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Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease which

can affect most organ systems including skin, joints and the kidney. Clinically, SLE is a het-

erogeneous disease and shares features of several other rheumatic diseases, in particular

primary Sjögrens syndrome (pSS) and systemic sclerosis (SSc), why it is difficult to diag-

nose The pathogenesis of SLE is not completely understood, partly due to the heterogene-

ity of the disease. This study demonstrates that metabolomics can be used as a tool for

improved diagnosis of SLE compared to other similar autoimmune diseases. We observed

differences in metabolic profiles with a classification specificity above 67% in the compari-

son of SLE with pSS, SSc and a matched group of healthy individuals. Selected metabolites

were also significantly different between studied diseases. Biochemical pathway analysis

was conducted to gain understanding of underlying pathways involved in the SLE patho-

genesis. We found an increased oxidative activity in SLE, supported by increased xanthine

oxidase activity and an increased turnover in the urea cycle. The most discriminatory

metabolite observed was tryptophan, with decreased levels in SLE patients compared to

control groups. Changes of tryptophan levels were related to changes in the activity of the

aromatic amino acid decarboxylase (AADC) and/or to activation of the kynurenine pathway.

Introduction
Systemic lupus erythematosus (SLE) is a chronic inflammatory systemic autoimmune disease
affecting mostly females in childbearing ages. Most organ systems can be involved and symp-
toms from skin and joints are common but more severe disease with inflammation in kidneys
and/or central nervous system (CNS) also occur frequently, and there is an increased mortality
in this disease. The prevalence in Sweden has been estimated to 68/100,000 and the annual
incidence to approximately 5/100,000 [1].

PLOSONE | DOI:10.1371/journal.pone.0159384 July 21, 2016 1 / 15

a11111

OPEN ACCESS

Citation: Bengtsson AA, Trygg J, Wuttge DM,
Sturfelt G, Theander E, Donten M, et al. (2016)
Metabolic Profiling of Systemic Lupus Erythematosus
and Comparison with Primary Sjögren’s Syndrome
and Systemic Sclerosis. PLoS ONE 11(7): e0159384.
doi:10.1371/journal.pone.0159384

Editor: Kyoung Heon Kim, Korea University,
REPUBLIC OF KOREA

Received: December 19, 2015

Accepted: July 3, 2016

Published: July 21, 2016

Copyright: © 2016 Bengtsson et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This research was supported by Medical
Faculty at Lund University (AB, DMW), The Craford
Foundation (AB, DMW), Greta and Johan Kock’s
Foundation (AB, DMW), King Gustaf V’s 80th
Birthday Foundation (AB), Lund University Hospital
(AB), the Swedish Rheumatism Association (AB),
Österlund’s Foundation (AB), the Biology of Liver and
Pancreatic Development and Disease (BOLD) Marie
Curie Initial Training Network (MCITN) within EU’s
FP7 program (TL, JT, SC), and Swedish Research

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0159384&domain=pdf
http://creativecommons.org/licenses/by/4.0/


The complex pathogenesis of SLE is characterized by immunological abnormalities includ-
ing involvement of T-cells, dendritic cells and B-cell hyperactivity with auto-antibody produc-
tion resulting in the formation of immune complexes causing organ damage in host tissues,
but there is still a lack of knowledge of what immune-pathological pathways are involved [2].
Consequently, the biomarkers used today to diagnose and to monitor disease activity in this
heterogeneous disease are far from perfect with respect to sensitivity and specificity [3]. The
SLE diagnosis is based on typical clinical manifestations with signs and symptoms from more
than one organ system in combination with presence of autoantibodies [4]. The time course of
the disease is characterized by alternating periods of flares and remissions. SLE is a chronic
inflammatory disease where early treatment can prevent irreversible organ damage, poor qual-
ity of life and even mortality. Finding reliable biomarkers for early diagnosis of the disease and
for the monitoring of disease activity would greatly facilitate the healthcare of SLE patients and
optimization of treatment. This lack of markers has also hampered the efforts to monitor and
evaluate the effects of novel therapeutics in clinical trials.

Diagnosing SLE can be a challenge even for experienced rheumatologists since symptoms
are sometimes subtle and can also overlap with similar systemic autoimmune diseases, especially
primary Sjögren´s syndrome (pSS) or systemic sclerosis (SSc) and might also be linked to rheu-
matoid arthritis. Furthermore, patients can be stratified into clinical phenotypic subsets, reflecting
disease severity, which sometimes changes over time [5]. Considering the complexity of SLE, it is
reasonable to argue that more than one biomarker will be required in order to reflect all aspects
of SLE. Biomarker profiles that mirror clinical subsets of SLE would contribute to increased
understanding of pathogenesis and perhaps also to more individualized treatment regimens.

Oxidative stress is one of the key factors in development and progression of SLE involved in
several important pathways including immune system regulation and modification of autoanti-
gens [6]. Neutrophils, a major contributor of reactive oxygen species (ROS), have consistently
been reported to be hyper activated in SLE patients [7], and release proteolytic enzymes and
reactive intermediates to induce tissue inflammation [8–10]. Furthermore, neutrophil-derived
ROS, or ROS-inducing enzymes have been described to modify DNA enabling it to resist
nuclease digestion and induce inflammation through the cytosolic cGAS-STING pathway [11]
as well as oxidizing lipids promoting atherosclerosis [12]. Although more and more is known
about pathogenetic pathways in SLE such as those involved in oxidative stress, this knowledge
has not yet been transformed into useful biomarkers.

Metabolic profiling (metabolomics) is one approach that could be of help in the diagnosis of
SLE but could possibly also be of use in monitoring of disease activity and support more indi-
vidualized treatment regimens which will be increasingly important with new treatments avail-
able. The concept of metabolomics include the detection and quantification of low molecular
weight molecules (metabolites) e.g. in a human subject. Metabolic profiling has been used to
identify biomarkers for several diseases [13–19]. The fundamental rationale in metabolomics is
that perturbations in a biological system, for instance, those caused by a disease, will be detect-
able as changes in concentrations of certain metabolites. In some cases (for example, congenital
metabolic diseases), it may be possible to identify a single, robust diagnostic metabolite, but in
many cases the perturbations are more subtle, involving the activation of multiple enzymatic
(biochemical) pathways. In such cases, it is unlikely that any single biomarker will be suffi-
ciently specific for diagnostic purposes. However, by using multivariate statistics, it may be
possible to describe changes in patterns of biomarkers, rather than in individual biomarkers,
that are highly discriminatory for the perturbation and/or disease state [19]. An additional
advantage of metabolomics strategy is the possibility of revealing underlying biochemical phe-
nomena associated with the disease, thus providing insights that help the development of a bet-
ter understanding of the disease pathogenesis.
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The aim of the present study was to conduct metabolic profiling on serum samples from
SLE patients and discriminate them against controls as well as patients with closely related
diagnoses namely pSS and SSc. Biochemical pathway analysis of metabolites differentiating
SLE patients from controls was conducted aiming to gain better understanding of disturbed
biochemical pathways in SLE disease.

Materials and Methods

Patients
Thirty SLE patients, all fulfilling four or more of the American College of Rheumatology
(ACR) classification criteria for SLE [20], were recruited from an ongoing prospective control
study program at the Department of Rheumatology, Skåne University Hospital, Lund, Sweden.
Serum samples were collected from each patient, at a time-point of active disease. Serum sam-
ples were centrifuged, frozen, and stored at −80°C within 2 h of venipuncture.

The demographics including treatment with immunosuppressive drugs at the time-point of
blood sampling are described in Table 1, where also data on complement and CRP levels, as
well as relevant autoantibodies are shown. The SLE patients were classified into three different
phenotype groups according to disease severity as previously described [5]: 1) Mild SLE with
skin and musculoskeletal involvement (SLE-G1, n = 10); 2) More severe SLE with serositis, sys-
temic vasculitis and/or involvement of central nervous system (CNS) but not kidney involve-
ment (SLE-G2, n = 10); and 3) presence of SLE glomerulonephritis (SLE-G3, n = 10). SLE
disease activity was evaluated using SLEDAI-2K [21].

Table 1. Demographic data of the SLE patients included in the study at the time-point of blood sampling. SLE-G1: Mild SLE with skin and musculo-
skeletal involvement, SLE-G2: More severe SLE with serositis, vasculitis, CNS but not kidney involvement, SLE-G3: SLE glomerulonephritis.

Parameter (N) SLE-G1 (10) SLE-G2 (10) SLE-G3 (10)

Gender (female:male) 10:0 8:2 8:2

Age at onset a) 45 (26–51) 38 (27–46) 28 (24–34)

Disease duration (months) a) 102 (42–179) 79 (15–206) 74 (10–139)

SLEDAI-2K b,c) 6 (4–10) 7 (2–32) 16 (10–32)

Positive ANA d) 10 10 10

Anti-DNA (% positive) 10 60 70

Complement protein C1q (%) b) 105 (58–217) 109 (0–133) 58 (35–158)

Complement protein C3 (mg/mL) b) 1.10 (0.35–1.48) 0.85 (0.37–1.56) 0.59 (0.34–1.22)

Complement protein C4 (mg/mL) b) 0.16 (0.09–0.43) 0.13 (0–0.28) 0.11 (0.04–0.33)

CRP (mg/L) b,e) 12.0 (0–89) 13.5 (0–75) 11.5 (0–33)

Treatment

Prednisolon 4 8 10

Hydroxychloroquine 5 4 2

Azathropine 2 4 1

Cyclosporine A 1 0 3

Cyclophosphamide 1 0 3

Methotrexate 0 0 1

Intravenous Ig 0 0 1

a) Median (25th and 75th percentile)

b) Median (range)

c) SLEDAI-2K—Systemic Lupus Erythematosus Disease Activity Index 2000

d) ANA—Antinuclear Antibodies

e) CRP—C-reactive protein

doi:10.1371/journal.pone.0159384.t001
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Serum samples from 19 patients with SSc were obtained at their first enrolment for inquiry
of the SSc diagnosis at the Department of Rheumatology, Skåne University Hospital, Lund,
Sweden, and the demographics are described in Table 2. The SSc patients fulfilled the inclusion
criteria of a) a definitive diagnosis of SSc according to the ACR criteria [22]; b) a disease dura-
tion of less than five years from the onset of skin involvement; and c) had not been previously
treated with any of the following immunosuppressive drugs: azathioprine, chlorambucil, col-
chicine, cyclophosphamide, cyclosporine A, D-penicillamine, methotrexate or mycophenolate
mofetil. The SSc patients were classified according to whether they had limited cutaneous SSc
(lcSSc, n = 9) or diffuse cutaneous SSc (dcSSc, n = 10) [23], and the clinical data presented in
Table 2 was obtained as previously described [24].

Serum samples from 20 patients with pSS, all fulfilling the American–European consensus
criteria [25], were obtained from Department of Rheumatology, Skåne University Hospital,
Malmö, Sweden. The demographics are described in Table 3 with data on complement and
CRP levels, as well as relevant autoantibodies. None of the pSS patients were treated with any
immunosuppressive drugs at the time of blood sampling except for three patients; one was
treated with cyclosporine A and low dose prednisone and the other two with only low dose
prednisone. All sample aliquots were stored at -80°C.

For all studied groups of patients normal reference interval were: CRP:<3.0mg/L, C3: 0.77–
1.38 g/L, C4: 0.12–0.33 g/L and C1q: 78–131%.

Samples from eighteen healthy female volunteers were also included in the study (mean age:
35 (range 20–53).

Ethic statement
The study was approved by Lund University regional ethics board (LU-2002/378) and an
informed written consent was obtained from all participants.

Table 2. Demographic data of the SSc patients included in the study.

Parameter (N) lcSSc (9) dcSSc (10)

Gender (female:male) 9:0 7:3

Age at onset a) 55 (44–70) 47 (34–55)

Disease duration (months) a) 32 (27–43) 17 (10–28)

Skin score a) 10 (9–12) 17 (10–28)

CRP (mg/L) b,c) 0 (0–140) 6 (0–66)

Organ involvement

Esophagus 9 9

Lung 4 7

Heart 1 4

PAH d) 1 0

Kidney 1 1

Muscle 0 1

Joint 0 1

No. ANA positive e) 9 10

No. anti-Scl-70 positive 0 4

No. anti-centromere positive 8 0

a) Median (25th and 75th percentile)

b) Median (range)

c) CRP—C-reactive protein

d) PAH—Pulmonary arterial hypertension

e) ANA—Antinuclear Antibodies

doi:10.1371/journal.pone.0159384.t002
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Metabolic analysis
Sample preparation and analysis. The frozen serum samples from the patients were ana-

lyzed according to the protocol of Jiye et al. [26] and then analyzed by gas chromatography
coupled mass spectroscopy (GC-MS). An aliquot of 100 μL of thawed serum was added to Sar-
stedt safety cap tubes and 900 μL of the extraction mixture consisting of methanol:water (9:1)
containing 11 stable isotopically labeled internal standards were added. The mixture was
shaken for 2 min at 30 Hz and stored in an ice-bath for 2 hours before centrifugation in an
Eppendorf centrifuge (Model 5417C) for 10 min at 4°C and14000 rpm. Thereafter, 200 μL of
the supernatant was transferred to GC-MS-vials and evaporated to dryness, using a Speedvac.
The samples were then derivatized by shaking them for 10 min with 30 μL pyridine containing
methoxyamine, 15 μg/μL, followed by incubation at 70°C for 60 min. Following incubation at
RT for 16 hours N-Methyl-N-trifluoroacetamide (MSTFA), 30 μL, containing 1% Trimethyl-
chlorosilane (TMCS) was added. The mixture was vortex-mixed and allowed to react for 1
hour before addition of 30 μL of heptane containing 15 ng/μL methyl stearate. The extracted
and derivatized samples were placed in a Agilent 7683 Series auto sampler (Agilant, Atlanta,
GA) and 1 μL was injected splitless into a Agilent 6980 GC equipped with a 10 m x 0.18 mm i.
d. fused-silica capillary column chemically bonded with 0.18 Tm DB5-MS stationary phase
(J&W Scientific, Folsom, CA) coupled to a Pegasus III TOFMS (Leco Corp., St Joseph, MI)
mass spectrometer. The injector temperature was 270°C, the septum purge flow rate was 20 ml
min-1 and the purge was turned on after 60 s. The gas flow rate through the column was 1 ml
min-1, the column temperature was held at 70°C for 2 minutes, then increased by 40°C min-1
to 320°C, and held there for 2 min. Ions were generated by a 70 eV electron beam at an ioniza-
tion current of 2.0 mA, and 30 mass spectra s-1 were recorded in the mass range from m/z 50
to 800, after a solvent delay of 170 s. The ion source was maintained at 200°C. An alkane series
(C10-C40) was run together with all samples to enable calculation of retention indices of the
metabolites.

Table 3. Demographic data of the patients with primary Sjögrens syndrome (pSS) included in the
study.

Parameter (N) pSS (20)

Gender (female:male) 19:1

Age at onset a) 61 (45–65)

Disease duration (months) a) 132 (120–156)

Complement protein C1q (%) b) 123 (30–173)

Complement protein C3 (mg/mL) b) 1.3 (0.4–1.6)

Complement protein C4 (mg/mL) b) 0.3 (0.02–0.4)

CRP (mg/L) b,c) 5 (0–37)

No. ANA positive d) 18

No. anti-SSA positive e) 15

No. anti-SSB positive f) 12

No. RF positive g) 13

a) Median (25th and 75th percentile)

b) Median (range)

c) CRP—C-reactive protein

d) ANA—Antinuclear Antibodies

e) SSA–Sjögren’s-syndrome-related antigen A

f) SSB–Sjögren’s-syndrome-related antigen B

g) RF–rheumatoid factor

doi:10.1371/journal.pone.0159384.t003
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Data processing. All non-processed MS-files from the metabolic analysis were exported
from the ChromaTOF software in NetCDF format to MATLAB™ software 2006b (Mathworks,
Natick, MA, USA), in which all data pre-treatment procedures, such as base-line correction
chromatogram alignment, data compression and Hierarchical Multivariate Curve Resolution
(H-MCR) were performed using scripts as described by Jonsson et al [27,28]. All manual inte-
grations were performed using ChromaTOF 2.12 software (Leco Corp., St Joseph, MI, USA) or
in-house MATLAB scripts. The data processing protocols resulted in peak areas for the deriva-
tized metabolites and corresponding mass spectra. The data processing of the GC-MS data
using the H-MCR script resulted in a dataset with putative metabolites. All variables, i.e. puta-
tive metabolites, were checked manually and variables originating from internal standards and
processing artefacts excluded. Additionally, chromatographic peaks originating from one com-
pound but split during the data processing were re-processed using the H-MCR program or by
manual integration yielding a dataset with relative levels of 243 putative metabolites.

Metabolite identification. Totally 73 of the 243 metabolites could be uniquely identified
by comparison of retention indices and mass spectra with data in commercial, as well as in-
house, retention indexes and mass spectra libraries using NIST MS Search 2.0 (National Insti-
tute of Standards and Technology, 2001). Match values ranking the spectra were calculated
using the dot product of the resolved spectrum and the database spectrum weighted with
higher m/z peaks having more weight than lower m/z peaks, since higher m/z values are con-
sidered to be more compound specific. Match values range from 0–999, with 999 being an
identical match. Verification of identification was obtained by combining match values with
retention time index (+/- 10 acceptance), calculated based on the analytically characterized
alkane series.

Data normalization. The dataset of putative metabolites was then normalized with the aid
of the 11 added internal standards; a non-centered principal component analysis (PCA) model
was built on the basis of the intensity of the internal standards. The magnitude of the PCA
model t1-score of a given sample was taken as a general measure of the intensity. Differences in
intensity between samples are primarily believed to originate from differences in the system
inlet efficiency and ion suppression effects [29].

Statistical methods
All multivariate modelling was performed using SIMCA version 13 (Umetrics, Umeå, Sweden).
Principal component analysis (PCA) [30,31] was used for metabolomics data overview using
score plots, and SIMCA classification [32] visualized with Cooman’s plots [33] were used to
compare subject classification with different PCA models. Furthermore, OPLS-DA [34,35] was
used to elucidate the metabolomics differences between various groups of subjects, using the
OPLS-DA loadings (p(corr)) to estimate the discrepancies for each metabolite for the com-
pared groups [36]. The OPLS-DA models statistics are reported in Table A in S1 File. Whereas
R2X and Q2 values for PCA are not demonstrating class separation ability, but an overview of
the main variation (R2X) and indication of the robustness of the model itself (Q2), the
OPLS-DA model statistics is targeted on the class-discrimination statistics.

SIMCA Classification and Coomans’ plot. The PCA gives residuals, i.e. deviations
between the data and the model, named DModX. When these residuals are large, this indicates
a deviating behavior. These distances are used for classification in the SIMCA (Soft Indepen-
dent Modeling of Class Analogy) method [32] by the introduction of a critical distance which
determines how far away data can be from the model and still be classified as part of that
model (i.e. class). The critical limit for the distance to model measure (DCrit) is determined
using an F-test at significance level 0.05. Coomans’ plot [33] was used in presented study to
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visually illustrate the classification. For each of the class model, the “Leave one out” (LOO)
cross validation technique was used [37].

Orthogonal projections to latent structures (OPLS) and classification (OPLS-DA).
OPLS [34] is an extension to the supervised PLS [38,39] regression method. OPLS can, analo-
gously to PLS-DA, be used for discrimination (OPLS-DA) [35]. In presented study, threshold
for class belonging was set to zero, as described in Kuen et al.[40].

Significance testing. Model significance was found by means of cross-validation [41]. The
sensitivity and specificity for the OPLS-DA model predictions were based on cross-validation
estimates and calculated as: Sensitivity = true positive / (true positive+false negative);
Specificity = true negative / (false positive+true negative). Significance statistics based on
CV-ANOVA [42] for all studied OPLS-DA models are given in Table B in S1 File. Receiver
operating characteristic (ROC) curves were calculated in GraphPad Prism 6 (San Diego, CA,
USA). For OPLS-DA models they were calculated using predicted cross-validated values for
the fitted Y values for observations in the dataset computed with the cross-validation proce-
dure; for the PCAmodels score values from the first two PCA score vectors were used. P-values
for metabolite differences between studied groups of samples were calculated in Excel by per-
forming two-sample unequal variance t-test with two-tailed distribution. Significant p-values
(p< 0.05) for between group separations are given in Table C in S1 File.

Results

Metabolic profiles of the three SLE phenotypes
The first step in the multivariate analysis of the metabolic data was to investigate if the three
different SLE phenotypes G1 (mild SLE), G2 (moderately severe SLE) and G3 (glomerulone-
phritis, severe SLE) may be differentiated by their metabolic profiles.

An overview PCA model was calculated and the resulting score plot is shown in Fig 1. It is
obvious that the metabolic profiles of the three phenotypes overlap. The most severe form of
SLE, G3 (glomerulonephritis), showed some difference but even this class overlapped with the
other two. Based on the observation that the measured metabolic profiles did not differ to a
large extent between the three clinical phenotypes, the whole group of SLE subjects were pooled
as one group in the models presented in the following sections.

Metabolic profiles of controls, SLE and similar diseases
The second step in the multivariate analysis was to explore characteristics of the metabolic pro-
file of SLE in comparison with two other similar autoimmune diseases: Systemic Sclerosis (SSc)

Fig 1. PCAmodel overview of the three different clinical SLE phenotypes. PCAmodel parameters: R2X(cum) = 0.522, Q2(cum) = 0.138, 4
components.

doi:10.1371/journal.pone.0159384.g001
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and primary Sjögren’s Syndrome (pSS) and a control group of healthy volunteers (HV). The
PCA model score plot (Fig 2) showed that the SLE group could be separated from pSS, SSc and
control group (HV), with majority of SLE samples clustering in the upper left quadrant of the
PCA plot, although some SLE samples overlapped with other groups as well. To confirm sepa-
ration between studied groups of samples visible at the PCA plot, ROC curves based on the
score values from the first two PCA scores (t1 and t2) for SLE vs HV, HV vs SSc and SSc vs Pss
(that is going from one group to another along the first score vector) and SLE versus other dis-
eases were calculated with following AUC values: SLE vs HV(t1) = 0.6264, SLE vs HV(t2) =
0.7586, HV vs SSc(t1) = 0.8562, HV vs SSc(t2) = 0.6307, SSc versus pSS (t1) = 0.7430, SSc versus
pSS (t2) = 0.8266, SLE vs SSc(t1) = 0.8702, SLE vs SSc(t2) = 0.6836, SLE vs pSS(t1) = 0.9456, SLE
vs pSS(t2) = 0.6098. ROC curve analysis confirmed good (AUC 0.7–0.8) or very good (AUC:
0.8–0.9) discrimination between studied group of samples in at least one direction of the PCA
score plot.

Presented results indicated that the metabolic profile of SLE can be distinguished from
those of pSS, SSc and controls. Classification of SLE was performed using the SIMCA method.
The cross-validation results are illustrated in the Cooman’s plots, see Fig 3. The DModX values
revealed the dissimilarity (distance) to the models. In Fig 3A, the SLE and control group (HV)
classifications are shown with a sensitivity of 59% for the SLE model and 61% for the control
group model. The specificity for the two models was acceptable, 67% for the SLE model and
86% for the HV model. In Fig 3B the results were corroborated as the other disease groups
(pSS, SSc) were classified with a specificity of 70% to indicate that there are clear metabolic dif-
ferences in these otherwise clinically similar rheumatic diseases.

In addition, we tested the performance of the OPLS-DA models by creating receiver operat-
ing characteristic (ROC) curves based on predictions obtained from the cross-validation proce-
dure (Fig A in S1 File). The accuracy of each model was estimated as the area under the curve
(AUC), which was above 0.95 for all studied models.

An OPLS-DA model was used to identify which metabolites characterize SLE vs the control
group (HV). All SLE samples regardless of phenotype (G1, G2 or G3) were included to repre-
sent the full spectrum of SLE. The p(corr) profile of the significant metabolites (p<0.05) is dis-
played in Fig 4 where levels represent SLE compared to control group. OPLS-DA models were
also used to understand the different metabolic profiles between pSS and SSc in relation to the
control group (HV) and in comparison to SLE versus HV metabolic profile. In Fig 5 the
OPLS-DA metabolic profiles are compared for all three diagnoses that highlight differences
versus the control group.

Fig 2. PCAmodel overview SLE and control group (HV), and the two related disease groups (pSS, SSc). PCAmodel parameters:
R2X(cum) = 0.602, Q2(cum) = 0.158, 8 components.

doi:10.1371/journal.pone.0159384.g002
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Obtained metabolic profile between SLE patients and healthy volunteers can be used to
investigate major pathogenic pathways in SLE.

Discussion
In SLE, an autoimmune disease with diverse clinical manifestations sharing similarities with
related rheumatic diseases, there is a great need to develop better tools for diagnosis as well as
to monitor disease activity. Furthermore, the pathogenesis of SLE is not completely under-
stood, partly due to the heterogeneity of the disease and novel approaches to identify underly-
ing pathways contributing to disease are warranted. In this study we used metabolomics to

Fig 3. Cooman's plot was used to assess specificity and sensitivity of metabolic profiles to distinguish between A) SLE and control group (HV). B)
The same model was used to predict SSc and pSS groups.

doi:10.1371/journal.pone.0159384.g003

Fig 4. P(corr) profile for the metabolites significant for the separation (p < 0.05) between SLE and control group (HV).

doi:10.1371/journal.pone.0159384.g004
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identify metabolites differentially regulated in SLE patients in comparison to healthy volunteers
and patients with related rheumatic disorders to provide tools for SLE diagnosis. Based on
obtained data we also discuss which underlying biochemical pathways can be activated in SLE.

Metabolomics may have the potential to be used as a measure of disease severity in SLE,
considering the ability to partly distinguish the less severe SLE patients (SLE-G1 and SLE-G2)
from the more severe lupus nephritis cohort (SLE-G3). The fact that the subgroups could not
be completely separated fits well with the clinical situation where e.g. symptoms seen in G1,
such as skin and joint manifestations, sometimes are present also in the G3 group with

Fig 5. Metabolic profiles (p(corr) values) fromOPLS-DAmodels between SLE versus healthy volunteers (HV) (blue),SSc versus HV (red)
and pSS versus HV (gray).

doi:10.1371/journal.pone.0159384.g005
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glomerulonephritis. Spread within SLE sub-groups and their overlap could be also influenced by
the fact that sub-groups were not perfectly matched based on personal and disease-related param-
eters, which will always be represented in metabolic data. Because of the not complete separation
between SLE subgroups, we decided to merge them into one group in the subsequent analyses.

We next investigated the potential of metabolic profiling as a diagnostic tool. Utilizing a set
of 73 uniquely identified metabolites we found a markedly different metabolic profile in SLE
patients as compared to healthy individuals (Fig 5A and 5B) with five metabolites significantly
up-regulated and fifteen down-regulated in SLE compared to controls according to p-values
(Fig 4). These results of the ROC curve analysis of cross-validated predictive scores (Fig A in S1
File) proved excellent accuracy of the applied OPLS-DA modeling of metabolic profiles for the
discrimination between studied diseases and controls. Furthermore, the individual models of
SLE and healthy individuals showed acceptable classification strength with regard to other
diagnoses, with specificity above 67% for all analyses (SLE, pSS and SSc). Selected metabolites
were also significantly different between SLE and other diseases, as showed by p-values
(Table C in S1 File). It is especially noteworthy that metabolic profiles in comparison to healthy
volunteers were different for primary Sjögrens syndrome (pSS), systemic sclerosis (SSc) and
SLE, which are rheumatic diseases with overlapping clinical pictures.

We also observed that the SLE pattern of lowered levels of amino acids (nineteen out of
twenty six) was not as pronounced in the SSc patients (eleven out of twenty six) which means
that the amino groups released from the urea cycle could have been reused to create new
amino acids. This can be exemplified by the noted increase in arginine and simultaneous
decrease in 2-oxoglutaric acid for SSc patients compared to control group and compared to
SLE-HV profile. When comparing the metabolic profile for SLE with the one for pSS it was
found that the latter showed an increase in many organic acids compared to controls (in con-
trast to SLE patients) which could indicate that pSS patients were experiencing a higher degree
of oxidative stress. The most visible example of this was fumaric acid which was found signifi-
cantly lower in the SLE vs control model and significantly higher in the pSS vs control model.
Oxidative stress is well described in SLE but we have not been able to find evidence of more
pronounced oxidative stress in pSS compared to SLE in the literature. However, this lack of evi-
dence in the literature most likely reflects that this subject is not thoroughly investigated.
Observed differences point to different biochemical pathways activated in each disease com-
pared to controls and indicate that metabolomics may be one of the tools which could in the
future provide a set of biomarkers useful for diagnosis of SLE.

Since our study was focused on investigation of SLE, we put observed metabolic profile dif-
ferentiating SLE from controls in a biochemical context. Previous metabolomics study on SLE
[43] showed reduced concentrations of several metabolites, including many amino acids in
SLE patients compared to controls. In the publication by Wu et al. [44] metabolic profiling of
sera samples from SLE patients was performed to discriminate between rheumatoid arthritis
patients and controls. Their main findings suggest evidence of oxidative stress and reduced
energy generation in SLE affecting the amino acid and fatty acid metabolism. Our results con-
firm this observation, with the majority of amino acids, as well as organic acids down-regulated
in SLE patients compared to controls, whereas most of the fatty acids were up-regulated. J. Sae-
gusa et al. [45] reported that 25 metabolites detected in sera from SLE patients were signifi-
cantly different compared to controls, including glutamic acid and urea, found significant also
in our study. Two recent reviews [46,47] summarize current results of ‘omics’ analyses in the
SLE field, with only few papers cited in the metabolomics section, clearly demonstrating that
there is a need for further exploration of the usefulness of metabolomics in SLE research.

Lower levels of tyrosine and especially tryptophan in SLE patients compared to controls
could suggest increased activity of aromatic amino acid decarboxylase (AADC), which
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transforms these compounds into the trace amine neurotransmitters. Changes of levels of these
amino acids in blood could result in altered levels of dopamine and serotonin in the brain
which may have effects on the mood and be related to depression symptoms. In fact, a wide
range of manifestations from the central nervous system (CNS) can be seen in patients with
SLE with unclear pathogenesis [48] and our present results might indicate the involvement of
pathways worth further exploration. Lower levels of tryptophan could be also connected to
kynurenine pathway, which has been related to activated immune response and involved in
many diseases and disorders, including SLE [49,50]. Importantly, we recently described
increased activity of the interferon-sensitive enzyme indolemaine 2,3-dioxygenase in SLE
patients, skewing the tryptophan metabolism in favor of kynurenine instead of serotonin lead-
ing to decreased levels of serotonin, a finding related to disease severity [51]. Interestingly, in
MRL/lpr mice, a lupus mouse model, increased depression-like behaviour and visuospatial
memory impairment was dependent of activation of the same pathway with corresponding
brain levels of serotonin and kynurenine pathway metabolites [52].

The metabolic profile for SLE patients compared to the matched control group showed an
increased activity in the urea cycle manifested by decreased levels of arginine and ornithine
and increased levels of urea. This could have been a result of breakdown of proteins during cat-
abolic process. Decrease of arginine in SLE patients could also point to an increase in nitric
oxide (NO) levels and hence could be connected to increased oxidative stress. We also found
an increase of xanthine oxidase activity manifested by decreased hypoxanthine levels and
increased level of its oxidation product uric acid. Further, in SLE patients, cystine was increased
while cysteine was decreased compared to healthy individuals. The cystine/cysteine ratio can
be related to the redox potential of the cell and hence to oxidative stress. Together, these results
support increased oxidative stress in SLE patients observed by othersboth in patients with SLE
and in lupus-prone mice as summarized in the review by Perl et al [6].

Interestingly, caffeine, theobromine and quinic acid, part of the caffeine metabolism, were
all found to be down-regulated in SLE. This could suggest that the SLE patients either con-
sumed less coffee/tea/cocoa or that they metabolized these compounds more efficiently, both
statements needing verification. The latter explanation may be due to that paracetamol has
been shown to increase metabolism of caffeine [53] as well as the amount of sulphur amino
acids [54] resulting in an increased caffeine metabolism and low concentrations of cysteine and
methionine as also observed in this study.

A drawback of this study is the use of immunomodulatory treatment and analgetic drugs in
the SLE patients, changing the metabolic profile by introducing new metabolites, including
naproxen and paracetamol, as well as disrupting immunopathogenic important pathways.
Mentioned drugs are less used in pSS and SSc and not at all in the healthy controls. Also, demo-
graphic data of the patients (especially age) were different for different diseases studied and
hence could also influence the results. Different ages at disease onset and different treatments
thus reflect the real life situation. From ethical reasons we could obviously not have stopped
treatment of the patients and unfortunately in this study we were not able to perform patient
selection which would allow us to match patients based on their personal parameters. Some of
the results presented by us may thus be influenced by this differences in age and treatment, but
we believe that our main conclusions are not changed.

Conclusions
The present investigation shows that metabolomics has the potential to be used as a diagnostic
tool for differentiating SLE from healthy controls as well as from other similar immunological
diseases such as SSc and pSS. In particular, our data clearly demonstrate prevalent oxidative
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stress as well as abnormal tryptophan metabolism through AADC or the kynurenine pathway
in SLE patients. If validated in future studies, our observation may lead to much needed novel
diagnostic and therapeutic options in SLE patients.
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