as we know,
no qiRNA prediction tool has been implemented so far. Therefore, the development of efficient
computational approaches for qiRNA prediction is urgently needed and intriguing.

Common sequence or structure conservation-based approaches in microRNAs (miRNAs)
prediction cannot be directly adopted for qiRNA prediction as no evidence has been reported
for a high evolutionary conservation of the sequence and structure of qiRNAs across species.
Unlike Piwi-interacting RNAs (piRNAs), the density of plot of qiRNAs does not show a strik-
ing clustering characteristic [4]. Thus, no clustering characteristic can be used for qiRNA pre-
diction. However, it has been demonstrated that qiRNAs exhibit strong position-specific
preferences for uracil (U) at the first nucleotide of the 5’ end and for adenine (A) at the first
nucleotide of the 3’ end [4]. In bioinformatics, position-specific nucleotide preferences are usu-
ally employed for sRNAs prediction. For example, ping-pong-dependent piRNAs show some
position-specific nucleotide preferences, such as for thymine (T) at the first position (1T) and
for A at the 10th position (10A) [6]. To capture and leverage these sequence features for
piRNA prediction, Betel et al. constructed a 21 × 4 feature vector based on a 21-base window
around the 5’ end (plus 10 nt upstream and 10 nt downstream) and trained a support vector
machine (SVM) model for piRNA prediction [7]. In 2011, Zhang et al. used a simple k-mer
scheme to construct 1364 dimension feature vectors for describing the candidate piRNA
sequences and then constructed the software piRNApredictor for piRNA prediction based on
an improved Fisher linear algorithm [6]. Moreover, position-specific scoring matrix (PSSM) is
a commonly used representation of sequence motifs, which has been widely applied to the pre-
diction of significant biological signals such as DNA binding sites [8], RNA binding sites [9],
promoters [10], protein secondary structure prediction [11], etc.

In this work, we developed an ingenious method for the extraction of features based on
position probability matrices (PPM) of biosequences and then constructed a novel qiRNApre-
dictor (qiRNA predictor) software package with 80 features. Firstly, the experimentally verified
qiRNAs were collected manually from the scientific literatures and then used for training the
Random forest (RF) model using the randomForest R package. Subsequently, the performance
and robustness of qiRNApredictor were extensively evaluated by n-fold cross-validations (CV)
as well as the leave-one-out cross-validation (LOO-CV). Upon LOO-CV, qiRNApredictor
exhibits a promising sensitivity of 93.55% and a specificity of 71.61%, which can be used for
the prediction of qiRNAs.

Materials and Methods

Data preparation
Herein, only qiRNA sequences in Neurospora crassa were considered (no qiRNA in rice was
sequenced in the work by Chen et al. [5]). Lee et al. identified 184 individual qiRNA sequences
in Neurospora crassa [4]. However, 23 qiRNA sequences were directly discarded as they
included undefined bases. We further eliminated six individual qiRNA sequences as they were
identical to other qiRNA sequences. Finally, 155 experimentally verified qiRNAs were collected
as positive samples to train a RF model. Three negative datasets were built. For the convenience
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of discussion, we called them the “Random”, the “sRNA-segment”, and “milRNA” negative
datasets, according to the ways we collected them or the data origin. The “Random” negative
dataset was randomly extracted from NONCODE database. As previously described [6], non-
coding RNA sequences obtained from the NONCODE database (version 3.0) [12] were frag-
mented into non-overlapping segments. For each of these non-qiRNA segments, we shuffled it
10000 times to destroy any potentially functional structures [6]. Then, the same amount of neg-
ative samples were randomly selected from the segments under the constraint condition that
the length distribution of the selected segments was identical with that of positive qiRNAs.
The “sRNA-segement” negative dataset was collected from Rfam database. The sequences of
sRNAs of Neurospora crassa were retrieved from Rfam database (release 12.0) [13]. Because
the lengths of sRNAs are much longer than that of qiRNAs, we fragmented the sequences of
sRNAs into non-overlapping segments under the constraint that the length distribution of
sRNA segments was similar to that of positive qiRNAs. Then, the same amount of sRNA seg-
ments were randomly selected and regarded as the analogue of the degraded fragments of
sRNAs. miRNA-like small RNAs (milRNA) are about 19~25 nt and have a strong preference
(51.08%) for U at the 5’ end. They were firstly discovered in Neurospora crassa and called milR-
NAs due to their similarities with miRNAs [14]. Furthermore, 325 milRNAs were manually
collected from the scientific literatures to construct the “milRNA” negative dataset. Since only
25 milRNAs were obtained from Neurospora crassa, we also collected the putative milRNAs
from other fungi species, including Trichoderma reesei [15], Sclerotinia sclerotiorum [16],
Metarhizium anisopliae [17], Zymoseptoria tritici [18], Fusarium oxysporum [19], Fusarium
graminearum [20], Antrodia cinnamomea [21], Aspergillus flavus [22], Penicillium chryso-
genum [23], and Penicillium marneffei [24]. Finally, these three negative datasets were incorpo-
rated with the positive dataset respectively to construct the “Random”, “sRNA-segment” and
“milRNA” training datasets.

Feature extraction
The extraction of an appropriate set of features for training a prediction model is one of the
vital, yet most challenging issues in machine learning-based prediction approaches. To capture
the position-specific preference of nucleotides, the occurrence probabilities of each nucleotide
at the first ten positions (1 through 10) and the last ten positions (-1 to -10) of both positive
and negative samples were calculated to create four PPMs (Fig 1). It should be noted that
qiRNA sequences of less than 20 nt exhibit some overlaps of the first and last ten positions.
The score of nucleotide i at position j can be calculated according to the formula

Sði; jÞ ¼ log2
Pij

N ij

 !
; i 2 ½A;C;G;U�; j 2 ½�10; � � � ;�1; 1; � � � ; 10�

where Pij and Nij are the probability of nucleotide i at position j in PPMs produced by positive
and negative samples, respectively (Fig 1). The score gives an indication how much the posi-
tion-specific preference of positive samples differs from that of negative samples. For the cases
with Pij = Nij, the score equals zero, which means this feature cannot offer any information for
the prediction. However, when Pij or Nij is zero, it doesn’t mean this feature has great signifi-
cance. Instead, it may be simply because of the limited sample size. To circumvent the infinite
value caused by inadequate sampling, we assigned a zero score for the cases that Pij or Nij is
zero. In total, 80 scoring values were directly regarded as features to train a RF model. Then F-
score was used to measure the discriminatory power of each feature above [25]. The F-score of
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the ith feature is defined as:

FðiÞ � ð�x ðþÞ
i � �xiÞ2 þ ð�x ð�Þ

i � �xiÞ2
1

nþ � 1

Xnþ
k¼1

ðxðþÞ
k;i � �x ðþÞ

i Þ2 þ 1

n� � 1

Xn�
k¼1

ðxð�Þ
k;i � �x ð�Þ

i Þ2

where n+ and n− are the numbers of positive and negative samples, respectively; �xi, �x
ðþÞ
i , and

�x ð�Þ
i are the average of the ith feature of total, positive, and negative samples, respectively. xðþÞ

k;i

and xð�Þ
k;i are the ith feature of the kth positive and negative sample, respectively. Larger F-scores

indicate better discrimination [25].

Random forest
RF is an ensemble learning classifier consisting of a multitude of tree-structured classifiers [26].
RF makes use of two powerful machine-learning methods—the bagging and random feature
selection in the tree induction [27]. In the bagging algorithm, each tree is trained by using a
bootstrap sample of the training data, and the prediction results of the ensemble are aggregated
by majority vote or averaging rule to give the final prediction results [27]. Instead of using all
features, only a random subset of features was used here to split at each node when growing a
single tree. A type of CV together with the training step using out-of bag (OOB) samples was

Fig 1. The flowchart of qiRNApredictor.

doi:10.1371/journal.pone.0159487.g001
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used to assess the prediction performance of RF. More specifically, a particular bootstrap sam-
ple was adopted to grow each tree during the process of training. Since bootstrapping sampling
is sampling with replacement, some of the samples were ignored, while others were reused.
The ignored samples constitute the OOB sample. On average, 1−e−1 ffi 2/3 of the training sam-
ples was used for growing the tree leaving e−1 ffi 1/3 as OOB, which have not been used for tree
construction. Therefore, these samples could be used to evaluate the prediction performance
[26, 27]. The RF algorithm was implemented by the randomForest R package.

Performance evaluation
As previously described [28], among the predicted positive results obtained by qiRNApredic-
tor, the real positives are called true positives (TP), while the other positive results are called
false positives (FP). Among the predicted negative results obtained by qiRNApredictor, real
negatives are called true negatives (TN), while the other negative results are called false nega-
tives (FN). The performance is evaluated based on four measurements of specificity (Sp), sensi-
tivity (Sn), accuracy (Ac), and Matthew’s correlation coefficient (MCC). These indexes are
defined as

Sn ¼ TP
TP þ FN

; Sp ¼ TN
TN þ FP

; Ac ¼ TP þ TN
TP þ FP þ TN þ FN

and

MCC ¼ ðTP � TNÞ � ðFN � FPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FNÞ � ðTN þ FPÞ � ðTP þ FPÞ � ðTN þ FNÞp
In this study, we performed 4-, 6-, 8-, and 10-fold CVs as well as the LOO-CV. Receiver

Operating Characteristic (ROC) curves were plotted for performance visualization.

Results

A novel algorithm for qiRNA prediction
In this work, we collected experimentally identified qiRNAs from the scientific literatures. After
eliminating redundancy in sequences and directly removing sequences that include undefined
bases, a dataset of 155 experimentally verified qiRNA sequences was obtained (S1 Table). As
previously described, a negative dataset containing 155 samples was constructed. Finally, a bal-
anced database containing 155 positive and negative samples was used for model construction.

qiRNAs are very short of approximately 20~21 nt in length (Fig 2), which renders it very
difficult to predict qiRNAs with high accuracy. However, the first and last nucleotide of qiR-
NAs have a high preference for U and A, respectively (Fig 3). Therefore, we attempted to pre-
dict qiRNAs with the position-specific preferences of nucleotides in qiRNA sequences. To this
goal, PPMs were firstly constructed for characterizing position-specific properties of qiRNAs.
Based on the PPMs, 80 log-likelihood scores were calculated as features for training prediction
model (see details in Materials and Methods). Based on the training datasets, we used the F-
score [25] to rank 80 features. As expected, nucleotides at the first and last position, such as
1U, 1A, 1C, or -1A, exhibit high F-scores (Fig 4). This is consistent with the position-specific
preferences of nucleotides in qiRNA sequences, which demonstrates that we have succeeded in
capturing these characteristics in qiRNA sequences.

To evaluate the performance and robustness of the qiRNApredictor, LOO-CV and 4-, 6-,
8-, and 10-fold CVs were performed. The LOO-CV results based on “Random” training dataset
show that our method predicts at 93.55% sensitivity, 71.61% specificity, 82.58% accuracy and
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0.6679MCC value (Table 1). The results of the 4-, 6-, 8-, and 10-fold CVs are also close to
those of the LOO-CV. From the ROC curves (Fig 5A), AUC (area under ROC curves) values
were calculated as 0.8779 (LOO-CV), 0.8772 (4-fold CV), 0.8752 (6-fold CV), 0.8761 (8-fold
CV), and 0.8765 (10-fold CV), respectively (Fig 5A). As no qiRNA prediction tool existed to
date, the performance of our qiRNA prediction tool could not be compared to any existing
tool. To further test the ability of qiRNApredictor in distinguishing qiRNAs among other
sRNAs, we also run it through “sRNA-segement” and “milRNA” datasets. milRNA is 19~25 nt
in length with a strong preference (51.08%) for U at the 5’ end, which is somewhat similar to
qiRNA. As shown in Fig 5B & Table 1, the results demonstrate that the qiRNApredictor is able
to identify qiRNAs among other sRNAs with quite significant AUC,MCC, sensitivity and spec-
ificity. Taken together, qiRNApredictor is a promising tool for the prediction of candidate
qiRNAs.

Fig 2. The length distribution of qiRNAs inNeurospora crassa.

doi:10.1371/journal.pone.0159487.g002
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Comparison to k-mer feature classes
In bioinformatics, k-mers usually refer to k-gram or k-tuples of DNA or protein sequences and
can be used to find certain regions within biosequences or be employed as k-mer statistics for
giving discrete probability distributions of possible k-mer combinations [6]. K-mers can be
used to distinguish qiRNA from non-qiRNA based on differences of string usages between the
different sequence classes. Here, 1–5 nt strings were used to characterize positive or negative
sequences by a vector consisting of the frequencies of k-mer strings. We first adjusted the k
parameter in k-mer feature classes to obtain a better performance based on the same training
dataset. With increasing k values, the AUC values exhibit first a rapid increase, which slows
down in the following (Fig 6A). Although the increase of features may result in over-fitting, the
best performance (AUC = 0.7790) of k-mer feature classes is lower than that of PPM features
classes (AUC = 0.8779) (Fig 6B). This demonstrates that PPM is more suitable for qiRNA pre-
diction. Moreover, we combined PPM and k-mer feature classes for the prediction of qiRNAs.
However, the prediction performance of the combined feature classes exhibits to be very close
to that of single PPM feature classes (Fig 6B).

Discussion
As a new regulatory factor for mediating gene silencing in the DNA damage response, qiRNAs
have increasingly attracted considerable interest and investigative efforts. The identification of

Fig 3. Position-specific nucleotide preferences of qiRNAs inNeurospora crassa for (A) the first 15 nt substring from 5’ end to 3’
end and (B) the last 15 nt substring from 5’ end to 3’ end. The insets are Frequency Plot of qiRNA sequences. The sequence logo
analysis was implemented byWebLogo [29].

doi:10.1371/journal.pone.0159487.g003

The Prediction of qiRNAs in Neurospora crassa

PLOSONE | DOI:10.1371/journal.pone.0159487 July 18, 2016 7 / 12



qiRNAs is fundamental for dissecting regulatory functions and molecular mechanisms. Com-
pared to other expensive and time-consuming experimental methods, the computational pre-
diction of qiRNAs is a conveniently rapid method of getting useful information for subsequent
experimental verification. However, no qiRNA prediction tool existed to date. Therefore,
developing a novel approach for qiRNA prediction is required and very intriguing. In this
work, we designed a novel software named qiRNApredictor based on PPM features and RF

Fig 4. The F-scores of PPM features. Larger F-scores indicate better discrimination.

doi:10.1371/journal.pone.0159487.g004

Table 1. The performances of qiRNApredictor on each training dataset by the LOOCV.

Dataset Ac (%) Sn (%) Sp (%) MCC

“Random” training dataset 82.58 93.55 71.61 0.6679

“sRNA-segement” training dataset 80.97 86.45 75.48 0.6231

“milRNA” training dataset 79.17 70.32 83.38 0.5303

doi:10.1371/journal.pone.0159487.t001
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algorithm. The performance and robustness of qiRNApredictor were extensively evaluated by
n-fold CVs as well as LOO-CV, which gave very promising results.

Here, the window size refers to the length of the region of interest at both ends of the
sequences. To evaluate the effect of window size on the prediction performance, the window
size was adjusted, and the AUC value was calculated based on the results of 5-fold CV. The

Fig 5. The prediction performance of qiRNApredictor. (A) The LOO-CV as well as 4-, 6-, 8-, and 10-fold CVs based on “Random” training dataset
were calculated. The ROC curves and AUCs were also drawn and analyzed. To increase the specificity, we recommended a stringent cut-off value 0.667
for experimental investigation. The specificity of qiRNApredictor with the cut-off value 0.667 is 92.26%, while the sensitivity is 54.84%. (B) The ROC
curves and AUCs were drawn and analyzed for the “Random”, “sRNA-segment”, and “milRNA” training datasets, respectively, by LOO-CV.

doi:10.1371/journal.pone.0159487.g005

Fig 6. Comparison to k-mer feature classes. (A) Effect of the k parameter in k-mer feature classes on the prediction performance by 5-fold CV; (B) The
ROC curves for RFs trained with different feature classes.

doi:10.1371/journal.pone.0159487.g006
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AUC values first rapidly increase and then slow down with an increasing window size (Fig 7).
There is a qiRNA sequence of only 15 nt, which was simply ignored when testing the window
of 16 nt. Interestingly, the combination of two adjacent bases at both ends of sequences
obtained a high AUC value of 0.8357. This either demonstrates that the characteristic signal at
both ends of the qiRNA sequences is very significant, or it suggests that non-qiRNAs are not
very similar to genuine qiRNAs. However, the approach of non-qiRNAs construction is stan-
dard according to previous studies [6].

The performance of a classifier system would be improved by selecting the most discrimina-
tive set of features due to reducing the complexity of the classifier system. In contrast, the sim-
ple combination of PPM and k-mer feature classes does not improve the performance of the
classifier system. This suggests that the feature set exhibits redundancies, which leaves room
for optimization of the feature set used in qiRNApredictor in the subsequent work. Further-
more, the prediction performance of qiRNApredictor would be improved by finding the sec-
ondary structure features of qiRNA precursors. Taken together, our studies provide a novel

Fig 7. Effect of the window size in PPM feature classes on the prediction performance by 5-fold CV.

doi:10.1371/journal.pone.0159487.g007
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and promising approach for qiRNA prediction and will facilitate further functional studies of
qiRNAs.

Supporting Information
S1 File. The compressed files in ZIP format of the local package of qiRNApredictor.
(ZIP)

S1 Table. The dataset of 155 experimentally verified qiRNAs in Neurospora crassa obtained
from the work by Lee at al [4].
(XLS)
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