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Abstract

Background

Iron chelators are used to treat iron overload cardiomyopathy patients. However, a direct

comparison of the benefits of three common iron chelators (deferoxamine (DFO), deferi-

prone (DFP) and deferasirox (DFX)) or an antioxidant (N-acetyl cysteine (NAC)) with a com-

bined DFP and NAC treatments on left ventricular (LV) function with iron overload has not

been investigated.

Methods and Findings

Male Wistar rats were fed with either a normal diet or a high iron diet (HFe group) for 4

months. After 2 months, the HFe-fed rats were divided into 6 groups to receive either: a

vehicle, DFO (25 mg/kg/day), DFP (75 mg/kg/day), DFX (20 mg/kg/day), NAC (100 mg/kg/

day) or the combined DFP and NAC for 2 months. Our results demonstrated that HFe rats

had increased plasma non-transferrin bound iron (NTBI), malondialdehyde (MDA), cardiac

iron and MDA levels and cardiac mitochondrial dysfunction, leading to LV dysfunction.

Although DFO, DFP, DFX or NAC improved these parameters, leading to improved LV func-

tion, the combined DFP and NAC therapy caused greater improvement, leading to more

extensively improved LV function.

Conclusions

The combined DFP and NAC treatment had greater efficacy than monotherapy in cardiopro-

tection through the reduction of cardiac iron deposition and improved cardiac mitochondrial

function in iron-overloaded rats.
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Introduction
The iron overload condition is often seen in transfusion dependent thalassemia (TDT) patients
due to repeated blood transfusions, and also in hereditary hemochromatosis patients due to
increased dietary iron absorption into the duodenal enterocytes [1–5]. Iron overload leads to
increased free iron (labile iron) in the plasma which is called non-transferrin bound iron
(NTBI) [6, 7]. The accumulation of excess plasma NTBI leads to an increase in the entry of free
iron into cells and this accumulation causes the dysfunction of many cellular organelles and
also to direct tissue damage, especially in the heart [6–8]. Excess cardiac iron accumulation can
cause iron overload cardiomyopathy which is a common cause of death in these patients [1–5].
It has been shown that free iron enters into the heart mainly through L-type calcium channels
(LTCC) [9, 10], and T-type calcium channels (TTCC) [11, 12] under conditions of iron over-
load. Cardiac iron toxicity occurs when there is too much labile iron in the cell and this free
iron reacts with superoxide (O2•-) and hydrogen peroxide (H2O2) via Haber-Weiss and Fen-
ton’s reactions to produce the highly toxic hydroxyl radical (•OH). The production of this free
radical leads to an increase in the levels of reactive oxygen species (ROS) [13, 14] and cardiac
oxidative stress, leading to damages of cardiac cells which results in cardiac dysfunction and
heart failure [14, 15]. Moreover, increase ROS production under iron overload condition led to
plasma membrane lipid peroxidation which resulted in the increase of cytotoxic aldehydes,
especially malondialdehyde (MDA) via Haber-Weiss and Fenton’s reactions [16]. MDA is very
toxic to cells and highly increased in cardiac iron overload, leading to cardiac dysfunction in a
murine model [16]. Previous studies also found that MDA was increased both in plasma and
tissue of iron-overloaded rats [17–19].

The production of O2•- and H2O2 is derived largely from mitochondrial activity particu-
larly in the heart [20, 21]. Iron interacts with O2•- and H2O2, which are supplied by the mito-
chondrial electron transport [22]. Iron-catalyzed oxidants cause mitochondrial DNA damage
and mitochondrial dysfunction, leading to a loss of respiratory capacity and cardiac dysfunc-
tion [23]. Further evidence of this is documented in a previous study which demonstrated
that iron overload caused increased cardiac ROS production which led to cardiac mitochon-
drial depolarization and swelling in isolated cardiac mitochondria of wild type and β-thalas-
semic mice [24].

Currently, three common iron chelators including deferoxamine (DFO), deferiprone (DFP)
and deferasirox (DFX) are used to treat and prevent cardiac iron deposition and cardiac dys-
function in iron overload cardiomyopathy [25–33]. Nonetheless, direct comparisons between
the therapeutic effects of DFO, DFP and DFX on the heart under conditions of iron overload
have not yet been investigated. Moreover, growing evidence showed that N-acetyl cysteine
(NAC) is a potent antioxidant and a precursor of an antioxidant glutathione [34] which can
scavenge free radicals such as H2O2 and •OH in cells [35]. Under an iron overloaded condition,
NAC provided protective effects on brain dysfunction in iron-overloaded rats [18], and it may
also reduce ROS levels and DNA damage in β-thalassemia patients [36]. Interestingly, com-
bined DFP plus NAC therapy has been shown to provide synergistically therapeutic benefits in
improving and restoring brain function which was impaired by iron toxicity [18]. However,
the protective effects of NAC alone or combined DFP plus NAC on cardiac dysfunction caused
by the iron overload condition have not yet been investigated. This study aimed to test the
hypothesis that pharmacological interventions with DFO, DFP, DFX, NAC or combined DFP
plus NAC can attenuate cardiac iron concentration, diminish cardiac oxidative stress, and
improve left ventricular (LV) function and cardiac mitochondrial function in iron-overloaded
rats, and that a combination of a chelator with NAC therapy can synergistically provide benefi-
cial effects for these conditions.
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Materials and Methods

Animal preparation
All animal studies were approved by the Institutional Animal Care and Use Committee
(IACUC) at the Faculty of Medicine, Chiang Mai University (Permit number: 21/2557). Forty-
two adult male Wistar rats, body weight 180–200 g, were obtained from the National Labora-
tory Animal Center, Mahidol University, Bangkok, Thailand. Animals were housed in an ani-
mal holding room under controlled conditions at 23 ± 2°C, 50 ± 10% humidity and 12 h light/
dark cycles. The animals were acclimatized for a week prior to the experiment and received
drinking water ad libitum throughout the entire experiment.

High iron diet preparation
A chow diet containing 0.2% of ferrocene (C10H10Fe; Sigma-Aldrich, Co., St. Louis, USA)
(w/w) was prepared as described previously [18]. In brief, one kilogram of a chow diet was
grinded and 2 g of ferrocene were added with mixing well. Then, 1.2 L of deionized water was
added in the iron-loading diet and mixed well again. After that, iron loading diet was molded
and baked at 80°C for 24 hours in a hot air oven.

Experimental protocols
Adult male Wistar rats (180–200 g) were divided into 2 groups to receive either a normal diet
(a chow diet, ND) (n = 6), or high iron diet (0.2% ferrocene w/w, HFe) (n = 36) for 4 months.
Two months into this protocol, ND-fed rats received a vehicle (normal saline solution, NSS)
(control group) once a day via either subcutaneous injection (n = 3) or gavage feeding (n = 3)
and continued with their normal diet for 2 months. HFe-fed rats were divided into 6 groups
(n = 6/group) including 1) HFe given NSS (HFeV) once a day via either subcutaneous injection
(n = 3) or gavage feeding (n = 3), 2) deferoxamine (DFO; Desferal1, Novartis Pharma Stein
AG, Stein, Switzerland), (HFeDFO) 25 mg/kg/ day via subcutaneous injection, 3) deferiprone
(DFP; Ferriprox1, Apotex Inc.,Toronto, Ontario, Canada), (HFeDFP) 75 mg/kg/day, 4) defer-
asirox (DFX; Exjade1, ICL670, Novartis Pharma Stein AG, Stein, Switzerland), (HFeDFX) 20
mg/kg/day, 5) N-acetyl cysteine (NAC, Sigma-Aldrich, Co., St. Louis, USA), (HFeNAC) 100
mg/kg/day, or 6) combined DFP 75 mg/kg/day plus NAC 100 mg/kg/day (HFeDFP+NAC) via
gavage feeding for 2 months, and all of these groups were continuously fed with the high iron
diet. Although DFO could remove cardiac iron in patients with cardiac iron loading, the route
of DFO administration is a subcutaneous or an intravenous injection which causes sufferring
in patients who are treated with this iron chelator. In addition, DFP showed to be more effec-
tive than DFO in removing excess cardiac iron store in TDT patients [27, 37]. DFX is an expen-
sive oral iron chelator compared to the cost of DFP. Moreover, previous studies demonstrated
that DFP was more effective than DFX in reducing severe cardiac iron loading in TDT patients
[37, 38]. Therefore, DFP was chosen to combine with NAC in this study. At the end of the
experiment (4 months after the start of the diets) heart rate variability (HRV), echocardiogra-
phy and left ventricular pressure-volume (P-V) loop analysis were determined in all groups.
Rats were deeply anesthetized by intraperitoneal injections of Zolitil (ZolazepamTiletamine)
50 mg/kg combined with Xylazine 3 mg/kg [39], and then P-V loop analysis was performed for
20 minutes. After P-V loop analysis, the blood was collected to measure plasma non-transferrin
bound iron (NTBI) and plasma malondialdehyde (MDA) levels. Then, the deeply anesthetized
rats were sacrificed by rapidly removal of the heart. The heart was used to determine cardiac
iron concentration, cardiac MDA content and the study of cardiac mitochondria in all groups.
The summary of the experimental protocol is shown in Fig 1.
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Measurement of plasma non-transferrin bound iron (NTBI) concentration
To determine the presence of an iron overload condition, plasma NTBI level was measured
using nitrilotriacetic acid disodium salt (NTA) chelation/flow cytometry [40, 41] with some
modifications. Plasma was incubated with NTA solution (at a final concentration of 80 mM)
pH 7.0 for 30 minutes at room temperature to allow Fe3+-(NTA)2 complexes to form. Then,
the Fe3+-(NTA)2 complexes were separated from the plasma proteins by spinning the plasma
mixture through a membrane filter (NanoSep1 30-kDa cut off, polysulfone type; Pall Life Sci-
ences, Ann Arbor, MI, USA). The concentration of Fe3+-(NTA)2 complexes represented NTBI
in the ultrafiltrate. Ferric nitrate was used as a standard and was prepared at a final concentra-
tion of 0–10 μM. Standard or Plasma- Fe3+-(NTA)2 was added with chelatable fluorescent
beads (5X106 beads/mL) (1:1), followed by 180 μL of 50 mMMOPS buffer pH 7.0 and inserted
into a 96 well microplate. Then, it was mixed and shaken in the dark for 2 hours. The NTBI
(via Fe3+-(NTA)2 complexes) concentrations were measured by flow cytometry (Guava Easy-
Cyte HT, Merck Millipore, Germany) and were calculated from a standard curve using Graph-
Pad Prism software.

Fig 1. The summary of the experimental protocol.ND = normal diet group; HFe = high iron diet group; V = vehicle; DFO = deferoxamine;
DFP = deferiprone; DFX = deferasirox; NAC = N-acetyl cysteine; NTBI = non-transferrin bound iron; MDA = malondialdehyde;
ROS = reactive oxygen species; ΔΨm = membrane potential change.

doi:10.1371/journal.pone.0159414.g001
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Measurement of malondialdehyde (MDA) concentration
To determine plasma and cardiac MDA concentrations to assess the oxidative stress state of
the heart samples were measured using the high-performance liquid chromatography (HPLC)
method [42]. Heart tissues were homogenized in a phosphate buffer solution (pH 2.8), contain-
ing with butylated hydroxytoluene (BHT) which is an antioxidant in the homogenized buffer,
1:10 (w /v) on ice. Homogenated heart tissue or plasma was mixed with 10% trichloroacetic
acid containing BHT (50 ppm), heated at 90°C for 30 minutes, and then cooled for 2 minutes,
followed by centrifugation at 6,000 rpm for 10 minutes. After that, the supernatant was mixed
with 0.44M H3PO4 and 0.6% thiobarbituric acid solutions and then incubated at 90°C for 30
minutes. Plasma or cardiac MDA content was determined by absorbance detected at 532 nm
by the HPLC system, and was calculated directly from the standard curve.

Measurement of cardiac iron concentration
Cardiac iron concentration was determined by using a colorimetric assay for measuring a non-
heme iron concentration in heart tissues [11, 43]. Heart tissues were homogenized in deionized
water 1:10 (w /v) on ice. Homogenated heart tissue was precipitated in protein precipitated
solution (1:1) and heated at 95°C for 1 hour. After that, the tubes were cooled for 2 minutes,
vortex mixed, and then centrifuged at 8,200 g for 10 minutes. The supernatant was mixed in a
ferrozine solution (1:1) and was incubated at room temperature for 30 minutes. After incuba-
tion, the absorbance was measured at 562 nm, and the cardiac iron concentration was calcu-
lated directly from the iron standard curve.

Blood pressure parameter measurements
Blood pressure measurements from the tail vein of animals were performed by using a non-
invasive blood pressure system (Kent Scientific Corporation, Wyoming, USA) [44, 45]. Ani-
mals were preheated under an infrared warming pad for at least 5 minutes to dilate their tail
veins and acclimatize to the holder. Then, volume pressure recording and occlusion cuffs were
attached to the tail. The blood pressure parameters, including systolic pressure, diastolic pres-
sure and mean arterial pressure were recorded by taking an average of 20 consecutive measure-
ments at a steady state.

Heart rate variability (HRV) measurement
Cardiac autonomic nervous activity was evaluated using spectral analysis of R-R interval vari-
ability. The electrocardiogram (ECG) was recorded for 15 minutes in each rat using the Power
Lab system (Power Lab 4/25T, AD instrument) with chart 5.0 software. Data from the ECG
recording was analyzed by using the MATLAB program [46]. A power spectrum of R-R inter-
val variability was obtained by use of the Fast Fourier Transform (FFT) algorithm. Three major
oscillatory components are detectable using this system: 1) the high frequency component
(HF; about 0.6–3 Hz which varies with respiration), which is associated with parasympathetic
activity, 2) the low frequency component (LF; about 0.2–0.6 Hz) which is associated with sym-
pathetic and parasympathetic activity, and 3) the very low frequency component (VLF; the
power below 0.2 Hz). To minimize the effect of changes in total power on the LF and HF com-
ponents, LF and HF were expressed as normalized units (LFnu and HFnu) by dividing it by the
total power minus VLF. The LF/HF ratio is considered an index of cardiac sympathetic/para-
sympathetic tone balance [47, 48]. An increase in LF/HF ratio indicates a cardiac sympathova-
gal imbalance [49, 50].
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Echocardiographic studies
Left ventricular function was determined using an echocardiography (GE Vivid I) [50]. Rats
were lightly inducted and maintained with 2% isoflurane with oxygen (2 L/min) inhalation.
Their chest areas were shaved and the rats were stabilized for 1–2 minutes in the supine posi-
tion prior to starting the protocol. The probe was gently placed on the chest and moved to
enable the collection of data along the short and long axes of the heart. Signals from M-mode
echocardiography at the level of the papillary muscles were recorded. Parameters from the
echocardiograph, including left ventricular internal diameter end systole (LVIDs) and end
diastole (LVIDd), were recorded. Fractional shortening was calculated by using the following
formula: %FS = (LVIDd−LVIDs) x 100 /LVIDd [50].

Left ventricular pressure-volume (P-V) loop analysis
Left ventricular P-V loop analysis was carried out to assess left ventricular function using a
pressure-volume conductance catheter system [39, 51]. Rats were anesthetized by intraperito-
neal injections of Zolitil (ZolazepamTiletamine) 50 mg/kg combined with Xylazine 3 mg/kg
[39]. Then, the neck was opened with a ventral midline incision and ventilated with room air
from a positive pressure ventilator by a Harvard rodent ventilator model 683 (Harvard Appara-
tus, Massachusetts, USA). It was started immediately with room air using a volume of 200–
250 μL and ventilator rate of 70–110 breaths/min to maintain PCO2, PO2, and pH parameters
of the physiological condition. The right carotid artery was canulated with a pressure-conduc-
tance catheter (Scisense, Ontario, Canada) [39, 51] which was used for measuring left ventricu-
lar pressure and volume for 20 minutes. Heart rate, left ventricular end-systolic pressure
(LVESP) and end-diastolic pressure (LVEDP), maximum and minimum pressures (Pmax and
Pmin), cardiac output and stroke volume were measured in each rat.

Cardiac mitochondrial isolation
After P-V loop analysis, heart tissues were rapidly removed, minced and then homogenized in
mitochondrial isolation buffer (MIB), pH 7.2 on ice. Then, homogenated heart tissue was cen-
trifuged at 800 g, 4°C for 5 minutes. The supernatant was collected and centrifuged at 8,800 g,
4°C for 5 minutes. Then, mitochondrial pellets were re-suspended in MIB and centrifuged at
8,800 g, 4°C for 5 minutes. Finally, the mitochondrial pellet was re-suspended in a respiration
buffer [52]. Protein concentration was determined using the Bicinchoninic Acid assay [53].

Determination of cardiac mitochondrial reactive oxygen species (ROS)
production
The fluorescent dye dichlorohydro-fluorescein diacetate (DCFDA) was used to determine the
level of ROS production in cardiac mitochondria [39, 52]. Cardiac mitochondria (0.4 mg/ mL)
were incubated at 25°C with DCFDA for 20 minutes. DCFDA can pass through the mitochon-
drial membrane, and is oxidized by ROS in the mitochondria into DCF (a fluorescent form)
[39, 52]. Fluorescence was excited at 485 nm and the emission fluorescence was recorded at
530 nm using a fluorescence microplate reader (Bio-Tek Instruments, Inc. Winooski, Vermont
USA). The ROS level was expressed as arbitrary units of fluorescence intensity of DCF.

Determination of cardiac mitochondrial membrane potential change
(ΔΨm)
Mitochondrial membrane potential change was determined by using the dye 5,50,6,60-tetra-
chloro-1,10,3,30-tetraethylbenzimidazolcarbocyanine iodide (JC-1) and was determined as
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fluorescence intensity using a fluorescent microplate reader [39, 52]. JC-1 is characterized
as a cation and remains in the mitochondrial matrix in a monomeric (green fluorescence)
form. In addition, it can interact with anions in the mitochondrial matrix to form an
aggregate (red fluorescence) form [39, 52]. JC-1 monomer and aggregate fluorescence were
excited at the same wavelength of 485 nm. The emission fluorescence of JC-1 monomer and
aggregate was detected at 530 and 590 nm, respectively. Cardiac mitochondrial depolariza-
tion was assessed by a decrease in the red/green fluorescence intensity ratio.

Determination of cardiac mitochondrial swelling
Mitochondrial swelling was studied by using the isolated-mitochondrial suspension [39, 52].
The change in the absorbance of the mitochondrial suspension was measured at 540 nm
using a microplate reader (Synergy HT, Bio Tek, Winooski, Vermont, USA). Cardiac mito-
chondrial swelling was evaluated by a decrease in the absorbance of the mitochondrial
suspension.

Cardiac mitochondrial morphology was also determined by using transmission electron
microscopy [39, 52]. Cardiac mitochondrial isolations were fixed overnight in 2.5% glutaralde-
hyde in 0.1 M cacodylate buffer, pH 7.4 at 4°C. Then, they were post-fixed with 1% cacodylate-
buffered osmium tetroxide at room temperature for 2 hours. After that, the pellets were dehy-
drated in a graded series of ethanols and embedded in Epon-Araldite. Ultrathin sections were
cut using a diamond knife and placed on copper grids. Finally, they were stained with uranyl
acetate and lead citrate, and cardiac mitochondrial morphology was observed using a transmis-
sion electron microscope.

Statistical analysis
Data in each experiment were expressed as mean ± standard error of mean (SEM). The data
were processed using SPSS (Statistical Package for Social Sciences, Chicago, IL, USA) release
17.0 for Windows. Student’s t test and One-way ANOVA analyses were performed to test for
differences between groups. NTBI concentrations were analyzed using a non-parametric Krus-
kal-Wallis H, followed by a Mann-Whitney U test. P values<0.05 were considered as indicat-
ing a statistically significant difference between groups.

Results

The effects of the pharmacological interventions on plasma NTBI and
plasma MDA levels
Plasma NTBI was significantly increased in the HFe-fed rats, while levels of plasma NTBI
could not be detected in the control group (Fig 2A), indicating that an iron overload condi-
tion occurred in the HFe-fed rats. After 2 months of treatment with DFO, DFP, DFX, NAC
and combined DFP plus NAC, plasma NTBI level was significantly reduced in the HFe-fed
rats (Fig 2A). Plasma MDA level was significantly increased in the HFe-fed rats when com-
pared with the control group (Fig 2B). All of the pharmacological interventions showed a
correlation with a significantly decreased plasma MDA level in the HFe-fed rats (Fig 2B).
This finding suggests that iron overload increased oxidative stress as shown by increased lev-
els of a lipid peroxidation product (MDA) in the plasma of HFe-fed rats. Moreover, these
pharmacological interventions also provided similar efficacy in lowering plasma NTBI and
MDA levels.
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The effects of the pharmacological interventions on cardiac iron
concentration and cardiac MDA content
Iron concentration was significantly increased in the heart tissue of the HFe-fed rats when
compared with the control group (Fig 2C), whereas DFO, DFP, DFX or NAC treatment
showed similar efficacy in attenuating cardiac iron concentration. However, only combined
DFP plus NAC decreased cardiac iron concentration to a normal level (i.e. the same as the
control group) (Fig 2C). Consistently, cardiac MDA content was significantly increased in
the HFe-fed rats when compared with the control group (Fig 2D). DFO, DFP and DFX
showed the same efficacy in reducing cardiac MDA content, while NAC and combined DFP
plus NAC decreased cardiac MDA content to a normal level the same as the control group
(Fig 2D). These results suggest that the combination of DFP and NAC treatment led to the
restoration of both cardiac iron concentration and cardiac MDA content in iron-overloaded
rats.

Fig 2. Combined DFP+NAC treatment could decrease plasma NTBI and MDA levels as well as restore normal cardiac iron and MDA
content in iron-overloaded rats. The effects of the pharmacological interventions on: (A) plasma non-transferrin bound iron (NTBI) level; (B)
plasmamalondialdehyde (MDA) content; (C) cardiac iron concentration and (D) cardiac MDA content in iron-overloaded rats. *P < 0.05 vs. control,
†P < 0.05 vs. HFe, ‡P < 0.05 vs. HFeDFP+NAC.

doi:10.1371/journal.pone.0159414.g002
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The effects of the pharmacological interventions on blood pressure
parameters
There was no significant difference in the blood pressure parameters including systolic pres-
sure, diastolic pressure, and mean arterial pressure between the HFe-fed rats and the control
group (Table 1). Similarly, systolic pressure, diastolic pressure and mean arterial pressure were
not significantly different in any of the pharmacological intervention groups when compared
with vehicle-treated HFe-fed rats (Table 1).

The effects of the iron overload condition and the pharmacological
interventions on heart rate variability (HRV)
At baseline, the LF/HF ratio did not differ between HFe-fed rats and the control group
(Fig 3A). After iron was administered for 2, 3 and 4 months, the LF/HF ratio was significantly
increased in the HFe-fed rats in a time-dependent manner when compared with the control
group. These findings indicate a cardiac sympathovagal imbalance in the rats with iron-

Table 1. The effects of the pharmacological interventions on blood pressure parameters in iron-overloaded rats.

Groups Systolic Pressure(mmHg) Diastolic Pressure(mmHg) Mean Arterial Pressure(mmHg)

Control 129±3 88±3 101±3

HFeV 125±5 93±4 103±4

HFeDFO 126±4 92±5 103±4

HFeDFP 127±2 92±4 103±3

HFeDFX 127±5 85±5 99±5

HFeNAC 125±1 87±2 100±1

HFeDFP+NAC 128±1 90±5 102±3

Data are shown as mean ±SE. HFe; high iron diet, V; vehicle, DFO; deferoxamine, DFP; deferiprone, DFX; deferasirox, NAC; N-acetyl cysteine, SE;

standard error.

doi:10.1371/journal.pone.0159414.t001

Fig 3. Chronic iron overloaded impaired heart rate variability and decreased cardiac function in iron-overloaded rats. The effects of
the iron overload condition on: (A) heart rate variability at baseline, 2, 3 and 4 months, and (B) the percentage of left ventricular fractional
shortening (%LVFS) measured using echocardiography at baseline, 2, 3 and 4 months in iron-overloaded rats. *P < 0.05 vs. control,
†P < 0.05 vs. HFe diet for 2 months, ‡P < 0.05 vs. HFe diet for 3 months.

doi:10.1371/journal.pone.0159414.g003
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overload after 2 months of HFe feeding, and it increased successively at 3 months and 4
months, respectively (Fig 3A). DFO, DFP, DFX or NAC treatments had similar effects in atten-
uating the LF/HF ratio in the HFe-fed rats thus indicating improved cardiac sympathovagal
balance after 1 month (at 3 months) and 2 months (at 4 months) of treatment, respectively
(Fig 4A and 4B). However, only the combined DFP plus NAC treatment led to significant
attenuation of the LF/HF ratio in the iron-overloaded rats to a control value after 1 month of
treatment (Fig 4A), and continued to restore HRV after treatment with the combination of an
iron chelator and an antioxidant for 2 months (Fig 4B). This result suggests that the combina-
tion of DFP and NAC treatment can significantly improve and restore the HRV in rats with
iron-overload rats.

The effects of the iron overload condition and the pharmacological
interventions on cardiac function
From echocardiographic data, the percentage of left ventricular fractional shortening (%LVFS)
did not differ at baseline between the HFe-fed rats and the control group (Fig 3B). However,

Fig 4. Combined DFP+NAC treatment could restore heart rate variability and cardiac function in iron-overloaded rats. The effects of
the pharmacological interventions on heart rate variability at 3 months (A), and 4 months (B), and the percentage of left ventricular fractional
shortening (%LVFS) measured using echocardiography at 3 months (C), and 4 months (D) in iron-overloaded rats. *P < 0.05 vs. control,
†P < 0.05 vs. HFe, ‡P < 0.05 vs. HFeDFP+NAC.

doi:10.1371/journal.pone.0159414.g004
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beginning at 2 months after HFe feeding, %LVFS was significantly decreased in the HFe-fed
rats when compared with the control group, indicating left ventricular dysfunction in the iron-
overloaded rats, and it continued to decrease at 3 and 4 months after HFe feeding (Fig 3B).
DFO, DFP, DFX or NAC therapy could improve %LVEF after 1 month of treatment (Fig 4C),
and these treatments did continue to improve cardiac function after 2 months of treatment
(Fig 4D). Although DFO, DFP, DFX or NAC monotherapy significantly increased %LVFS,
only the combination of DFP plus NAC increased %LVFS in the HFe-fed rats to the same level
as shown in the control group after 1 month of treatment (Fig 4C). These results remained the
same at 2 months of treatment (Fig 4D). These findings suggest that the combination of DFP
and NAC treatment can significantly improve and restore LV function in iron-overloaded rats,
and provide more robust effects than monotherapy with either an iron chelator or an antioxi-
dant alone.

The P-V loop data demonstrated that HFe-fed rats had significantly decreased LVESP,
Pmax, cardiac output and stroke volume when compared with the control group, indicating
left ventricular dysfunction in these rats (Table 2). Treatments with DFO, DFP, DFX and NAC
significantly improved LVESP, Pmax, cardiac output as well as stroke volume in the HFe-fed
rats (Table 2). Only the combined DFP plus NAC treatment led to the restoration of LVESP,
Pmax and cardiac output in iron-overloaded rats (Table 2). These results suggest that com-
bined DFP plus NAC treatment exerted greater efficacy than monotherapy in improving LV
function in iron-overloaded rats.

The effects of the pharmacological interventions on cardiac
mitochondrial function in rats with iron- overload
ROS production was significantly increased in the HFe-fed rats when compared with the con-
trol group (Fig 5A). Although DFO, DFP, DFX and NAC treatments significantly reduced ROS
production, only the combined DFP plus NAC treatment attenuated the ROS level to the same
level as that observed in the control group (Fig 5A). Cardiac mitochondrial depolarization was
observed as indicated by decreased red/green fluorescent intensity ratio in the HFe-fed rats
when compared with the control group (Fig 5B). Although DFO, DFP, DFX and NACmono-
therapy significantly reduced cardiac mitochondrial depolarization, only the combined DFP
plus NAC led to the restoration of cardiac mitochondrial depolarization (Fig 5B). Consistently,
cardiac mitochondrial swelling was significantly increased in the HFe-fed rats when compared
with the control group (Fig 5C). All of the pharmacological interventions led to significant res-
toration of cardiac mitochondrial swelling in the iron-overloaded rats (Fig 5C). The

Table 2. The effects of the pharmacological interventions on hemodynamic parameters in iron-overloaded rats.

Hemodynamic parameters Control HFeV HFeDFO HFeDFP HFeDFX HFeNAC HFeDFP+NAC

Heart rate (beats / min) 253±2 233±9 240±11 237±7 255±18 235±17 253±12

LVESP (mmHg) 141±5 110±5* 126±4*,† 124±5*,† 124±6*,† 125±3*,† 132±1†

LVEDP (mmHg) 24±1 20±3 23±2 25±2 22±3 26±3 25±2

Pmax (mmHg) 144±4 115±4* 129±5*,† 128±5*,† 129±6*,† 128±3*,† 135±2†

Pmin (mmHg) 20±0.2 15±3 17±2 21±2 18±3 21±3 21±1

Cardiac output (mL/min) 132±4 91±4* 111±3*,† 111±6*,† 112±8*,† 110±5*,† 118±8†

Stroke volume (μL) 517±13 396±10* 434±9*,† 447±12*,† 434±13*,† 436±4*,† 459±7*,†

LVESP, LVEDP, left-ventricular end-systolic and end-diastolic pressure; Pmax, Pmin, maximum and minimum pressure.

*P < 0.05 vs. control,
†P < 0.05 vs. HFe.

doi:10.1371/journal.pone.0159414.t002
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representative electron micrographs demonstrated that the HFe-fed rats had unfolded cristae
and irregularly shaped mitochondria, indicating mitochondrial swelling (Fig 6). Cardiac mito-
chondrial structure was effectively restored by all pharmacological interventions in the iron-
overloaded rats (Fig 6).

Discussion
The major findings of this study are as follows: 1) chronic iron loading for 4 months led to an
iron overload condition developing in the rats, shown by an increase in the following: plasma
NTBI and MDA, cardiac iron concentration, cardiac oxidative stress, cardiac mitochondrial
dysfunction, cardiac sympathovagal imbalance and left ventricular dysfunction; 2) interven-
tions by using DFO, DFP, DFX and NAC provided similar beneficial effects in reducing sys-
temic and cardiac iron overload as well as lowering plasma and cardiac oxidative stress levels,
leading to improved cardiac mitochondrial function, cardiac sympathovagal balance and left
ventricular function; 3) combined DFP plus NAC treatment showed synergistic effects which

Fig 5. Combined DFP+NAC treatment could restore cardiac mitochondrial function in iron-overloaded rats. The effects of the
pharmacological interventions on: (A) cardiac mitochondrial reactive oxygen species (ROS) production; (B) cardiac mitochondrial membrane
potential change and (C) cardiac mitochondrial swelling in iron-overloaded rats. *P < 0.05 vs. control, †P < 0.05 vs. HFe, ‡P < 0.05 vs. HFeDFP
+NAC.

doi:10.1371/journal.pone.0159414.g005
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were more marked than the results monotherapy gave in the heart tissue by attenuating and
restoring cardiac iron concentration and cardiac MDA level, and restoring cardiac mitochon-
drial function, cardiac sympathovagal balance and left ventricular function; 4) this is the first
study to demonstrate the protective effects of a combination of DFP and NAC treatment
against iron overload induced-cardiac dysfunction and that this combination therapy signifi-
cantly improved and restored cardiac function in iron-overloaded rats.

Under conditions of iron overload, plasma NTBI or free iron accumulation is caused by sat-
urated-transferrin bound iron [6, 7]. Increased plasma NTBI leads to an increase in the entry
of free iron into heart tissues through both LTCCs [9, 10] and TTCCs [11, 12]. Excess free iron
in cardiac cells causes increased oxidative stress via Haber-Weiss and Fenton’s reactions [13,
14]. In this study, plasma NTBI and cardiac iron concentrations in the HFe-fed group were
increased, indicating an iron overload condition in this animal model. Iron overload causes the
production of ROS leading to the lipid-peroxidation of cellular membranes as well as damage
to cellular proteins, nucleic acids and organelles [13, 14]. MDA is the end product of lipid per-
oxidation and is used as an indicator of oxidative stress and cell injury [54, 55]. This study
showed that MDA levels were increased in both the plasma and the heart tissues of the rats
with iron-overload, thus demonstrating an increase in systemic and intracardiac oxidative
stress levels. In addition, cardiac mitochondria were also damaged by increased oxidative stress
and mitochondrial depolarization, also mitochondrial swelling occurred in the iron-overloaded
rats. Since mitochondria are vital organelles and function as the power houses of cells [56],
iron-mediated oxidative stress caused cardiac mitochondrial damage and dysfunction, leading

Fig 6. Electronmicrographs of cardiac mitochondria from control, HFeV, HFeDFO, HFeDFP, HFeDFX, HFeNAC and HFeDFP+NAC groups.
Iron-overloaded rats led to dysmorphic morphology and swelling of cardiac mitochondria compared to the control group. All of the pharmacological
interventions could restore cardiac mitochondrial morphology which was obtained by using a transmission electron microscope in iron-overloaded rats.

doi:10.1371/journal.pone.0159414.g006
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to impaired LV function as observed in this study. Moreover, since oxidative stress has a strong
influence on the changes in the HRV [4, 11, 57], increased oxidative stress in iron overloaded
rats could lead to impaired HRV as shown in this study. These mechanisms could help explain
and support the findings that iron-overloaded rats had impaired LV function as shown by
decreased %LVEF together with decreased LVESP, Pmax, cardiac output and stroke volume.
This impairment was similar to that observed in TDT patients who often exhibit LV dysfunc-
tion [58, 59]. In the present study, although DFO, DFP, DFX or NAC treatment could improve
LVESP, Pmax, cardiac output and stroke volume in the HFe-fed rats, only a combination of
DFP plus NAC facilitated the restoration of LVESP, Pmax and cardiac output to a normal
level, thus demonstrating that the combined therapy exerted better protection on cardiac mito-
chondrial function than monotherapy, leading to restoration of the LV function in iron-over-
loaded rats.

Currently, iron chelation is the main therapy used to treat patients with conditions of iron
overload. DFO, DFP and DFX (three common iron chelators) have been shown to attenuate
myocardial iron deposition, which led to improved cardiac function in TDT patients [26–29,
32, 33]. A previous study showed that NAC (a potent antioxidant) [34] has the ability to dimin-
ish oxidative stress and DNA damage due to iron-induced toxicity in β-thalassemia patients
[36]. This current study demonstrated that despite plasma NTBI and MDA levels being attenu-
ated by all treatments, these two parameters did not reach the normal levels as shown by the
results from the control group. This result suggests that all of the pharmacological interven-
tions had similar efficacy in reducing systemic NTBI and MDA levels. In reference to cardiac
iron overload, the present study found that DFO, DFP, DFX and NAC demonstrated protective
effects on cardiac dysfunction by reducing cardiac iron deposition, lowering oxidative stress,
and improving cardiac mitochondrial function as well as improving the HRV and LV function
in iron-overloaded rats. However, their protective effects did not sufficiently restore the LV
function to reach the normal levels shown in the normal diet/control group. Although the pres-
ent study and other [60] demonstrated that two oral iron chelators DFP and DFX had a similar
efficacy in reducing cardiac iron and improving cardiac function in iron-overloaded rats,
inconsistent findings exist regarding the effects of DFP and DFX. It has been reported that
DFP was more effective than DFX in reducing cardiac iron and improving systolic ventricular
function in TDT patients [37, 38]. In addition, DFX was shown to fail to remove cardiac iron
in TDT patients with severe liver iron store [33]. Nevertheless, a large clinical study found that
DFX was more effective than DFP in reducing liver iron content in TDT patients [38]. Addi-
tionally, although NAC did not cause any reduction in cardiac iron concentration to a normal
level, it could decrease cardiac MDA content in the HFe-fed rats to a normal level (that found
in the control group). This benefit might result from its anti-oxidative effects [34, 36].

Interestingly, a previous study showed that a combination of DFP plus NAC therapy exerted
greater efficacy than monotherapy in attenuating brain oxidative stress and restoring brain
function impaired by conditions of iron overload found in iron-overloaded rats [18]. In the
present study, it was demonstrated that a combination of DFP plus NAC provides better car-
dioprotective effects than a monotherapy and could effectively reduce cardiac iron concentra-
tion and oxidative stress as well as being able to diminish mitochondrial ROS levels,
mitochondrial depolarization and swelling to the extent of reaching normal levels as shown by
the control group. Finally, cardiac sympathovagal balance was also effectively restored by the
combined therapy, followed by improved and restored LV function in iron-overloaded rats.

The combination of an iron chelator and an antioxidant may provide these effectively pro-
tective effects on iron overload-induced cardiac dysfunction by several mechanisms. Firstly,
DFP can chelate free iron in the cell [61] which leads to decreased cardiac iron concentration,
and therefore results in a decrease in oxidative stress caused by Haber-Weiss and Fenton’s
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reactions. Secondly, NAC can scavenge free radicals [34] and it is also known to have metal-
chelating properties [62] including iron [63] which leads to decreased levels of both ROS and
cardiac iron concentration. NAC might also complex with NTBI in the plasma and excreted by
the kidney via glomerular infiltration [63]. Therefore, in this study a combination of DFP plus
NAC provided synergistic cardioprotective effects and thus significantly improved and
restored cardiac function in iron-overloaded rats. The mechanisms of chronic iron overload on
cardiac dysfunction and the effects of all pharmacological interventions on cardiac dysfunction
in iron-overloaded rats are summarized in Fig 7. These findings identify the need for future
clinical trials to determine and warrant the clinical usefulness of combined iron chelator and
NAC therapy in patients with iron overload cardiomyopathy.

Conclusions
DFO, DFP, DFX and NAC monotherapy had similar efficacy in improving cardiac function in
iron-overloaded rats. Interestingly, combined DFP plus NAC had synergistically therapeutic
benefits and exerted more robust beneficial results than monotherapy in its cardioprotective
effects. This was shown by restored cardiac iron concentration, oxidative stress, and cardiac
mitochondrial function which led to restored cardiac sympathovagal balance and LV function
to a normal physiological condition in iron-overloaded rats. This study may provide extensive
insights into future therapeutic strategies for better treatment of iron overload
cardiomyopathy.

Fig 7. Diagram illustrating the proposedmechanisms of chronic iron overload on cardiac dysfunction and the effects of all
pharmacological interventions on cardiac dysfunctions caused by chronic iron overload. Dashed arrows indicate the effects of either DFO,
DFP, DFX or NAC treatment; solid arrows indicate the effects of combined DFP plus NAC treatment. DFO = deferoxamine; DFP = deferiprone;
DFX = deferasirox; NAC = N-acetyl cysteine; NTBI = non-transferrin bound iron; MDA = malondialdehyde.

doi:10.1371/journal.pone.0159414.g007
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Limitations
A previous study indicated that DFO and BHT were added into the homogenized buffer to pre-
vent iron-catalyzed, ex vivoMDA formation for determining MDA content in tissues [64].
Since DFO was not added in this study, it might be possible that the exogenous MDA was
included in the measured MDA level. Also, MDA was used for oxidative stress status in the
present study. Previous studies reported that 8-isoprostane is a prostaglandin (PG)-F2-like
compound belonging to the F2 isoprostane class which is produced by the free radical-catalyzed
peroxidation of arachidonic acid [65, 66]. 8-isoprostane is an accurate marker of lipid
peroxidation and has been used to determine oxidative stress in in vivo [66, 67], especially in
iron-overloaded rat model [68], which could be more specific to oxidative stress than MDA.
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