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Abstract

Background

Cancer and stroke, which are known to be associated with one another, are the most com-
mon causes of death in the elderly. However, the pathomechanisms that lead to stroke in
cancer patients are not well known. Circulating extracellular vesicles (EVs) play a role in
cancer-associated thrombosis and tumor progression. Therefore, we hypothesized that
cancer cell-derived EVs cause cancer-related coagulopathy resulting in ischemic stroke.

Methods

Serum levels of D-dimer and EVs expressing markers for cancer cells (epithelial cell adhe-
sion molecule [CD326)), tissue factor (TF [CD142]), endothelial cells (CD31+CD42b-), and
platelets (CD62P) were measured using flow cytometry in (a) 155 patients with ischemic
stroke and active cancer (116 — cancer-related, 39 — conventional stroke mechanisms), (b)
25 patients with ischemic stroke without cancer, (c) 32 cancer patients without stroke, and
(d) 101 healthy subjects.

Results

The levels of cancer cell-derived EVs correlated with the levels of D-dimer and TF+ EVs.
The levels of cancer cell-derived EVs (CD326+ and CD326+CD142+) were higher in can-
cer-related stroke than in other groups (P<0.05 in all the cases). Path analysis showed that
cancer cell-derived EVs are related to stroke via coagulopathy as measured by D-dimer lev-
els. Poor correlation was observed between TF+ EV and D-dimer, and path analysis

PLOS ONE | DOI:10.1371/journal.pone.0159170 July 18,2016

1/15


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0159170&domain=pdf
http://creativecommons.org/licenses/by/4.0/

@’PLOS ‘ ONE

Cancer Cell-Derived Extracellular Vesicles and Stroke

demonstrated that cancer cell-derived EVs may cause cancer-related coagulopathy inde-
pendent of the levels of TF+ EVs.

Conclusions

Our findings suggest that cancer cell-derived EVs mediate coagulopathy resulting in ische-
mic stroke via TF-independent mechanisms.

Introduction

Cancer and ischemic stroke are two of the most common causes of death in the elderly and
have been reported to be associated with one another.[1] [2] [3] The number of people living
with cancer is increasing worldwide due to an increase in life expectancy globally and also due
to the advances in cancer therapy. Nation-wide follow up studies showed that the risk of stroke
is about 1.5-fold higher in the first few months after diagnosis of cancer.[4] [5] [6] [7] How-
ever, the pathomechanisms of stroke in cancer patients are not well known.

Extracellular vesicles (EV's) are small, spherical membrane fragments shed from the cell sur-
face or secreted from the endosomal compartment and are reported to be involved in the path-
ogenesis of various diseases. Circulating EV's are reported to play a role in cancer progression,
such as carcinogenesis/metastasis and neovascularization/tumor growth, and cancer-associated
thrombosis, such as venous thromboembolism (VTE).[8] [9] [10] [11] Tissue factor (TF) is not
only the primary cellular initiator of blood coagulation but also a modulator of angiogenesis
and metastasis in cancer. Elevated tumor TF expression and increased circulating TF+ EV's
were reported in patients with cancer and VTE, but there have been conflicting results con-
cerning whether TF+ EVs is associated with VTE in patients with cancer.[10] [12] [13] [14]

We hypothesized that EVs from cancer cells cause coagulopathy resulting in cancer-related
stroke. Thus, we tested the levels of circulating EV's expressing cancer cell surface markers and
the levels of TF-bearing EVs. In addition, D-dimer levels were measured as a means to assess
the presence of cancer-related coagulopathy in patients with cancer and ischemic stroke. We
then performed path analysis to evaluate whether TF-bearing EVs mediate the association
between cancer cell-derived EV's and cancer-related coagulopathy.

Methods

This is a part of a trial of Optimal Anticoagulation Strategy In Stroke related to Cancer
(OASIS-Cancer, ClinicalTrials.gov Identifier NCT02743052) study. The OASIS-Cancer study
is an observational study to investigate the biological markers for intravascular coagulopathy
causing stroke and for monitoring the effects of anticoagulation therapy, in patients with active
cancer and ischemic cerebrovascular disease.

From July 2009 to October 2014, we prospectively studied consecutive patients with active
cancers and acute ischemic stroke or transient ischemic attack. Patients were registered at the
Samsung Medical Center, South Korea, and the criteria for patient selection were: (1) focal
symptoms and relevant lesions as seen with diffusion-weighted imaging (DWI), (2) undergone
diagnostic workups, including vascular and cardiologic studies, and (3) active cancer, excluding
primary intracranial tumor. Cases with active cancer were defined as those who had: (1) been
diagnosed with cancer within 6 months prior to enrollment, (2) received treatment for cancer
within the previous 6 months, or (3) had recurrent or metastatic cancer.[15] The following
patients were excluded from the study: (1) had not undergone magnetic resonance imaging or
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without relevant lesions observed on DWI, (2) serum D-dimer was not measured within 24
hours of the onset of stroke, (3) had undergone complete remission of cancer or only had a
remote history of cancer, (4) with incomplete workups for stroke etiology (either vascular or
cardiologic studies), and (5) had a history of recent surgery, myocardial infarction, deep vein
thrombosis, or any signs of infectious or immunological diseases that may influence plasma D-
dimer levels. The local institutional review boards approved of this study. This study has been
approved by the Samsung Medical Center Institutional Review Board, and has been conducted
according to the principles expressed in the Declaration of Helsinki. All participants or their
guardians provided written informed consent for participation in this study.

Workups and Patient Groups

Data on patient age, gender, and the presence of stroke risk factors including hypertension, dia-
betes mellitus, hyperlipidemia, atrial fibrillation, ischemic heart disease, and tobacco consump-
tion were collected. Data related to stroke or cancer including clinical signs and symptoms,
type of cancer and cancer pathology, the presence of systemic metastasis, and the time from
cancer diagnosis to stroke onset were recorded. Routine laboratory data were collected for all
patients (routine blood tests and coagulation studies, including prothrombin time, activated
partial thromboplastin time, fibrinogen, and D-dimer). Hemostatic markers of prothrombotic
tendency, including antiphospholipid antibodies (anticardiolipid antibody, lupus anticoagu-
lants, and B2-glycoprotein-1 antibody) were measured in stroke patients younger than 50 years
to exclude hypercoagulable state caused by other than cancer, but none of them showed posi-
tive results. In addition, all patients underwent electrocardiography, echocardiography, cardiac
telemetry for at least 24 hours, and brain magnetic resonance imaging. Stroke mechanisms
were assigned independently by two neurologists using criteria from the Stop Stroke Study
Trial of Org 10172 in Acute Stroke Treatment (SSS-TOAST) and finalized by consensus.

Patients were classified into 2 groups according to the presence of conventional stroke
mechanisms (CSMs), such as atherosclerosis, cardioembolism, and small-artery occlusion: (1)
the CSM group (cancer-unrelated stroke group) and (2) the embolic stroke of undetermined
source, except active cancer, group (cancer-related stroke group).[2] [16] In cancer patients
without CSMs, a cancer-specific mechanism can be considered as the main cause of stroke.
Our recent multicenter prospective study of 161 patients with active cancer who experienced
acute ischemic stroke showed that stroke outside CSMs occurred in a large proportion (~40%)
of cancer patients.[2] Coagulopathy with microembolism was more commonly observed in
patients without CSMs than in those with CSMs (57.9% vs. 33.3%).[3] Cancer-specific mecha-
nisms were unlikely to play a role in the development of stroke among patients exhibiting
CSM, given that the distribution of stroke subtype among cancer patients with CSM was simi-
lar to that in stroke patients without cancer.|[2]

Most cancer-related stroke patients received anticoagulants (93 of 116 patients, 80.2%),
including intravenous heparin (n = 36), subcutaneous low molecular heparin (n = 47), or oral
anticoagulants: either warfarin (n = 6) or non-vitamin K oral antagonists (n = 4). Patients were
recommended to receive available cancer treatment (e.g., chemotherapy or radiotherapy). The
D-dimer and EV levels were then measured serially, before (2.8 + 3.9 days after symptom
onset) and after treatment of anticoagulation (3.9 + 2.8 days).

Patients with locally advanced or metastatic lung cancer (mostly adenocarcinoma) without
a history of stroke were recruited as controls for the cancer group, because cancer-related coa-
gulopathy is particularly associated with this type of cancer. In addition, patients admitted for
ischemic stroke (without a history of cancer) at the Stroke Center at Samsung Medical Center
between September 2014 and October 2014 were recruited as controls for the stroke group.
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Healthy subjects without a history of stroke or cancer served as a negative control group. This
study has been approved by the Samsung Medical Center Institutional Review Board, and has
been conducted according to the principles expressed in the Declaration of Helsinki.

Measurement of Circulating EVs and Flow Cytometry

The expression of epithelial cell adhesion molecule (EpCAM, also known as CD326) and TF
(also known as CD142) on the surface of circulating EVs was evaluated by flow cytometry.
EpCAM a cell surface marker is highly expressed in a variety of carcinomas and is a prognostic
marker in various carcinomas.[17] [18] [19] In addition, EpCAM is also a target of antibody-
based therapies. The levels of endothelial and platelet surface markers (CD31+CD42b- and
62P) on EVs were also evaluated. This method allowed fractionation of specific populations of
EVs based on the expression of cancer cell markers and TF, adjusted for total numbers of endo-
thelial or platelet EVs (CD31+, a cell adhesion molecule on platelet or endothelial cells), such
as: CD326+/CD31+, CD326+CD142+/CD31+, or CD142+/CD31+.

Citrated whole blood was collected and centrifuged at 1800 g for 15 min to obtain platelet-
poor plasma. Plasma (250 puL) was thawed and centrifuged for 10 min at 19800 x g at 10°C to
collect the EVs.[20] The EV pellet was resuspended in 20 pL of phosphate buffered saline
(PBS). EVs (5 pL) were then incubated with fluorescent monoclonal antibodies (5 uL each):
phycoerythrin (PE)-labeled anti-CD31 (555446; BD Biosciences, San Jose, CA), allophycocya-
nin (APC)-labeled anti-CD42b (551061; BD Biosciences), APC-labeled anti-annexin V (AV;
550475; BD Biosciences), PE-labeled anti-CD62P (P-selectin; 55524; BD Biosciences), fluores-
cein isothiocyanate (FITC)-labeled anti-CD142 (4508CJ; American Diagnostica, Stamford,
CT), and PE-labeled anti-CD326 (130-091-253, Miltenyi Biotec, Seoul, South Korea), PE—
labeled anti-CD133(130-080-081, Miltenyi Biotec, headquarters, Bergisch Gladbach,
Germany).

The samples were incubated in the dark for 15 min at room temperature. Following the
incubation 400 uL 1x binding buffer was added to the samples and a FACS Calibur flow
cytometer using the CellQuest software (BD Biosciences) was used to collect and analyze the
data. EVs were analyzed using a protocol with both forward scatter (FSC) and side scatter
(SSC) in logarithmic mode and 10000 events were acquired for each sample. EV levels were
normalized for an isotype control antibody and dot plots were normalized by control antibody.
Based on the number of events (N) in the upper right (CD326-positive and CD142-positive)
quadrant of the flow cytometric analysis (FL-2 vs. FL-4, corrected for isotype control antibody
binding and autofluorescence) the number of EVs per liter of plasma was calculated as: n/

L =N x (30/5) x (450/V) x (10%/250), where 5 (pL) is the volume of EV suspension, 30 is the
total volume of washed EV suspension, 450 is the total volume in the tube before analysis, V is
the sample volume analyzed, 10° is the number of microliters per liter, and 250 pL is the origi-
nal volume of plasma.[20] Standard beads 1.0 um in diameter (Sigma; Molecular Probes,
Eugene, OR, USA) were used for estimation of the EV size and EVs smaller than 1 um were
quantified. Laboratory personnel who conducted the blood assays were blinded to the subject’s
clinical or laboratory data.

In order to confirm the size distribution of EVs, fluorescence conjugated size beads (Nano
fluorescent size standard, Spherotech, Lake Forest, IL) were used. Flow cytometry data showed
that most EVs were distributed with a size between 200 nm and 1,000 nm on our SSC voltage
setting (Fig 1A). In addition, we mixed 0.1% triton-X100 with EV's to distinguish between EV's
and immunocoplexes (ICs) or protein aggregates. The vesicular structures are more sensitive
to detergent compared to ICs and protein aggregates.[21] Most EVs were degradated after
treatment with 0.1% triton-X100, precluding the possibility of contamination of ICs or protein
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Fig 1. Flow cytometry and Western blot test results. (A) Flow cytometry results using size beads showed
that most circulating cancer-derived extracellular vesicles (EVs) were distributed with a size between 200nm-
1,000 nm. (B) Most EVs were degradated after treatment with 0.1% triton-X100. (C) Western blot test showed
that EVs expressed flotillin-1.

doi:10.1371/journal.pone.0159170.g001

aggregates. EV's expressed flotillin-1, a lipid raft associated molecules, which was used as EV
marker (Fig 1B and 1C).[22]

The coagulation status was assessed based on the serum D-dimer levels. Levels of D-dimer
and EVs were measured serially in patients with ischemic stroke and active cancer, before and
after anticoagulation treatment.

Statistical Analyses

Differences in discrete variables among the groups were evaluated using the chi-square test,
Fisher’s exact test, or the Mann-Whitney test. Differences in continuous variables were ana-
lyzed using the one-way analysis of variance, the Kruskal-Wallis test, or the t-tests. The levels
of cancer cell-derived EVs, D-dimer, and TF-bearing EVs were compared among the groups.
Spearman’s correlation analysis was used to test the relationship between the levels of circulat-
ing EV's expressing cancer surface markers and TF-bearing EVs and D-dimer levels. Path anal-
ysis was performed to evaluate whether alteration of TF-bearing EVs mediates the effects of
cancer cell-derived EV's on the development of coagulopathy and resulting cancer-related
stroke. Path analysis is a method for studying direct and indirect effects. The aim of path analy-
sis is an explanation, not a prediction. It is a causal modeling approach to exploring the correla-
tions within a defined network, and is used to describe the directed dependencies among a set
of variables. In this study, exogenous variables (cancer cell-derived EVs) were modeled as hav-
ing both direct and indirect effects through an endogenous variable 1 (TF-bearing EVs) on
dependent variables (D-dimer, an endogenous variable 2). In all analyses P<0.05 was consid-
ered statistically significant. Commercially available software (STATA, version 13.1; Stata
Corp, College Station, TX, USA) was used for statistical analyses.

Results

A total of 313 patients were enrolled in this study: 155 patients with ischemic stroke and active
cancer (117 — cancer-related, 38 — CSMs), 25 patients with ischemic stroke but no cancer
(stroke control group), 32 active cancer patients without ischemic stroke (cancer control
group), and 101 healthy subjects (healthy control group) (Table 1). The mean patient age was
67.2 (standard deviation, 11.4; full range, 26-94 years) out of which 158 were men and 155
were women. The cancer control group had similar characteristics in terms of demographics,
vascular risk factors, antithrombotic use, and chemotherapy compared to the patients with
ischemic stroke and active cancer (P>0.05 in all cases). The risk factors for stroke, such as
hypertension and hyperlipidemia, were more prevalent in the cancer-unrelated stroke group
than in the cancer-related stroke group (P<0.05 in all cases) (Table 1).

The Levels of D-Dimer and Cancer-Cell-Derived EVs in Various Groups

The D-dimer level was higher in patients of the cancer-related stroke group than in those of
other groups (P<0.001). The levels of cancer cell-derived EVs (CD326+/CD31+ and CD133
+/CD31+) and TF+ cancer cell-derived EVs (CD326+142+/CD31+ and CD133+CD142
+/CD31+) were higher in patients with cancer-related stroke than in patients with cancer-
unrelated stroke (P<0.05 in all cases) (Fig 2).
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Table 1. Patient groups

Characteristics Stroke and active cancer Control group
Cancer-related Conventional stroke mechanisms Stroke alone Cancer alone Healthy subjects
No, of patients (samples) 116 (233%) 39 (62) 25 (44) 32 (52) 101 (101)
Age, year (SD) 65.2 (9.9) 66.3 (9.5) 71.5(11.0) 57.9 (10.5) 57.2(12.2)
Male gender, No. (%) 59 (50.9) 30 (76.9) 12 (48.0) 17 (53.1) 46 (45.5)
Risk factors, No. (%)
Hypertension 44 (37.9) 21 (53.8) 18 (72.0) 8 (25.0) 30 (29.7)
Diabetes mellitus 19 (16.4) 12(30.8) 10 (40.0) 4 (12.5) 10 (9.9)
Hyperlipidemia 5 (4.3) 12(30.8) 12 (48.0) 1(3.1) 21 (20.8)
Atrial fibrillation - 10 (25.6) 12 (48.0) 1(3.1) 2(2.0)
Cancer profiles, primary, No. (%)
Lung 56 (48.3%) 12 (30.8%) N/A 32 (100%) N/A
Gastrointestinal 15 (12.9%) 8 (20.5%) N/A N/A
Hepatobiliary 24 (20.7%) 10 (25.6%) N/A N/A
Breast-gynecologic 12 (10.3%) 3(7.7%) N/A N/A
Others 9 (7.8%) 6 (15.4%) N/A N/A
Total 313 (492)

* Two follow up samples were obtained after patients determined to be cancer free were excluded from this study

N/A: not applicable

doi:10.1371/journal.pone.0159170.t001

Cancer cell-derived EV levels correlated with levels of D-dimer (rho = 0.195, P<0.001) and
with TF+ EVs (both cancer cell-derived [rho = 0.999, P<0.001] and platelet-derived EV's
[rho = 0.427, P<0.001]).

D-dimer levels as well as levels of cancer cell-derived EVs and TF+ cancer cell-derived EVs
showed a significantly decrease upon treatment with anticoagulation therapy (P<0.05 in all the
cases) (Fig 2).

Results from Path Analysis of Data

Since cancer cell-derived EVs and TF+ EVs were elevated in patients with cancer-related stroke
therefore, path analysis was performed to evaluate the effect of cancer cell-derived EVs and
TF+ EVs on coagulopathy and cancer-related stroke. Path analysis revealed that cancer cell-
derived EVs are related to cancer-related coagulopathy (as measured by D-dimer levels) and
cancer-related stroke (Fig 3A).

To test whether TF+ EV's mediate cancer-related coagulopathy, data from TF+ EV's derived
from various tissues (cancer cells, platelets, and endothelial cells) were analyzed. Path analysis
showed that cancer cell-derived EVs are related to coagulopathy via TF-independent mecha-
nisms. While circulating cancer cell-derived EV's are associated with elevated levels of endothe-
lial as well as platelet derived TF+ EVs however, these TF+ EVs are not related to
coagulopathy: as measured by D-dimer levels (Fig 3B).

Discussion

The main findings of this study are (a) cancer cell-derived circulating EVs are associated with
coagulopathy resulting in stroke, and (b) this effect is mediated via TF-independent
mechanisms.
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Fig 2. D-dimerlevels (A) and cancer-cell derived EV levels (B—E) among the groups.

doi:10.1371/journal.pone.0159170.9002
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Fig 3. Results of Path analyses. (A) Path analysis using cancer-related stroke as the outcome, cancer cell-derived EVs as a predictor, and
cancer-related coagulopathy as measured by D-dimer levels as a mediator. (B) Path analysis for cancer cell-derived EVs and cancer-related
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coagulopathy with tissue factor-bearing EVs (cancer cell-derived EVs, platelet-derived EVs, and endothelial-derived EVs) as mediators. N/A, no
association. Numbers are 3-coefficients that were statistically significant.

doi:10.1371/journal.pone.0159170.g003

Cancer-Related Stroke

The characteristics of cancer-related stroke are distinct from those of conventional stroke. We
have shown that embolism caused by intravascular coagulopathy is the main mechanism
underlying cancer-related stroke.[3] Using modern diagnostic evaluations to improve our
understanding of the characteristics of stroke in cancer patients is essential for the correct man-
agement of these patients.[23] [24] In addition, work up for hidden malignancy in patients
with embolic stroke of undetermined source and suspected coagulopathy sometimes reveals
hidden malignancies.[25] [16]

Our multicenter study of stroke patients with active cancer showed that D-dimer levels and
DWI imaging of lesion patterns may be helpful in the early identification of cancer-related
stroke cases as well as in establishing potential preventive strategies for stroke.[2] Assessment
of D-dimer level is a direct measure of activated coagulation. Identification of predictors or
mediators of coagulopathy may improve our understanding of the pathomechanisms of can-
cer-related stroke and may also help in monitoring the effect of treatment in those patients.
While there have been efforts to find risk factors and candidate biomarkers for VTE in cancer
patients[26] however, relatively little information is available on risk factors and biomarkers in
the field of cancer-related stroke.

Previous Studies on the Role of TF-Bearing EVs in Cancer-Related
Coagulopathy

Preclinical studies showed the prothrombotic role of TF+ EVs in various tumor models.[27]
[28] [29] [30] Hron et al. and others reported that TF+ EVs are known to be associated with
VTEs in patients with cancer.[13] [10] On the contrary, Thaler and colleagues measured the
EV-associated TF activity and showed that EV-TF activity was not associated with future VTE
but associated with mortality in patients with systemic cancer, suggesting that TF+ EV are sim-
ply epiphenomenon of disease progression.[14]

The source of TF-bearing EVs could be cancer cells, platelets, endothelium, and other tis-
sues. One study comparing TF+ EVs in 20 patients with colorectal cancer and 20 control sub-
jects showed that TF+ EVs levels were two-fold higher in cancer patients mainly due to a
higher amount of platelet derived TF+ EVs. This increase correlated with D-dimer levels.[13]
Recent publications suggest the importance of ‘the platelet-cancer loop’: a reciprocating loop in
which tumor-induced platelet activation results in platelet-induced tumor growth and dissemi-
nation, which in turn acts as a thrombosis trigger/tumor amplifier.[31] Geddings and col-
leagues showed that both high and low levels of TF+ cancer cell-derived EVs activated platelets
and induced thrombosis, and that cancer cell-derived EV-induced platelet activation was
required for enhanced thrombosis.[32] Several strategies evaluated to inhibit the platelet-can-
cer loop include: antiplatelet agents for cancer prevention, use of inhibitors of P-selectin, and
therapeutic removal of platelets from plasma.[33] [31] However, concerns about the efficiency
and safety of these strategies are limiting factors in recommending these as therapeutic options
for cancer patients.[31]

On the contrary, our present study demonstrates that cancer cell as well as platelet derived
TF+ EVs are not associated with cancer-related coagulopathy. TF+ platelet-derived EV levels
were elevated in all stroke patients regardless of the mechanisms leading to stroke (including
stroke controls) suggesting that this elevation is secondary to the infarction and a not primary
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pathology in cancer-related coagulopathy. Notably, most of the previous studies compared
TF+ EV levels in cancer patients with or without VTEs and these studies did not evaluate
patients with VTEs due to cancer-unrelated conditions.

Possible Mechanisms of EV-Mediated Coagulopathy via
TF-Independent Pathway

The results of the present study suggest that both coagulopathy and ischemic stroke in cancer
patients were correlated with cancer cell-derived EVs but not with TF+ EVs. There may be
additional prothrombotic mechanisms underlying coagulopathy beside TF-dependent
pathway.

Various substances secreted by cancer cells such as cysteine proteases and sialic acid moie-
ties of mucin possess procoagulant properties and activate factor X and factor VII.[34] [35] It
is also proposed that cancer cells can directly stimulate factor X.[36] Cancer procoagulant is
mainly found in malignant tissue and is a 68 kDa cysteine protease that activates factor X
directly: independent of factor VIL[37]

In addition, TF-independent mechanisms of thrombosis have recently been introduced.
Leukocytosis could be responsible for the thrombotic state, and cancer induces a systemic envi-
ronment that primes neutrophils to release neutrophil-extracellular traps (NETs). NET's were
originally described as a defense mechanism against infection.[38] Recently, NET's have been
associated with cancer-related thrombosis[39] and recently suggested to play a role in cancer-
associated arterial microthrombosis, such as ischemic stroke.[40] Recently, TF-independent
polyphosphate-dependent/factor XII-triggered coagulation mechanisms were reported to be
associated with thrombosis in a prostate cancer model.[41]

Lastly, differential expression of circulating miRNAs has been reported in various types of
cancers.[42] EVs and miRNAs have the ability to transfer biological information to recipient
cells and play an important role in cancer metastasis and prognosis.[42] [43] Therefore, EVs
and their cargo proteins and miRNAs could be a tool for cell-cell communication between can-
cer cells and platelets. Our group is therefore studying the role of EVs in coagulation activation
in vitro and miRNA profiles of circulating EVs in patients with cancer-related stroke.

Limitations and Conclusions

This study has several limitations. Firstly, cancer-mediated hypercoagulability is a complex
process involving dysfunction of multiple factors besides EV formation, including platelet
function, fibrinolysis, the coagulation cascade, and endothelial integrity. In this study, only
platelet- and endothelial-derived EVs, and D-dimer were measured. In addition, using D-
dimer levels alone to attribute a stroke mechanism to hypercoagulability may not be a defini-
tive method.[44] [45] D-dimer levels are nonspecific and may change with treatment or com-
plications such as infection. Other mechanisms of stroke such as tumor emboli or
chemotherapy-related coagulopathy could also be the underlying mechanisms of stroke in
patients with cancer-related stroke. However, we excluded patients with conditions which may
influence plasma D-dimer levels. Secondly, although the results of the present study suggest
that anticoagulant use may be helpful in regulating D-dimer levels as well as cancer cell-derived
EVs, longitudinal long-term follow-up data is needed to prove or disprove our results. Thirdly,
we have used EpCAM as a cancer cell marker in the present study however EpCAM, is a non-
specific marker of cancer cells. Although EpCAM has traditionally been of significant interest
for the diagnosis and therapy of various epithelial cancers, multiple other functions of this gly-
coprotein have recently been reported.[46] The level of EpCAM is high in proliferating cells.
Epithelial proliferation leading to regeneration and repair is critical for tissue healing following
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various forms of tissue diseases including liver damage and renal reperfusion injury.[47] [48]
EpCAM is also up regulated during inflammatory responses.[17] In the present study, the level
of EVs expressing CD326 was increased in patients in the stroke control group as well as in
patients with cancer-related stroke. Therefore, it is possible that this increase of the pan epithe-
lial marker EpCAM in the stroke control group may be related to stroke per se. No studies
have been performed to evaluate this phenomenon in stroke patients, and calls for future stud-
ies. However, our analysis of EVs expressing other cancer markers, such as CD133 (a cancer
stem cell marker), also showed a significant correlation with D-dimer levels (rho = 0.150,

P =0.024 for CD133+/31+). Fourthly, the data evaluated here were from a unique population:
Korean patients with cancer. Therefore, further investigations of different populations are war-
ranted. Lastly, although path analysis is useful tool for analyzing multiple causalities, there are
still several problems. Collinearity can occur when independent variables are highly correlated,
and influence on the estimation of path coefficients to be less accurate. In addition, sample size
needs to be large to ensure stable parameter estimates. Further studies with a larger cohort is
needed. Nevertheless, our findings have implications for understanding how coagulopathy
underlie the relationship between cancer cell-derived EVs and stroke.

Conclusions

In conclusion, our data suggest that cancer cell-derived EVs mediate coagulopathy resulting in
ischemic stroke via TF-independent pathways. Further studies are needed to elucidate the pre-
cise mechanisms by which cancer cell-derived EV's cause coagulopathy. In addition, the role
that procoagulants and miRNAs from cancer cell-derived EVs play in the pathogenesis of TF-
independent coagulopathy, needs to be evaluated.
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