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Abstract
Genome wide association study (GWAS) was conducted for 14 agronomic traits in wheat fol-

lowing widely used single locus single trait (SLST) approach, and two recent approaches viz.

multi locus mixed model (MLMM), and multi-trait mixed model (MTMM). Association panel

consisted of 230 diverse Indian bread wheat cultivars (released during 1910–2006 for com-

mercial cultivation in different agro-climatic regions in India). Three years phenotypic data for

14 traits and genotyping data for 250 SSRmarkers (distributed across all the 21 wheat chro-

mosomes) was utilized for GWAS. Using SLST, as many as 213 MTAs (p� 0.05, 129

SSRs) were identified for 14 traits, however, only 10 MTAs (~9%; 10 out of 123 MTAs) quali-

fied FDR criteria; these MTAs did not show any linkage drag. Interestingly, these genomic

regions were coincident with the genomic regions that were already known to harbor QTLs

for same or related agronomic traits. Using MLMM and MTMM, many more QTLs and mark-

ers were identified; 22 MTAs (19 QTLs, 21 markers) using MLMM, and 58 MTAs (29 QTLs,

40 markers) using MTMMwere identified. In addition, 63 epistatic QTLs were also identified

for 13 of the 14 traits, flag leaf length (FLL) being the only exception. Clearly, the power of

association mapping improved due to MLMM and MTMM analyses. The epistatic interac-

tions detected during the present study also provided better insight into genetic architecture

of the 14 traits that were examined during the present study. Following eight wheat geno-

types carried desirable alleles of QTLs for one or more traits, WH542, NI345, NI170, Sharbati

Sonora, A90, HW1085, HYB11, and DWR39 (Pragati). These genotypes and the markers

associated with important QTLs for major traits can be used in wheat improvement programs

either using marker-assisted recurrent selection (MARS) or pseudo-backcrossing method.
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Introduction
Genetic analysis of quantitative traits (QTs) mainly involves either the linkage-based interval
mapping or the linkage disequilibrium (LD)-based genome-wide association studies (GWAS).
GWAS utilizes diverse germplasm (representing most of the genetic variability), which is the
product of hundreds of recombination cycles, thus providing higher resolution of QTL regions
[1]. This approach is based on the principle of LD, which if maintained over many generations
suggests tight linkage. Sometimes LD may also arise due to reasons other than linkage, which
may lead to a large proportion of false-positives. However, statistical options are now available
for dealing with such cases [2]. GWAS for yield and related traits have been conducted in sev-
eral crops [3–6] leading to successful identification of a fairly large number of QTLs for yield-
related traits. In a detailed study, in the model plant species, Arabidopsis thaliana also, in one
of the several GWA studies, MTAs for 107 phenotypes were detected [7], thus demonstrating
the utility of GWAS. GWAmapping in wheat has been successfully utilized for identification
of QTLs for a number of agronomic traits including the following: 1,000-kernel weight, protein
content, sedimentation value, test weight, and starch concentration, plant height, days to head-
ing [8–12], kernel size and milling quality [13], HMW glutenin content [14], disease resistance
[15–17], earliness [18], drought adaptive traits and yield [19–21], and pre-harvest sprouting
tolerance (PHST) [22–24], etc. GWAmapping has also been utilized for discovery of marker-
trait associations and candidate genes for morphological traits in Ae. tauschii, the donor of the
wheat subgenome D [25].

Earlier, in our laboratory, we used SSRs for QTL analysis in wheat using both, interval
mapping and single locus single trait (SLST) association mapping [11, 22, 26–27]. SLST is
the simplest and most widely used association mapping approach. However, it has been
argued that SLST approach for GWAS leads to biased results possibly due to the following
reasons: (i) confounding effect of background QTL/genes, (ii) pleiotropism involving control
of more than one trait by the same gene/QTL, and (iii) LD for reasons other than linkage.
Therefore, multi-locus mixed model (MLMM) and multi-trait mixed model (MTMM) have
been proposed to address the issues of background noise and pleiotropy [28–29]. MLMM
takes into account genetic background in the same manner as composite interval mapping
(CIM) does in case of interval mapping [28]. Similarly, MTMM is comparable to multi-trait
QTL interval mapping, and allows detection of individual QTLs that are pleiotropic,
although in some cases this may be due to tight linkage also [29]. Epistasis is another issue
that has generally been neglected in GWAS. The present communication reports the results
of GWAS for 14 traits in common wheat following not only SLST, but also MLMM, MTMM;
epistatic interactions are also included. An effort was also made to compare the efficiency of
the above three approaches for identification of reliable MTAs in wheat for marker-assisted
selection (MAS).

Materials and Methods

Association mapping panel and SSRmarkers
The association mapping panel comprised 230 Indian wheat cultivars (for details, see Mir et al.
[6, 29]), released for commercial cultivation in different agro-climatic regions of India during a
period of ~100 years (1910 to 2006). These cultivars represented a fairly diverse set of geno-
types, as demonstrated in our earlier diversity analysis study [30]. The seed of cultivars was
procured from the ICAR-Indian Institute of Wheat and Barley Research (ICAR-IIWBR), Kar-
nal (India). A set of 250 SSR markers spread over all the 21 wheat chromosomes was used for
genotyping of the association mapping panel (for details, see Jaiswal et al. [22]).
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Data on 14 agronomic traits
The data on mean values for each of the 14 traits of the above 230 Indian common wheat culti-
vars (based on trials conducted over three years) was procured from ICAR-IIWBR, Karnal, India
[31]; the data procured was subjected to further statistical analysis during the present study. The
14 traits included the following: plant height (PH), peduncle length (PL), flag leaf length (FLL),
awn length (AL), days to heading (DTH), days to maturity (DTM), spike length (SL), number of
spikelets/spike (SKS), number of grains/spike (GS) and 1000-grain weight (TGW), grain protein
content (GPC), hardness index (HI), hectoliter weight (HW) and sedimentation volume (SV).

Statistical analysis
Descriptive statistics for phenotypic trait and structure analysis. Descriptive statistics

including frequency distribution, mean values, coefficient of variability (CV) and Pearsons’s
correlation coefficients were obtained using SPSS version 17.0. Model-based cluster analysis of
association mapping panel was conducted during an earlier study in our lab [11] to infer popu-
lation structure using the software STRUCTURE version 2.2 [32].

Population structure and model selection for MTAs. Multiple regression analysis was
carried out to estimate r2 (%) and the probability values for determining relationships between
the phenotypic traits and population structure [19]. Based on this information, out of the four
models including naive, Q, K and Q+K (for details of the models, see section on MTA analysis),
the best fit model was selected for each trait following Stich et al. [33]. Following two criteria
were used for model selection: (i) lowest mean of squared differences (MSD) between observed
and expected p values involving all marker loci, and (ii) percentage of observations being below
nominal level (α = 0.05) in a p (expected)—p (observed) plot (quantile-quantile or Q-Q plot).
Consequently, different models were used for different traits.

Marker-traits association (MTA) analysis. For MTA analysis, marker alleles with
frequency� 0.05 were treated as rare and the rare variant genotypes carrying these rare alleles
were excluded from the analysis for statistical reasons; the genotypes excluded from the analy-
sis differed for different SSRs. TASSEL version 3.0 (http://www.maizegenetics.net) was used to
conduct SLST association mapping—involving associations of individual markers with each of
the 14 traits, employing one of the following four models for individual traits: (i) general linear
model (GLM: naive model), (ii) GLM including Q-matrix derived from STRUCTURE (Q-
model), (iii) the mixed linear model (MLM) based on the kinship matrix (K-model) and (iv)
the MLM based on both the Q-matrix and the kinship matrix (Q+K-model) (for more details,
see Results). The kinship-matrix was generated by TASSEL through conversion of the distance
matrix derived from TASSEL’s cladogram function into a similarity matrix; also the option
EMMA was chosen for MLM [34], leaving the other parameters at the default settings. Signifi-
cance of MTAs was determined at p� 0.05.

In addition to SLST analysis, GWAS using MLMM [28] and MTMM [29] was also con-
ducted. For MLMM, background genome was considered as a cofactor (like CIM in interval
mapping) using stepwise mixed-model regression with forward inclusion and backward elimi-
nation [28]. For MTMM, all pairs of traits showing significant and strong correlation (p-
value� 0.05; r2 �0.25) were used. In MTMM, following three tests were applied: (i) full test
that compared the full model including the effect of a marker genotype and its interactions,
with the model that included neither, (ii) interaction effect test that compares the full model to
one, which does not include interactions, and (iii) common effect test that compares a model
with a marker genotype to the model that does not include marker genotype [29].

In each of the above approaches, corrections were made using false discovery rate (FDR) cri-
teria earlier suggested [35] to reduce the proportion of false positives originating due to
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multiple testing. Since average LD in wheat is 10 cM [36], more than one MTAs within a range
of 10 cM were considered to represent the same QTL.

For each trait, two dimensional epistatic interactions were also examined using MTAs
detected through SLST, MLMM and MTMM. This analysis was carried out using the function
interactionPval available in SNPassoc package of R-software [37]. In order to control con-
founding due to population structure, different corrections (like Q, K or Q+K) were applied for
different traits (see later) into the interaction model.

Identification of desirable QTL alleles and donor genotypes for wheat
improvement
QTLs that were detected by all the three methods or by at least two methods were considered
to be relatively more important. However, QTLs that were detected by SLST alone and quali-
fied FDR or those reported in earlier literature were also considered important. For identifica-
tion of desirable QTL alleles, for each trait, a set of 20 genotypes with their superior phenotypic
performance was selected. Marker allele for individual marker loci and pairs of alleles for the
interacting epistatic loci present in maximum number of genotypes (out of 20 superior geno-
types) were taken to be associated with desirable QTL allele for the trait concerned. The corre-
sponding genotypes carrying desirable QTL alleles and a desirable trait value were treated as
superior genotypes for individual traits.

Results

Descriptive statistics for 14 traits
The data on distribution, mean values, and coefficient of variability (CV) for all the 14 traits
involving 230 genotypes are presented in Fig 1. The extent of variability for the different traits
suggested suitability of the association mapping panel for GWAS. Pearson’s correlation analy-
ses revealed that 19 of the 91 possible pairs of traits (involving 14 traits) had significant (p-
value� 0.05) and strong (r2 � 0.25) correlations, making these pairs to be suitable for MTMM
(S1 Table).

Relationship between population structure and phenotypic data
The relationship of population structure with individual traits differed (reported by us earlier;
for details, see Jaiswal et al. [22] and Mir et al. [11]), so that the traits were categorised in the
following three groups on the basis of regression coefficient (r2) (i) 0% to 5% = poor relation-
ship; (ii) 6% to 10% = moderate relationship; and (iii)>10% = strong relationship. Population
structure showed poor relationship with HW (r2 = 4.3%) and DTH (r2 = 5.0%); moderate rela-
tionship with AL, DTM, GPC and TGW (r2 = 7.9% to 10.0%), and strong relationship with the
remaining eight traits (SV, GS, SL, SKS, FL, HI, PL and PH; r2 = 11.1% to 34.0%) (Table 1).

Model search for individual traits
Values for mean square differences (MSD) for all the four models for each of the 14 traits along
with the best fit models are summarised in S2 Table; corresponding Q-Q plots are given in
Fig 2. Out of the four models that were tested, the naive model was not adequate for any of the
14 traits, Q model was best fit for HW only, K model was best fit for eight different traits (AL,
GS, SL, SKS, DTH, FLL, GPC and PH) and Q+K model was best fit for the remaining five traits
(SV, TGW, DTM, HI and PL). For individual traits, the MTAs were worked out using the best
fit model.
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Fig 1. Frequency distribution of morphological, yield related and quality traits used for association mapping.

doi:10.1371/journal.pone.0159343.g001

Table 1. Relationships between the phenotypic traits and population structure computed using the
mean values across environments. Probability (p-value) and r2 values (%) for phenotype–population struc-
ture relationship are based on the multiple regression analysis.

Traits p-value r2 (%)

PH 0.000 34.0#

PL 0.010 11.2#

FLL 0.001 14.4#

AL 0.035 9.5**

DTH 0.497 5.0*

DTM 0.109 7.9**

SL 0.000 16.0#

SKS 0.001 13.9#

GS 0.000 19.3#

TGW 0.024 10.0**

GPC 0.028 9.8**

HI 0.010 11.1#

HW 0.646 4.3*

SV 0.000 19.0#

* little relationship (r2 = 0.0% to 5.0%)

**moderate relationship (r2 = 6.0% to 10.0%)
# high level relationship (r2 � 11.0%)

doi:10.1371/journal.pone.0159343.t001
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MTAs using SLST
Results of significant MTAs detected following SLST for each of the 14 traits are summarized in
Table 2 and chromosomal location of SSRs involved in these MTAs are depicted in Figs 3–9.
Altogether, 213 MTAs representing 203 QTLs involving 129 associated SSRs (spread over all the
21 chromosomes) were identified. Maximum number of SSRs (24) was associated with AL, and
minimum number of SSRs (9) was associated with DTM (Table 2). Out of 129 associated SSRs,
72 SSRs were involved in single trait-specific MTAs and 57 SSRs were involved in multi-trait
MTAs. Over all, only 10 MTAs involving 9 associated SSR markers (one SSR marker was shared
with two traits) for five traits (PH, TGW, HI, HW and SV) qualified the FDR criteria (Table 3).

MTAs using MLMM
Twenty two (22) MTAs (after FDR correction) for seven traits (PH, AL, TGW, GPC, HI, HW
and SV) were identified following MLMM (Table 4). These MTAs involved 13 wheat chromo-
somes including 1A, 1B, 2A, 2B, 3A, 3B, 4A, 4B, 5B, 6A, 6B, 7B and 7D. Seven of the 22 MTAs,
were common with those identified by SLST and qualified the FDR criteria. These seven MTAs
included—gwm294 for HI; wmc419, wmc598 for SV; wmc827 for HW; gwm533.1 for PH;
wmc396 for SV and; gwm107 for TGW. The remaining 15 MTAs largely figured among SLST
MTAs, which did not qualify FDR.

MTAs using MTMM
MTMM analyses allowed identification of 58 MTAs (after FDR correction) representing 29
QTLs) for 11 pairs of correlated traits. These 58 MTAs involved 18 of the 21 wheat

Fig 2. Plots of observed p-values (on y-axis) vs. expected p-values (on x-axis) for the 14 different traits using different association
mappingmodels.

doi:10.1371/journal.pone.0159343.g002
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Table 2. Summary of the significant marker-trait associations (MTAs) for 14 traits detected using SLST. The results are referred to significant
marker–trait associations on the basis of consistent marker-wise tests (P� 0.05) carried out with best fit model of association mapping for individual trait.

Trait No. of MTAs p-value R2 (%) No. QTLs No. of MTAs after FDR

Min. Max. Min. Max.

PH 15 0.000 0.050 3.512 11.604 15 1

PL 16 0.003 0.046 1.794 9.874 16 0

FLL 12 0.004 0.050 2.848 8.294 11 0

AL 24 0.000 0.045 2.747 10.881 20 0

DTH 11 0.007 0.034 2.027 11.390 11 0

DTM 9 0.004 0.046 2.769 10.279 8 0

SL 16 0.002 0.047 1.980 7.720 11 0

SKS 12 0.002 0.049 2.002 12.346 11 0

GS 12 0.003 0.044 3.263 10.097 10 0

TGW 20 0.000 0.048 1.746 10.987 16 1

GPC 14 0.002 0.049 2.365 9.759 12 0

HI 21 0.000 0.050 1.935 13.805 19 2

HW 15 0.000 0.048 2.492 16.438 13 3

SV 16 0.000 0.044 3.116 15.530 14 3

Total 213 - - - - 203 10

doi:10.1371/journal.pone.0159343.t002

Fig 3. SSR genetic linkagemaps of homoeologous group 1 chromosmes showingmarkers-trait associations (markers
associated with different traits are shown by solid circles with different colours), markers are indicated to the right andmap
distances (cM) are indicated to the left of the vertical bar (based on the consensus linkagemap of Somers et al. [76]).

doi:10.1371/journal.pone.0159343.g003
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chromosomes with the exception of 2D, 5A and 6D. As many as 32 MTAs were identified
using full test, 43 were identified using interaction test and 9 were identified using common
marker test (a number of MTAs were identified using more than one method). Nine pleiotro-
pic QTLs for the following three pairs of correlated traits were identified using common
marker test: PH-TGW (1 MTA), PH-SV (5 MTAs) and DTH-DTM (3 MTAs). Out of 58
MTAs, eight MTAs were common with SLST (which qualified FDR), and nine MTAs were
common with MLMM analyses (Tables 4 and 5). The number of MTAs for individual pairs of
correlated traits ranged from 1 to 14. There were two pairs of correlated traits, namely
PH-DTM and PH-SV, for each of which a maximum of 14 MTAs were available; in contrast,
for each of following four pairs of correlated traits, a solitary MTA was available: PH-PL,
FLL-SL, SKS-GS and SKS-TGW).

Main effect QTLs involved in epistatic interactions
As many as 63 epistatic interactions were identified for 13 (out of 14) traits (Table 6), FLL,
being the only exception. Markers involved in the above mentioned 63 epistatic interactions

Fig 4. SSR genetic linkagemaps of homoeologous group 2 chromosomes showingmarkers-trait associations (markers
associated with different traits are shown by solid circles with different colours), black bar given below the solid circle represents
that MTA qualified FDR criterion; markers are indicated to the right andmap distances (cM) are indicated to the left of the vertical
bar (based on the consensus linkage map of Somers et al. [76]).MTAs identified through all three approaches (SLST, MLMM and
MTMM) are highlighted with pink.

doi:10.1371/journal.pone.0159343.g004
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were spread over all the wheat chromosomes except 7A (Fig 10). A maximum of 13 interac-
tions were observed for SV, while a minimum of one interaction was detected for PH.

Identification of important rare alleles and rare variants
During genotyping of 230 cultivars, 250 SSRs exhibited a total of 1124 alleles; 316 of these
alleles (representing 165 SSRs) were rare alleles, each with a frequency of 5% or less. The geno-
types carrying these rare alleles are described as rare variants for individual traits. For individ-
ual SSRs, these rare alleles ranged from 1 to 9 with a mean of 1.26 alleles per SSR. For
individual traits, these rare alleles were carried by 1 to 11 rare variants (since same rare allele
may be carried by more than one rare variants). The rare variants were examined for each indi-
vidual trait to identify the specific rare variants, which carried a desirable state of the phenotype
for each trait. Such important and desirable rare variants carried only 78 of the 316 rare alleles
belonging to 55 SSRs (S3 Table); these 78 rare alleles and the corresponding rare variants, each
with desirable state of one or more individual traits were considered important and need atten-
tion (see Discussion). Rare variants with desirable state of individual traits were available only

Fig 5. SSR genetic linkagemaps of homoeologous group 3 chromosomes showingmarkers-trait associations (markers
associated with different traits are shown by solid circles with different colours), black bar given below the solid circle represents
that MTA qualified FDR criterion; markers are indicated to the right andmap distances (cM) are indicated to the left of the vertical
bar (based on the consensus linkagemap of Somers et al. [76].MTAs identified through all three approaches (SLST, MLMM and
MTMM) are highlighted with pink.

doi:10.1371/journal.pone.0159343.g005
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for 10 of the 14 traits examined (for 4 traits, namely DTM, SV, PL and SL, no desirable and
important rare variants were available); the number of rare alleles carried by important/desir-
able rare variants varied for individual traits and ranged from 2 (for HW) to 17 (for DTH).

Important MTAs, QTL alleles and genotypes
Using the criteria mentioned earlier, 56 MTAs involving 38 SSRs for 11 traits were considered
important; some of these SSRs were involved in more than one traits (S4 Table); for the
remaining three traits (FLL, PL and SKS), the available MTAs neither qualified for FDR, nor
were these reported in earlier literature; these were, therefore ignored. MTAs for each of the 11
traits are listed in Table 7.

The 38 desirable QTLs (associated with 38 associated SSRs) included 12 main effect QTLs
that were not involved in epistatic interactions; the remaining 26 QTLs were also involved in
epistatic interactions. A set of 17 superior genotypes carrying desirable alleles for important
QTLs for 11 traits were also identified (Table 8). Some of these genotypes carried superior
alleles for only one trait. Therefore, other genotypes carrying superior alleles for two traits may
be preferred over the genotypes carrying superior alleles for a single trait. Eventually, from
above 17 genotypes, only the following eight genotypes were selected, which carried superior
alleles for either two traits [WH542 (HI and PH), Sharbati Sonora (DTH and DTM)]; or had
most desirable trait value in case, where superior allele for a solitary trait was available [NI345

Fig 6. SSR genetic linkagemaps of homoeologous group 4 chromosomes showingmarkers-trait associations (markers
associated with different traits are shown by solid circles with different colours); markers are indicated to the right andmap
distances (cM) are indicated to the left of the vertical bar (based on the consensus linkagemap of Somers et al. [76].

doi:10.1371/journal.pone.0159343.g006
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(SV), NI179 (TGW), A90 (HW), HW1085 (GS), HYB 11 (GPC), and DWR39 (Pragati) (AL)],
see Table 8.

Discussion
The present association mapping study (GWAS) has the following important/novel features of
interest. Firstly, it addresses the problem of trait-related population structure, secondly it pro-
vides improvement upon SLST analysis through the use of MLMM and MTMM, thirdly it
includes identification of epistatic interactions, which are seldom included in GWAS, and
finally effort has been made to highlight the problem of rare alleles and rare variants, which is
currently one of the most widely debated issues in GWAS. It is known that during GWAS, con-
founding arises due to population structure, particularly if it is correlated with the trait under
study [22]. In the present study, model selection allowed us to address this problem of trait-
related population structure. It has been documented that population structure, if related with
the trait of interest may lead to erroneous conclusions as shown in case of Dwarf4 gene of
maize [38–39]. Keeping this in mind, model search was made, so that, models used in the pres-
ent study differed for different individual traits (Q-model, K-model or Q + K model; for details
see materials and methods), depending on whether or not the population structure had a rela-
tionship with the traits under study; only the most appropriate model was used for each of the
14 individual traits [40–41]. Thus, the use of appropriate models showing best fit provided

Fig 7. SSR genetic linkagemaps of homoeologous group 5 chromosomes showingmarkers-trait associations (markers
associated with different traits are shown by solid circles with different colours); markers are indicated to the right andmap
distances (cM) are indicated to the left of the vertical bar (based on the consensus linkagemap of Somers et al. [76]).

doi:10.1371/journal.pone.0159343.g007
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higher level of confidence in our association mapping results. In the past, most of the associa-
tion mapping studies in wheat, with few exceptions [41–42], arbitrarily used either the Q-
model, or the K-model or the Q + K-model without first examining, the best fit model for each
trait, thus leading to results with low level of confidence.

FDR corrections were also used in the present study. It may be recalled, that during SLST
analysis, only nine markers involved in 10 MTAs, out of 213 MTAs, could qualify after FDR
corrections; all these 10 MTAs fall within the genomic regions earlier reported to be associated
with the corresponding or related traits in wheat, placing higher level of confidence in these
MTAs (Table 3). However, we recognize that FDR correction is actually a trade-off (between
identification of MTAs with higher level of confidence and the inflation in the number of false
negatives), so that some genuine associations escape detection as false negatives [23, 43].
Therefore, we examined further the remaining 203 MTAs (after excluding the above 10
MTAs), which did not qualify FDR criterion. On comparison with already reported MTAs, we
found that nine of the 203 MTAs (that did not qualify FDR criteria) for four different traits
(TGW, GS, SL and PH) were reported by one or more of the earlier QTL mapping studies
(Table 9). These nine MTAs involved the following: gwm11, barc164, wmc593, wmc516 for
TGW; wmc24, gwm413 for GS; wmc702 for SL; and gwm296, gwm349 for PH [11, 44–51].
These examples illustrate that the MTAs, which fail FDR correction need not be ignored and
should be further examined for their validation through linkage mapping using suitably
designed biparental mapping populations.

Fig 8. SSR genetic linkagemaps of homoeologous group 6 chromsomes showingmarkers-trait associations (markers
associated with different traits are shown by solid circles with different colours), black bar given below the solid circle
represents that MTA qualified FDR criterion; markers are indicated to the right andmap distances (cM) are indicated to the left
of the vertical bar (based on the consensus linkagemap of Somers et al. [76]).

doi:10.1371/journal.pone.0159343.g008
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Fig 9. SSR genetic linkagemaps of homoeologous group 7 chromosomes showingmarkers-trait associations (markers
associated with different traits are shown by solid circles with different colours), black bar given below the solid circle represents
that MTA qualified FDR criterion; markers are indicated to the right andmap distances (cM) are indicated to the left of the vertical
bar (based on the consensus linkagemap of Somers et al. [76]).MTAs identified through all three approaches (SLST, MLMM and
MTMM) are highlighted with pink.

doi:10.1371/journal.pone.0159343.g009

Table 3. List of the 10most valuable (significant after FDR) MTAs involving 9 SSRmarkers that were detected during the present study using
SLST approach and were also previously reported to affect related traits.

Locus Chromosome Genetic position
(cM)

Associated
trait

Previously identified loci affecting same or related traits*

Based on the sharing of commonmarker Based on similarity in genetic
position

wmc598 2A 29 HW GWE [70] wmc177(28.3 cM); TGW [47]

wmc827 2A 41 HW - cfa2201(41cM); HD. KPSM,
TGW, GY [19]

gwm459 6A 0 HW PL, KPSM [19] gwm334 (2cM); TGW [73]

gwm533.1 3B 6 PH GFR, TGW, GFD, FT [70] -

gwm111 7D 89 SV TGW [11] -

gwm361 6B 38 SV, HI TGW [71] -

wmc396 7B 68 SV PL, TW, GY [19] -

gwm107 3B 85 TGW - barc115 (85.1cM); PH, KPSM,
TGW [19]

gwm294 2A 76 HI HD, PH, PL, KPSM, TGW, TW [19], SL, GPS [47],
YLD, HD, SNP, SWP [72]

gwm312 (79.26cM); MTGW [51]

*GWE = grain weight/ear, PL = peduncle length, KPSM = kernel/square meter, GFR = grain filling rate, TGW = thousand grain weight, GFD = grain filling

duration, FT = flowering time, TW = test weight, GY = grain yield, HD = heading date, SL = spike length, GPS = grain/spike, YLD = yield, SNP = spike

number/plant, SWP = spike weight/plant, MTGW =mean thousand grain weight.

doi:10.1371/journal.pone.0159343.t003
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The problem of genetic background affecting the detection of QTL was addressed during
the present study through the use of MLMM [28], since each of the 14 traits used in the present
study are quantitative in nature [3, 5, 14, 52], so that the power of detection of QTLs is
adversely affected by genetic background. Using MLMM approach, 15 additional MTAs were
detected, which were not really unique, but occurred among those SLST MTAs, which did not
qualify FDR, once again suggesting that MTAs, which did not qualify FDR, should not be
ignored, and need to be further examined.

The use of MTMM during the present study also allowed identification of 9 MTAs involving
QTL that are associated with three pairs of correlated traits (out of 19 pairs of correlated traits
examined). This suggested that the remaining correlations were either due to environmental
effect or due to LD rather than due to pleiotropy/linkage. These 9 MTAs may also prove useful
for simultaneous improvement of correlated traits. Further, out of 9 SSRs involved in above
mentioned 9 MTAs, only one SSR (gwm44) was found to be associated with corresponding
traits (DTH and DTM) in SLST analysis. The remaining MTAs involving 8 SSRs could not be
detected using SLST and MLMM suggesting higher power of AM through MTMM. However,
we speculate that power of AMmay be further increased by using combined multi-locus multi-
trait analysis.

MTMM, however, also has certain limitations. For instance, unlike joint analysis of QTL Car-
tographer, which examines more than two traits simultaneously, MTMM allows analysis of only
pairs of correlated traits, so that pleiotropic QTL controlling more than two traits cannot be

Table 4. Significant marker-trait associations (MTAs) identified throughmulti-locus mixedmodel (MLMM) and qualified FDR criteria.

Trait Marker Chromosome Position (cM) p-value

AL wmc597 1B 33 2.9 × 10−4

wmc245 2B 64 4.3 × 10−5

gwm480 3A 116 1.8 × 10−4

gwm251 4B 25 3.3 × 10−6

wmc75 5B 114 2.5 × 10−6

wmc486 6B 3 2.2 × 10−5

GPC wmc219 4A 88 2.4 × 10−5

HI gwm294*,$ 2A 76 3.1 × 10−6

HW wmc419* 1B 32 3.6 × 10−6

wmc598* 2A 29 1.6 × 10−5

wmc827* 2A 41 5.9 × 10−6

wmc313 4A 83 2.7 × 10−5

gwm459 6A 0 1.0 × 10−8

PH gwm533.1*,$ 3B 6 1.9 × 10−5

SV gwm99$ 1A 126 2.2 × 10−4

wmc598$ 2A 29 2.9 × 10−4

wmc764$ 2B 1 8.8 × 10−8

wmc532$ 3A 6 3.6 × 10−7

wmc396*,$ 7B 68 2.1 × 10−11

wmc121$ 7D 86 2.5 × 10−4

TGW gwm107*,$ 3B 85 1.0 × 10−5

wmc48 4A 7 1.0 × 10−4

*,$ MTAs also identified through single locus-single trait (qualified FDR) and MTMM analysis, respectively.

doi:10.1371/journal.pone.0159343.t004
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Table 5. Significant marker-trait associations identified throughmulti-trait mixedmodel (MTMM) and qualified FDR criteria. MTMMwas performed
for pair of correlated traits (for significant and high correlation; p value�0.05, r2 value� 2.5).

Trait combination Marker Chromosome p-value

Full test Interaction Common

PH / PL gwm533.1* 3B 1.4 × 10−5 - -

PH / DTM gwm337 1D - 1.5 × 10−4 -

gwm294 2A 7.3 × 10−5 - -

wmc498 2B 6.3 × 10−7 1.7 × 10−7 -

gwm501 2B - 1.1 × 10−4 -

gwm533.1* 3B 1.1 × 10−4 - -

wmc653 3B 7.8 × 10−5 1.8 × 10−5 -

gwm108 (b) 3B - 8.7 × 10−5 -

wmc533.1 3B - 2.3 × 10−4 -

cfd152 3D 2.95 × 10−5 5.3 × 10−6 -

wmc219 4A - 2.2 × 10−4 -

gwm165 4A - 5.1 × 10−4 -

wmc52 4D - 2.7 × 10−4 -

wmc289 5B - 3.7 × 10−4 -

gwm276 7A 1.1 × 10−4 4.6 × 10−5 -

PH / TGW gwm413 1B - 6.2 × 10−5 -

gwm107* 3B 1.4 × 10−5 - 6.4 × 10−5

PH / SV gwm99 1A 2.4 × 10−4 - -

wmc598 2A 2.3 × 10−5 1.4 × 10−5 -

wmc522 2A 2.4 × 10−4 4.5 × 10−5 -

wmc764 2B 5.6 × 10−8 6.6 × 10−5 2.9 × 10−5

wmc532 3A 1.3 × 10−7 3.4 × 10−4 1.4 × 10−5

gwm533.1* 3B 1.5 × 10−4 - 2.7 × 10−5

wmc291 3B 3.8 × 10−4 1.3 × 10−4 -

barc164 3B - 4.3 × 10−4 -

gwm664 4B - 4.7 × 10−4 -

wmc233 5D - - 1.9 × 10−4

wmc256 6A 4.1 × 10−4 - -

wmc473 6B - 1.8 × 10−4 -

wmc396* 7B 1.3 × 10−11 2.7 × 10−8 1.2 × 10−5

wmc121 7D 4.0 × 10−4 - -

FLL / SL psp3094 7D 1.6 × 10−6 1.3 × 10−6 -

DTH / DTM wmc764 2B - - 5.4 × 10−5

gwm276 7A - - 7.9 × 10−5

gwm44 7D - - 1.9 × 10−4

DTM / SKS gwm99 1A - 5.3 × 10−5 -

gwm294 2A - 1.6 × 10−4 -

wmc477 2B - 3.6 × 10−4 -

wmc764 2B - 5.0 × 10−4 -

wmc269 3A - 2.0 × 10−4 -

wmc516 4A 1.6 × 10−5 2.8 × 10−6 -

gwm149 4B - 2.1 × 10−4 -

gwm66 4B - 3.6 × 10−4 -

wmc233 5D 8.2 × 10−5 1.6 × 10−5 -

wmc473 b 7D - 2.4 × 10−4 -

(Continued)
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Table 5. (Continued)

Trait combination Marker Chromosome p-value

Full test Interaction Common

SKS / GS wmc75 5B - 5.6 × 10−5 -

SKS / TGW gwm107 3B 2.7 × 10−5 - -

TGW / HI gwm294 2A 1.3 × 10−6 1.5 × 10−6 -

gwm107* 3B 7.9 × 10−5 - -

HI / SV gwm99 1A 1.5 × 10−4 8.7 × 10−5 -

wmc626 1B - 2.8 × 10−4 -

gwm294* 2A 2.1 × 10−5 3.7 × 10−5 -

wmc598 2A 3.2 × 10−4 - -

wmc764 2B 6.0 × 10−8 1.4 × 10−6 -

wmc245 2B 1.6 × 10−4 6.0 × 10−5 -

wmc532 3A 1.9 × 10−8 1.5 × 10−8 -

wmc396* 7B 2.4 × 10−12 2.9 × 10−10 -

wmc121 7D 3.5 × 10−4 1.8 × 10−4 -

*MTAs also identified through single locus analysis(qualified FDR).

doi:10.1371/journal.pone.0159343.t005

Table 6. Epistatic interactions usingmain effect markers (identified by SLST, MLMM andMTMM) for 13 traits along with their p-value.

Trait Marker Chromosme Position Marker Chromosome Position (cM) p value (<.001)

AL wmc183 1A 65 gwm337 1D 48 0.00093

wmc598 2A 29 gwm339 2A 51 0.00045

gwm480 3A 116 wmc396 7B 68 0.00015

gwm251 4B 25 cfd190(a) 6A 37 0.00054

wmc75 5B 114 gwm302 7B 86 0.00033

wmc396 7B 68 gwm302 7B 86 0.00052

DTH gwm99 1A 126 wmc764 2B 1 0.00149

wmc764 2B 1 gwm44 7D 78 0.00120

DTM gwm99 1A 126 wmc533 3B 62 0.00029

gwm135 1A 61 gwm251 4B 25 0.00049

wmc269 1B 33 gwm526 2B 120 0.00122

gwm337 1D 48 cfd2b 2D 59 0.00041

gwm294 2A 76 wmc473b 7D 95 0.00096

gwm533.1 3B 6 wmc516 4A 2 0.00090

gwm108(b) 3B 94 gwm149 4B 28 0.00125

gwm533.1 3B 6 gwm165 4A 2 0.00143

cfd152 3D 2 wmc52 4D 31 0.00104

gwm149 4B 28 gwm44 7D 78 0.00045

GPC wmc702 2A 55 wmc219 4A 88 0.00100

wmc219 4A 88 barc24 6B 55 0.00058

gdm63(b) 5D 82 barc24 6B 55 0.00149

HI gwm106 1D 36 gwm361 6B 38 0.00131

gwm294 2A 76 psp3094 7D 59 0.00052

gwm526 2B 120 cfd9 3D 36 0.00117

HW wmc419 1B 32 wmc474 2A 48 0.00024

(Continued)
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identified, although correlation studies do suggest that more than two traits may be correlated
with each other in all possible combinations (S1 Table). We recognize that MTMM can be
extended from pairs of traits to multi-trait analysis to elucidate functional relationship among
several-traits; such multi-trait association mapping studies have recently been conducted in beef
cattle [53] and human [54]; more such studies in plants are likely to be conducted in future.

None of the three approaches (SLST, MLMM, MTMM) discussed above deals with epistatic
interactions during routine analysis. Estimation of epistasis, however, is important to

Table 6. (Continued)

Trait Marker Chromosme Position Marker Chromosome Position (cM) p value (<.001)

wmc419 1B 32 cfd62 2D 80 0.00123

gwm636 2A 11 wmc313 4A 83 0.00020

gwm636 2A 11 wmc474 2A 48 0.00065

wmc598 2A 29 wmc474 2A 48 0.00093

wmc474 2A 48 wmc313 4A 83 0.00105

gwm636 2A 11 cfd62 2D 80 0.00150

cfd62 2D 80 wmc533 3B 62 0.00020

cfd62 2D 80 wmc687 3B 105 0.00047

cfd62 2D 80 wmc313 4A 83 0.00073

cfd62 2D 80 gwm459 6A 0 0.00114

PH gwm294 2A 76 wmc219 4A 88 0.00011

PL wmc489 3A 49 wmc473c 6B 42 0.00126

wmc705 5A 55 cfd13 6D 21 0.00043

SKS gwm99 1A 126 wmc764 2B 1 0.00149

wmc764 2B 1 wmc640 3A 44 0.00078

gwm664 4B 19 wmc75 5B 114 0.00131

SL cfa2170(b) 3B 95 wmc537 5B 84 0.00132

wmc537 5B 84 wmc364(a) 7B 61 0.00140

GS wmc24 1A 48 wmc626 1B 35 0.00071

wmc24 1A 48 gwm425(b) 2A 52 0.00137

SV wmc405 1D 115 wmc522 2A 45 0.00032

wmc405 1D 115 gwm361 6B 38 0.00107

wmc405 1D 115 wmc245 2B 64 0.00120

gwm106 1D 36 gwm361 6B 38 0.00131

gwm294 2A 76 psp3094 7D 59 0.00052

wmc598 2A 29 wmc498 2B 64 0.00066

wmc522 2A 45 barc170 4A 27 0.00080

wmc522 2A 45 psp3094 7D 59 0.00095

gwm294 2A 76 wmc473b 7D 95 0.00096

wmc532 3A 6 barc170 4A 27 0.00053

wmc532 3A 6 wmc473b 7D 95 0.00145

wmc473 4D 33 wmc396 7B 68 0.00073

wmc473c 6B 42 wmc121 7D 86 0.00124

TGW gwm413 1B 26 wmc475(a) 5A 84 0.00038

gwm11 1B 21 cfd2a 1B 33 0.00046

gwm413 1B 26 barc111 7D 115 0.00086

barc164 3B 70 wmc475(a) 5A 84 0.00093

wmc48 4A 7 wmc364(a) 7B 61 0.00109

doi:10.1371/journal.pone.0159343.t006
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Fig 10. Epistatic interactions usingmain effect markers (identified by SLST, MLMM and MTMM) for 13 traits.Cut off
p-value for significant interaction is� 0.001. Interactions for different traits are represented by different coloured lines.

doi:10.1371/journal.pone.0159343.g010

Table 7. SSRs involved in important MTAs identified through different approaches or their
combinations.

S.
No.

Trait SSRs involved in important MTAs

1. AL gwm251d, gwm480d, wmc245d, wmc486d, wmc597d, wmc75d

2. DTH gwm276e, gwm44e, wmc764e

3. DTM gwm276c, gwm294e, gwm44e, gwm66e, wmc764c

4. GPC wmc219d

5. GS gwm413b, wmc24b

6. HI gwm294a,g, wmc121e, wmc245e, wmc532e, gwm361a

7. HW gwm459a,d, wmc313d, wmc419d, wmc598a,d, wmc827a,d

8. PH gwm107c, gwm294e, gwm296b, gwm349b, gwm533.1a,g, wmc396c, wmc522e, wmc532c,
wmc598e, wmc764c

9. SL psp3094e, wmc702b

10. SV gwm111a, gwm533.1c, gwm99 f, wmc121g, wmc233c, wmc245e, wmc396a,g, wmc532g,
wmc598g, wmc764f, gwm361a

11. TGW barc164b, gwm107a,g, gwm11b, wmc48e, wmc516b, wmc593b

a SLST (qualified FDR),
b SLST only (did not qualified FDR but reported in earlier studies),
c MTMM only,
d SLST+MLMM,
e SLST+MTMM,
f MLMM+MTMM,
g SLST+MLMM+MTMM

doi:10.1371/journal.pone.0159343.t007
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understand genetic architecture [55–56] and a lack of such knowledge may result in under-uti-
lization of genomic information for crop improvement [57]. However, the epistatic interac-
tions have been sparingly examined during GWAS, despite their importance both for
understanding the genetic architecture of the agronomic traits and their exploitation in trait
improvement through MAS [10, 58–62]. The role of epistasis in wheat cannot be overempha-
sized as already demonstrated in case of flowering time [10, 62] and stem rust resistance

Table 8. A summary of the 17 superior genotypes andmarkers with desirable alleles associated with respective traits. Number given after bar (-)
represents desirable allele size (in bp). Two markers, separated by “/”, are involved in epistatic interaction; and among these pairs of interacting markers, the
first marker was identified by either one, two, or by all the three approaches (SLST, MLMM, MTMM). Eight genotypes considered more important are
highlighted with bold.

S.
No.

Genotype Trait Trait value Desirable marker allele/combinations of alleles

1 WH542 HI 102.4 gwm294-83a,f

PH 82cm gwm533.1–122a,f

2 SHARBATI
SONORA

DTH 84 gwm276-73e, gwm44-182e/wmc764-193, wmc764-193e/gwm99-124

DTM 126 gwm294-100e/wmc473-141, gwm44-182e/gwm149, gwm66e, gwm276-73c, wmc764-193c

3 K816 PH 72cm Wmc598-nulle

4 LAL BAHADUR PH 62cm gwm296-124b, gwm349-nullb, gwm107-170c, wmc764-193c, wmc532-195c, wmc396-145c, wmc522-224
e, gwm294-105e/ wmc219-126

5 DWR39 AL 11.59mm wmc597-191d, wmc245-154d, gwm480-334d/wmc396-145, gwm251-170d/cfda-218, wmc75-234d/
gwm302

6 UP2425 SL 13.58cm wmc702-229b

7 VL616 SL 14.55cm psp3094-136e

8 KALYAN SONA GS 78 gwm413-77b, wmc24-152 b

9 HW1085 GS 81 gwm425-133,wmc621-151 (interacting loci of wmc24)

10 KENPHAD TGW 48.2g gwm11-218b/ cfd2–171

11 NI179 TGW 48.5g gwm107-192a,f, wmc48-194e/wmc364-192, barc164-263b, wmc593-146b, wmc516-137b

12 HYB11 GPC 15.32% wmc219-152d/wmc702-234/barc24-110

13 WG357 HI 110.6 gwm361-134a, wmc245-145e, wmc532-195e, wmc121-333e

14 A90 HW 95.1g wmc598-nulla,d, wmc827-237a,d, gwm459-122a,d, wmc419-160d, wmc313-176d

15 NI345 SV 106.4ml wmc598-161f/ wmc498-164, wmc532-195f/barc170-174, wmc396-167a,f, gwm361-134a, gwm111-nulla,
gwm533.1–161c, wmc233-190c

16 NP120 SV 96.5ml wmc121-328f/wmc473-212

17 NP721 SV 89.9ml gwm99-103e, wmc764-193e, wmc245-154e/wmc405-115

a SLST (qualified FDR),
b SLST only (did not qualified FDR but reported in earlier studies),
c MTMM only,
d SLST+MLMM,
e SLST+MTMM,
f SLST+MLMM+MTMM

doi:10.1371/journal.pone.0159343.t008

Table 9. List of significant MTAs involving nine SSRmarkers which did not qualify FDR criteria but
reported in earlier studies.

Trait Markers References

TGW gwm11, barc164, wmc593, wmc516 [11, 44–46, 51, 74–75]

GS wmc24, gwm413 [48–50]

SL wmc702 [47]

PH gwm296, gwm349 [48]

doi:10.1371/journal.pone.0159343.t009
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[59–60]. In fact, substantially higher (93%) total genotypic variance for flowering time could be
explained when epistatic interactions were taken into account, while main effects alone
explained only 46% of genotypic variance [10]. During the present study, an examination of
epistatic interactions among the main effect loci detected following SLST, MLMM and MTMM
approaches allowed detection of 63 epistatic interactions for 13 traits (Table 6), suggesting that
the epistasis plays an important role in the genetic control of these traits. Thus, the pairs of loci
involved in epistatic interactions are equally important and may be exploited for crop improve-
ment after due validation. Also, the possibility of interactions among loci other than main
effect loci and the higher order of interactions involving more than two loci (e.g. QTL x QTL x
QTL) cannot be ignored, although such interactions could not be studied during the present
study. However, epistatic QTL without main effect using QTLNetwork for interval mapping
[63], and higher-order epistatic interactions using Bayesian High-order Interaction Toolkit
(BHIT) have been successfully used in the past [64].

Important MTAs and QTLs were also examined for their utility in MAS. Since genes/QTLs
need to be transferred/pyramided in different genetic backgrounds using MAS, one should
identify important gene/QTLs, which are context- independent and whose expression is not
affected by change in genetic background. We identified 56 important MTAs involving 38
SSRs (12 SSRs associated with more than one trait) for 11 agronomic traits excluding PL, SKS
and FLL; several of these MTAs were also reported in earlier studies (see, S4 Table), suggesting
their utility in MAS for wheat improvement. Notably, 26 loci of the above 38 important loci for
10 of the 11 traits (excluding PH) were also involved in epistatic interactions (S4 Table). Thus,
the pairs of loci involved in epistatic interactions are equally important and may be exploited
for crop improvement after due validation.

In summary, based on the present study, we conclude that the following classes of MTAs,
which are often ignored, may be equally useful for MAS: (i) MTAs, which do not qualify FDR
correction in SLST analysis but are reported in earlier studies; (ii) MTAs that are context-inde-
pendent, so that an introgression of desirable traits into unrelated genetic backgrounds may be
successfully achieved; (iii) MTAs involving pleiotropic QTL/genes that can improve more than
one desirable traits simultaneously, and (iv) MTAs involved in epistatic interactions, so that
additional desirable genetic variation due to epistatic interactions may be exploited. In view of
this, following eight genotypes which carried superior alleles for one or more traits were identi-
fied for future wheat breeding programmes: WH542 (HI and PH), Sharbati Sonora (DTH and
DTM), NI345 (SV), NI179 (TGW), A90 (HW), HW1085 (GS), HYB 11 (GPC), and DWR39
(Pragati)(AL). These wheat genotypes were released in India for commercial cultivation during
a period of 79 years spread from 1919 to 1998 and thus constitute breeding material not in cur-
rent use. Therefore, we propose that the genetic variability available in these eight genotypes
may be exploited by involving these genotypes in crosses to derive one or more multi-parental
populations (MPP), each segregating for majority of QTLs. Such MPP may be subjected to
molecular marker-assisted recurrent selection (MARS). This should allow selection of geno-
types with superior alleles for main effect as well as epistatic QTL. Alternatively, desirable
alleles available in the above eight genotypes may be introgressed and rapidly pyramided into
the currently grown wheat cultivars to develop superior wheat genotype following pseudo-
backcrossing as done in rice recently [65]. These improved genotype(s) may result into culti-
vars with improved agronomic performance and grain quality or may constitute important
genetic resource for future wheat breeding programmes.

Another issue that needs attention is the problem of rare alleles and the corresponding rare
variants, which need to be eliminated from the analysis involving GWAS due to statistical rea-
sons. These rare variants may sometimes represent the most important variants, since desirable
variants are expected to occur at a very low frequency. This is borne out by several studies
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including the recent study, where a rare allele of grain size gene GS2 was identified to increase
grain size and yield in rice [66]. During the present study also, we came across 316 rare alleles
belonging to 165 SSRs. An examination of the rare variants for individual traits carrying these
rare alleles suggests that at least some of these rare variants might carry desirable rare alleles for
important QTL. Such possible candidates could be identified for 10 of the 14 traits. The desir-
able rare alleles and the corresponding rare variants for these 10 traits are listed in S3 Table.
The significance of these rare variants can be exemplified by using the trait 1000-grain weight
(TGW), for which some of the rare alleles (e.g., wmc652-148, cfa-2262-182, wmc405-121)
appear to be important, since the rare variants carrying these rare alleles had a TGW ranging
from 38.29 to 48.5 g (for details, see S3 Table). Therefore, it is possible that due to exclusion of
these rare alleles, some important MTAs might have escaped detection during analysis.

Despite the above, we feel that the importance of rare alleles and rare variants has perhaps
been overemphasized in recent literature. Although rare alleles for all markers taken together
may explain sizable proportion of genetic variation, but majority of rare alleles may not belong
to a QTL for the trait of interest. Also, in order to study the rare marker alleles, an appropriate
experimental set up is necessary, which either increases relative frequency of rare alleles or
modify the statistical model that can deal with rare alleles. Some of the solutions, which may be
used in future research, include the following: (i) use of biparental mapping population
(derived from genotypes with rare alleles); (ii) combined linkage-association mapping; (iii) use
of large population; (iv) conducting separate analysis for common variants (CWAS) and rare
variants (RVAS) [67], (v) advanced statistical tests like burden test, variance component test,
combined omnibus test [68] (for details, see Gupta et al. [69]).

Conclusions
In majority of crops including wheat, the quantitative traits with continuous variation are often
complex in nature and are controlled each by a large number of main effect and interacting
loci. In the present study, we identified a number of MTAs involving each of the 14 different
traits using SLST, MLMM and MTMM. Some of the associations simply confirmed the QTLs
reported earlier. The role of epistatic interactions in the genetic control of all the traits was also
deciphered. Desirable alleles and allele combinations (at the interacting loci) along with eight
superior wheat genotypes were identified. The problem of rare alleles and rare variants has also
been discussed utilizing the data on rare variants from the present study. We also conclude
from the present study that perhaps a combination of linkage analysis and association mapping
could be the best approach for detecting maximum number of MTAS that are more robust and
can be profitably utilized in molecular breeding.

Supporting Information
S1 Table. Correlation coefficient values for all possible pairs involving 14 traits. � and��

indicate significance at 0.05 and 0.01 levels, respectively. Trait-pair showing correlation coeffi-
cient value� 0.25 were used in multi-trait analysis and are highlighted in bold.
(DOCX)

S2 Table. Mean squared differences (MSD) between observed and expected p-values for 14
traits using different models of association mapping.
(DOCX)

S3 Table. List of putative important rare alleles for 10 traits, along with range and mean
trait value in rare variant and number of genotypes with respective rare allele.
(DOCX)
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