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Abstract
Mesenchymal-epithelial interactions play an important role in renal tubular morphogenesis

and in maintaining the structure of the kidney. The aim of this study was to investigate

whether extracellular vesicles (EVs) produced by human renal proximal tubular epithelial

cells (RPTECs) may induce mesenchymal-epithelial transition of bone marrow-derived

mesenchymal stromal cells (MSCs). To test this hypothesis, we characterized the pheno-

type and the RNA content of EVs and we evaluated the in vitro uptake and activity of EVs

on MSCs. MicroRNA (miRNA) analysis suggested the possible implication of the miR-200

family carried by EVs in the epithelial commitment of MSCs. Bone marrow-derived MSCs

were incubated with EVs, or RPTEC-derived total conditioned medium, or conditioned

medium depleted of EVs. As a positive control, MSCs were co-cultured in a transwell sys-

tem with RPTECs. Epithelial commitment of MSCs was assessed by real time PCR and by

immunofluorescence analysis of cellular expression of specific mesenchymal and epithelial

markers. After one week of incubation with EVs and total conditioned medium, we observed

mesenchymal-epithelial transition in MSCs. Stimulation with conditioned medium depleted

of EVs did not induce any change in mesenchymal and epithelial gene expression. Since

EVs were found to contain the miR-200 family, we transfected MSCs using synthetic miR-

200 mimics. After one week of transfection, mesenchymal-epithelial transition was induced

in MSCs. In conclusion, miR-200 carrying EVs released from RPTECs induce the epithelial

commitment of MSCs that may contribute to their regenerative potential. Based on experi-

ments of MSC transfection with miR-200 mimics, we suggested that the miR-200 family

may be involved in mesenchymal-epithelial transition of MSCs.

Introduction
Mutual interactions between epithelial cells and mesenchymal cells coordinate kidney develop-
ment, play a pivotal role in maintaining organ integrity in the adult, and contribute to renal
regeneration after injury. Bone marrow-derived mesenchymal stromal cells (MSCs) have
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multipotent characteristics, since they can differentiate into adipocytes, osteocytes and chondro-
cytes. Moreover, the epithelial commitment of bone marrow-derived MSCs induced by renal
tubular epithelial cells has been demonstrated in co-culture conditions [1]. Recently, conditioned
medium derived from renal tubular epithelial cells has also proved to induce an epithelial com-
mitment of adipose-derived adult MSCs [2] and of bone marrow-derived MSCs [3,4].

The epithelial reprogramming of MSCs consists in the acquisition of morphological, anti-
genic and functional properties of polarized epithelial cells. Mesenchymal-epithelial transition
(MET) has been defined as an activation of epithelial genes, including those encoding for cyto-
keratins, desmosomes, adherens and tight junctions, and an inactivation of mesenchymal
genes, such as vimentin and collagen [5]. MET is a phenomenon observed during nephrogen-
esis, when the metanephric mesenchyme develops into nephrons [6]. During embryogenesis,
both MET and epithelial-mesenchymal transition (EMT)—the reversed program of MET—are
essential for organ development. While there are plenty of studies analyzing EMT related to
fibrosis in chronic inflammation and metastasis of tumor [7–13], relatively little is known
about MET associated with kidney formation. This process seems to be regulated by genes
such as paired box 2 (PAX2), bone morphogenetic protein 7 (BMP7), and Wilms tumor 1
(WT1) [14–16].

Besides physical interactions, such as direct cell-to-cell contact, nanotubes and cytonemes,
and the release of soluble factors, the extracellular vesicles (EVs) have recently emerged as an
important mechanism of communication between cells. The term EVs includes exosomes,
originating from the membrane of the endosomal compartment, and microvesicles, derived
from plasma membrane budding. Both of them are small membrane fragments that can shuttle
cytosolic proteins, receptors, bioactive lipids and nucleic acids to target cells, acting as a potent
paracrine mechanism that can re-direct cell fate [17]. Ratajczak et al.[18] first described that
EVs derived from embryonic stem cells may reprogram hematopoietic progenitors by a
mRNA-dependent mechanism. Quesenberry and Aliotta suggested that a continuous genetic
modulation of cells through transfer of EVs may be involved in the continuum change in bone
marrow stem cell phenotype. EV-mediated transfer of proteins and genetic information from
injured cells to bone marrow-derived stem cells may reprogram their phenotype to acquire fea-
tures of the injured tissue [19,20].

EVs carry proteins, lipids, and nucleic acids, including microRNAs (miRNAs) [21–23]
short non-coding RNAs that regulate post-transcriptional expression of several genes, either by
triggering mRNA cleavage or by repressing translation [24,25].

The aim of the present study was to evaluate whether renal tubular epithelial cell (RPTEC)-
derived EVs are involved in the epithelial differentiation of bone marrow-derived MSCs and
the role of miRNAs carried by EVs.

Materials and Methods

Cell culture
Human bone marrow-derived MSCs were obtained from Lonza (Basel, Switzerland), cultured
and characterized as previously described [26,27]. Briefly, MSCs were cultured in the presence
of Mesenchymal Stem Cells Basal Medium (MSCBM, Lonza) and maintained in an incubator
with a humidified atmosphere of 5% CO2 at 37°C. MSCs were seeded at a density of 10,000
cells/cm2 and used within the seventh passage. The adipogenic, osteogenic and chondrogenic
differentiation ability of MSCs was determined as previously described [26,27].

Human RPTECs were obtained from Lonza and cultured in Renal Epithelial Cell Basal
Medium (REBM, Lonza) supplemented with Renal Epithelial Cell Growth Medium Bullet Kit
(REGM, Lonza), according to the manufacturer’s instructions.
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Immunofluorescence analyses
Indirect immunofluorescence was performed on cells cultured on chamber slides (Nalgen Nunc
International, Rochester, NY, USA). The cells were fixed in 2,5% paraformaldehyde and permea-
bilized with Hepes-Triton X100 buffer (Sigma-Aldrich, St. Louis, MO). The following antibodies
were used: mouse monoclonal anti-vimentin (Sigma-Aldrich), mouse monoclonal anti-pan-cyto-
keratin (Bio-Rad, Hercules, CA), rabbit polyclonal anti-cytokeratin 18 and goat polyclonal anti-
aminopeptidase A (Santa Cruz Biotechnology, Dallas, TX). As a control, primary antibodies were
omitted and substituted with nonimmune mouse IgG. Alexa Fluor 488 anti-mouse (Invitrogen,
Carlsbad, CA) was used as secondary antibody. For nuclear staining, Hoechst 33258 dye (Sigma-
Aldrich) was added to fixed cells. A Zeiss LSM 5 Pascal Model Confocal Microscope (Carl Zeiss
International, Germany) was used to perform confocal microscopy analysis.

MSCs expressed high levels of vimentin (S1A Fig), while cytokeratins expression was not
detected (S1B Fig). RPTECs expressed low levels of vimentin (S2A Fig) and high levels of cyto-
keratins (S2B Fig).

Cytofluorimetric analyses
Cells were counted at each passage and their immunophenotype was analyzed by cytofluori-
metric analysis, using FACS Calibur (BD Biosciences, San Jose, CA). The following antibodies,
all fluorescein isothiocyanate (FITC) or phycoerythrin (PE) conjugated were used: anti-
CD105, -CD146 (Miltenyi Biotech, Bergisch Gladbach, Germany); -CD29, -CD44, -CD45,
-alpha5 integrin (CD49e), -alpha6 integrin (CD49f), -CD73, -CD90, -VEGFR2 (Becton Dickin-
son Biosciences Pharmingen, San Jose, CA); -EpCAM, -HLA-I (BioLegend, San Diego, CA).
Mouse IgG isotypic controls were fromMiltenyi.

MSCs showed the expression of typical MSC surface marker molecules: CD29 (integrin
beta-1), CD44, CD73 (ecto-5’-nucleotidase), CD90 (Thy-1 cell surface antigen), CD105 (endo-
glin) and CD146 (melanoma cell adhesion molecule, MCAM), while epithelial marker EpCAM
was not detected (S1C Fig).

RPTECs showed the expression of CD24, CD29, CD44, alpha-5 integrin (CD49e), alpha-6
integrin (CD49f), CD73, CD146, EpCAM, and HLA-class I surface molecules while hemato-
poietic marker CD45, endothelial marker VEGFR2, and mesenchymal stromal cell marker
CD105 were not detected (S2C Fig).

Extracellular vesicles isolation and conditioned medium preparation
EVs were obtained from supernatant of�80% confluent RPTECs cultured overnight in RPMI
(without phenol red, Invitrogen) supplemented with 2% FBS deprived of EVs after 15 hours of cen-
trifugation at 100,000 g (Optima L-90K ultracentrifuge, Beckman Coulter, Indianapolis, IN). Cell
supernatant was collected, centrifuged at 2,000 g for 20 minutes to remove debris, and processed to
obtain: (1) extracellular vesicles (EVs), (2) total conditioned medium with EVs (TOT-CM) and (3)
conditioned medium after EVs deprivation (CM) after ultracentrifugation at 100,000 g for 15 hours.

EVs were isolated from cell-free supernatant by differential ultracentrifugation as previously
described by Théry and colleagues [28]. The pellet collected after ultracentrifugation at 100,000
g was resuspended in RPMI containing 10% dimethyl sulfoxide (DMSO, Sigma-Aldrich) and
stored at -80°C.

Particles size and concentration were measured by NanoSight LM10 instrument (NanoSight
Ltd, Amesbury, UK) equipped with the nanoparticle tracking analyses (NTA) 2.0 analytic soft-
ware [29,30].

TOT-CM and CM were concentrated ~20-fold by centrifugation at 2,700 g for 40 minutes
at 4°C, using ultrafiltration units with a 3 kDa molecular weight cut-off (Amicon Ultra -15,
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centrifugal filter devices, Millipore, Billerica, MA). To preserve EVs integrity, TOT-CM was
supplemented with 10% DMSO and stored at -80°C, while CM was stored directly at -20°C.

EV characterization
Cytofluorimetric analysis was performed as previously described [30,31]. Briefly, EVs were
incubated for 15 minutes at 4°C with the following FITC- or PE-conjugated antibodies: anti-
CD24, -CD29, -CD44, -alpha5 integrin (CD49e), -alpha6 integrin (CD49f), -CD63, -CD73,
-CD81, -CD107, (Becton Dickinson), -CD146, -EpCAM, -HLA1 (BioLegend, San Diego, CA).
FITC or PE mouse nonimmune isotypic IgG (Miltenyi) were used as control. For each EV
preparation, 5,000 particles were acquired using Guava easyCyte™ Flow Cytometer (Millipore)
and analysed with the InCyte™ software.

Incorporation of EVs in MSCs
To study EVs incorporation by MSCs, we incubated these cells with 30,000 labelled-EVs/cell
for 6-15-24 hours at 37°C. The EVs were previously stained with a red-fluorescent dye which
binds to lipid membranes (Vybrant™ DiI cell-labeling solution, Invitrogen), in accordance with
the manufacturer’s instructions. Hoechst 33258 (Sigma-Aldrich) staining was used to visualize
cellular nuclei. EVs uptake was evaluated by confocal microscopy.

Stimulation experiments using RPTEC-derived EVs, or TOT-CM or CM
and co-culture experiments
To test the role of RPTEC-derived paracrine factors in MSC differentiation, MSCs were seeded
in MSCBM, at a density of 50,000 cells/well in 6-well plates (Becton Dickinson) and stimulated
with 150,000 EVs/cell, 30% CM, or 30% TOT-CM for 7–14 days before RNA extraction. When
using TOT-CM to stimulate MSCs, we maintained the same ratio EV:cells that we used to stim-
ulate MSCs with EVs. For co-culture experiments, a transwell system with a 1 μm pore size per-
meable membrane (Becton Dickinson) was used to separate RPTECs physically from bone
marrow MSCs in 6-well plates (Becton Dickinson). RPTECs were seeded into the upper insert
of the transwell system in DMEM with 5% FBS, at a density of 100,000 cells/well. MSCs were
seeded into the lower chamber of this co-culture system, at a density of 50,000 cells/well. MSCs
cultured alone in MSCBM were used as control. Cells were maintained in co-culture conditions
for 7 days before RNA extraction. Six different experiments with similar results were done.

Trans-epithelial electric resistance
Trans-epithelial electrical resistance (TEER) was used as an indicator of epithelial differentia-
tion and integrity (30). Control MSCs, or MSCs cultured in the presence of EVs or TOT-CM,
or MSCs co-cultured with RPTECs were plated on polycarbonate membrane transwell (Falcon
Corning Corp., Cambridge, MA) and allowed to reach confluency. An epithelial volt-ohm
meter (EVOM, World Precision Instruments, Inc., Sarasota, FL) was used to determine the
TEER. Measurement of cell-free membrane inserts were performed and subtracted from all
subsequent measurement and expressed as ohm/cm2. All values were normalized for the area
of the membrane. All experiments were done in triplicate.

Albumin uptake
Cellular uptake of albumin was analyzed in confluent MSC monolayers using fluorescein iso-
thiocyanate (FITC)-labeled albumin (Sigma-Aldrich), as previously described [32]. Briefly,
after 14 days of co-culture with RPTECs or stimulation with EVs or TOT-CM, cell medium
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was refreshed and MSCs were incubated with 50 μg/ml of FITC-labeled BSA (Sigma-Aldrich)
for two hours at 37°C. Fluorescence emission was measured by cytofluorimetric analysis.

Western Blot Analysis
For protein analysis, EVs and cells were lysed at 4°C for 30 minutes in RIPA buffer (20 nM
Tris-HCl, 150 nM NaCl, 1% deoxycholate, 0.1% SDS, 1% Triton X-100, pH 7.8) supplemented
with PMSF, protease and phosphatase inhibitors cocktail (Sigma-Aldrich). EV samples were
quantified using a proteic Bradford assay. Since the EVs protein concentration was lower than
2 mg/ml, a mixture of methanol-chloroform-water was used for the quantitative precipitation
of proteins, as previously described [33,34]. Aliquots of the cell lysates containing 30 μg pro-
teins were run on 10% acrylamide gel SDS-PAGE under reducing conditions. Proteins were
transferred onto a PVDF membrane using the 7 minutes transfer program of the iBlot™Dry
Blotting System (Life Technology, Carlsbad, CA). The blots were blocked with 5% non fat milk
in PBS supplemented with 0.1% Tween-20 (PBS-T). The following primary antibodies were
used at 1∶200 dilution: anti-human aminopeptidase A and anti-human pan-cytokeratin (Santa
Cruz Biotechnology). After incubation for 15 hours at 4°C with primary antibodies, mem-
branes were washed with PBS-T and then incubated with for one hour at room temperature
with peroxydase conjugated secondary antibodies (Santa Cruz Biotechnology). Finally, mem-
branes were washed with PBS-T, developed with ECL detection reagents (GE healthcare,
Amersham, Buckinghamshire, UK) and detected by Chemidoc XRS system (Bio-Rad).

RNA extraction and quantitative Real Time Reverse Transcriptase
Polymerase Chain Reaction
Total RNA was isolated from both EVs and cells (used in co-culture and stimulation experi-
ments) using miRNeasy mini kit (Qiagen, Valencia, CA), according to manufacturer’s instruc-
tions, and quantified spectrophotometrically (Nanodrop ND-1000, Wilmington DE). The
quality of EVs-derived RNA was evaluated by capillary electrophoresis on an Agilent 2100
Bioanalyzer (Agilent Technologies, Inc, Santa Clara, CA) using the eukaryotic total RNA 6000
Pico Kit. The presence of small RNAs was verified in both EV and cell samples using the Small
RNA Kit (Agilent Tech).

The mRNA expression in MSCs co-cultured or stimulated with EVs was assessed by quanti-
tative real-time PCR. High Capacity cDNA Reverse Transcription Kit (Applied Biosystems)
and the Power SYBR1 Green PCRMaster Mix (Applied Biosystems) were used as previously
described [26]. Negative cDNA controls (no cDNA) were cycled in parallel with each run.
Quantitative real-time polymerase chain reaction (qRT-PCR) was performed using a 96-well
StepOne Real-Time System (Applied Biosystems). Sequence-specific oligonucleotide primers
were purchased from MWG-Biotech AG (Ebersberg, Germany, www.mwg-biotech.com) and
are shown in Table 1. Fold change in mRNA expression compared to control was determined
as 2-ΔΔCt for all samples, using TBP as normalizer. The endogenous control in EVs was signifi-
cantly different from that of their cells of origin. For this reason, miRNA comparisons between
cells and EVs was not performed.

MicroRNA profiling by quantitative real-time PCR
Mature miRNA expression levels in EVs were analyzed as previously described [29,30]. The
Applied Biosystems TaqMan1MicroRNA Assay Human Panel Early Access Kit (Life Tech-
nology) was used to profile 754 mature miRNAs by sequential steps of reverse transcription
(Megaplex RT Pools; Life Technology) using an Applied Biosystems 7900H qRT-PCR instru-
ment. The SDS software (version 2.3) was used to calculate raw CT values, automatic baseline,
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and threshold. Since a CT value of 35 represents single molecule template detection, CT values
higher than 35 were considered to be below the detection level of the assay and excluded from
the analyses.

To confirm the expression of MET-related miRNAs, screened by microarray analysis, miS-
cript Reverse Transcription Kit and miScript SYBR Green PCR Kit (both from Qiagen) were
used as previously described [22]. All samples were run in triplicate and 3 ng of cDNA were
used for each reaction, as described by the manufacturer’s protocol (Qiagen). MiRNAs specific
primers to hsa-miR-200a, 200b, 200c, 141 and 429 are listed in Table 2 and were all used in the
same reaction. The small nucleolar RNA RNU-6B was used as reference control to normalize
data. A 96-well StepOneTM Real Time System (Applied Biosystems) was used to perform
qRT-PCR.

MicroRNA target prediction and pathway analysis
The web-based application DIANA-mirPath (version 2.0) was used to perform the enrichment
analysis of predicted target genes by miRNAs in biological pathways. The algorithm
microT-CDS was chosen to predict EVs-derived miRNA targets, using the default microT
threshold of 0.8.

DIANA-mirPath performed an enrichment analysis of multiple miRNA target genes to all
known KEGG pathways, as previously described [36,37]. The statistical significance value

Table 1. Primers used in qRT-PCR to evaluate mRNAs expression.

Gene Symbol/gene ID: Primer sequence

Aminopeptidase A ENPEP / 2028 Forward: 5’-GCCTTGGCAAGAGCTCAA-3’ Reverse:
5’-GCTGAAATTACTCTCTGCCATGGT-3’

Cyclin D1 CCND1 / 595 Forward: 5’-TATTGCGCTGCTACCGTTGA-3’ Reverse:
5’- CCAATAGCAGCAAACAATGTGAAA-3’

Cytokeratin 18 KRT18 / 3875 Forward: 5’-TGGCGAGGACTTTAATCTTGGT-3’ Reverse:
5’-ACCACTTTGCCATCCACTATCC-3’

Fibronectin 1 FN1 / 2335 Forward: 5’-TGAAGCTGAAGAGACTTGCTTTGA-3’ Reverse:
5’-CAGCGGTTTGCGATGGTAC-3’

FOXC2 FOXC2 / 2303 Forward: 5’-CGCCTAAGGACCTGGTGAAG-3’ Reverse:
5’-GGTAGATGCCGTTCAAGGTGAT-3’

Insulin-like growth factor 1 Receptor [35] IGF1R / 3480 Forward: 5’-CCATTCTCATGCCTTGGTCT-30 Reverse:
50-TGCAAGTTCTGGTTGTCGAG-30

Twist TWIST1 / 7291 Forward: 5’-TCACGAGCGGCTCAGCTAC-3’ Reverse:
5’-TCTCTGGAAACAATGACATCTAGGTC-3’

Vimentin VIM / 7431 Forward: 5’-GGAACAGCATGTCCAAATCGAT-3’ Reverse:
5’-CAGCAAACTTGGATTTGTACCATT-3’

TATA binding protein TBP / 6908 Forward: 5’-TGTGCACAGGAGCCAAGAGT3-3’ Reverse:
5’-ATTTTCTTGCTGCCAGTCTGG-3’

doi:10.1371/journal.pone.0159163.t001

Table 2. Primers used in qRT-PCR to evaluate microRNAs expression.

microRNA Primer sequence

hsa-miR-200a-3p 5’-TAACACTGTCTGGTAACGATGT-3’

hsa-miR-200b-3p 5’-TAATACTGCCTGGTAATGATGA-3’

hsa-miR-200c-3p 5’-TAATACTGCCGGGTAATGATGGA-3’

hsa-miR-141-3p 5’-TAACACTGTCTGGTAAAGATGG-3’

hsa-miR-429 5’-TAATACTGTCTGGTAAAACCGT-3’

hsa-RNU-6B 5’-ACGCAAATTCGTGAAGCGTT-3’

doi:10.1371/journal.pone.0159163.t002
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associated with the identified biological functions was calculated by the mirPath software
(http://microrna.gr/mirpath). Biological pathways showing p-value less than 0.001 were con-
sidered as significantly enriched.

MSC transfection with miRNA mimics
MSCs were transiently transfected with miR-200a, miR-200b, miR-200c, miR-141 and miR-
429 mimics (20 μM, MiScript miRNA mimics, Qiagen) using the HiPerFect Transfection
Reagent (Qiagen), according to the manufacturer’s protocol. Briefly, MSCs were seeded into
6-well plates at a density of 10,000 cells/cm2. MiRNAmimics at a concentration of 20 nM were
mixed with an appropriated volume of HiPerFect Transfection Reagent (Qiagen) and incu-
bated at room temperature for 10 minutes. Allstars negative control siRNA (20 μM, Qiagen)
was used as scrambled control. The transfection mix was added dropwise to the cells in FBS-
depleted culture medium, in agreement with the manufacturer's instructions. After 24-hours of
incubation, the transfection medium was removed, and cells were cultured in MSCBM for 7
days.

Luciferase reporter assays
The pEZX-MT05 luciferase reporter vectors containing the 30-untranslated region (UTR)
sequence of human cyclin D1 (CCND1, accession number NM_053056.2) and human insulin-
like growth factor 1 receptor (IGF1R, accession number NM_000875.3) inserted downstream
of the luciferase reporter gene were obtained from GeneCopoeia (Rockville, MD). For lucifer-
ase reporter assays, HEK 293T cells were seeded in 24-well plates in DMEM high glucose lack-
ing antibiotics. Luciferase-3’UTR reporter constructs (0.8 μg) or the empty expression vector
(negative control) were co-transfected with miR-200a, miR-200b, miR-200c, miR-141 and
miR-429 mimics (0.5 μg, MiScript miRNA mimics, Qiagen) using Lipofectamine 2000 (Invi-
trogen) according to the manufacturer’s instructions. After 24 hours of transfection, medium
was replaced by DMEM high glucose with 10% FBS. Twenty-four hours later, firefly and
Renilla luciferase activities were measured in the culture medium of the same samples using
the LucPair™miR Duo-Luciferase Assay Kit, as previously described [38].

Statistical analysis
Statistical analysis was performed by using the t test. Statistical significance was set at P< 0.05.

Results

RPTECs induce epithelial commitment of MSCs
To investigate the effects of RPTECs on MSCs, human bone marrow-derived MSCs and
RPTECs were co-cultured in not-contact conditions. After 7 days, mRNA levels of specific
mesenchymal markers Twist (TWIST1), vimentin (VIM) and FOXC2 were significant reduced
in MSCs (Fig 1A and 1E); moreover, MSCs expressed higher levels of the epithelial-specific
marker cytokeratin 18 (KRT18), suggesting that MET occurred in MSCs (Fig 1B and 1H).
Same results were observed when MSCs were incubated with TOT-CM (Fig 1A, 1B, 1D and
1G). To investigate the contribution of paracrine factors in epithelial differentiation of MSCs
induced by RPTECs, MSCs were also incubated with CM or with purified EVs. Interestingly,
after one week of incubation with CM, we did not observe any change in the expression of mes-
enchymal and epithelial markers in MSCs, suggesting that the contribution of soluble factors is
not sufficient to induce the epithelial commitment of MSCs (Fig 1A and 1B). In MSCs stimu-
lated with EVs, we observed a significant reduction in the expression of mesenchymal markers
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(Fig 1A and 1C) and an increase in the expression of the epithelial-specific marker KRT18, in a
manner comparable with co-culture system (Fig 1B and 1F). These results indicate that EVs
play a relevant role in inducing MET in MSCs.

Fig 1. Analysis of mesenchymal and epithelial markers expression in MSCs treated for one week. (A-B) Histograms showing relative expression
(RQ) in respect to control cells (CTR, grey bars) of mesenchymal markers (A) and epithelial markers (B) in MSCs, after one week of co-culture with
RPTECs (striped bars), or after stimulation with EVs (black bars) or RPTEC-derived conditioned medium (TOT-CM, dotted bars) or conditioned
medium deprived of EVs (CM, white bars). Results are expressed as mean of six independent experiments performed in triplicate. Data were analysed
via a Student’s t test (unpaired, 2-tailed); *P<0,05 versus CTR. (C-H) Representative micrographs showing the expression of vimentin (C, D, E) and
cytokeratins (F, G, H) by MSCs stimulated with EVs (C-F), TOT-CM (D-G), or co-cultured with RPTECs (E-H). Nuclei were counterstained with Hoechst
dye. Six independent experiments were performed with similar results. Original magnification: X630.

doi:10.1371/journal.pone.0159163.g001
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Notably, the down-regulation of the expression of mesenchymal markers and the increase
in cytokeratin 18 expression were also maintained after two weeks of stimulation with EVs (Fig
2A, 2B and 2C), TOT-CM (Fig 2A, 2B and 2D) and of co-culture with RPTECs (Fig 2A, 2B
and 2E). A slight but significant increase in expression of the renal tubular-specific marker
aminopeptidase A (ENPEP) was also observed in MSCs stimulated with EVs (Fig 2B and 2F),
TOT-CM (Fig 2B and 2G). The early expression of ENPEP in MSCs co-cultured with RPTECs
(Fig 1B) was also maintained after 14 days (Fig 2B and 2H), suggesting that the renal tubular
commitment of MSCs was facilitated by a bidirectional exchange of paracrine factors between
the two cell populations.

Human proximal tubular epithelial cells can effectively reabsorb albumin by receptor-medi-
ated endocytosis [39]. To verify whether this tubular epithelial-specific function was induced
by EVs in MSCs, we quantified fluorescently-labeled albumin uptake using cytofluorimetric
analysis. MSCs stimulated with EVs, TOT-CM and co-cultured with RPTECs successfully
incorporated FITC-labeled albumin (Fig 2I). Moreover, evaluation of TEER as an indicator of
epithelial differentiation and integrity showed that EVs and TOT-CM induced a significant
increase of TEER in MSCs (Fig 2J). Taken together, these results confirm that EVs can induce
the epithelial commitment of MSCs.

Characterization of EVs and incorporation into MSCs
To better clarify the mechanisms underlying the epithelial commitment induced by RPTECs
on MSCs, we evaluated the capacity of EVs to be incorporated into MSCs and characterized
EVs for the presence of specific proteins and mRNAs. Starting from 6 hours of incubation,
labeled EVs were internalized by MSCs, with a progressive compartmentalization of EVs inside
the cell at 15 and 24 hours of incubation (Fig 3).

Cytofluorimetric analysis showed that EVs carried several surface adhesion molecules also
expressed on the plasma membrane of RPTECs, such as CD24, CD29, CD44, CD73, CD146,
alpha-5 integrin (CD49e), alpha-6 integrin (CD49f), HLA1 and EpCAM. EVs also expressed
classical exosomal markers CD63, CD81 and CD107a (LAMP1) (Fig 4A). Moreover, we found
that EVs shuttled both epithelial-specific proteins and mRNA, such as cytokeratins, and the
tubular-specific marker ENPEP (Fig 4B and Table 3).

Nanosight analysis revealed that the average size of EVs was 185 nm with a mode of 163 nm
and a standard deviation of 84 nm (Fig 5A). EVs presence was also confirmed in TOT-CM,
with an average size of 162 nm, a mode of 141 nm and a standard deviation of 84 nm (Fig 5B).
After RPTEC supernatant ultracentrifugation, EVs concentration was highly reduced in CM
(Fig 5B).

MicroRNA profiling in EVs and comparative pathway analyses
We verified the quality of EVs-derived RNA and the presence of small RNAs, with a bioanaly-
zer profile on total RNA from EVs and their cell of origin. EVs contained a broad range of
RNA sizes, with a RNA Integrity Number (RIN) of 7.30 out of 10 (Fig 5C). A more comprehen-
sive analysis using a bioanalyzer kit specific for small RNAs showed a relevant peak characteris-
tic of small RNA classes inside EVs, with an enrichment of miRNAs around 36% (Fig 5D).
RNA extracted from EVs was profiled for 754 known human mature miRNAs. We found 237
miRNAs expressed (S1 Table). Among them, we found a subset of five miRNAs (miR-200a,
miR-200b, miR-200c, miR-141 and miR-429) that belong to miR-200 family, known to be
involved in EMT [40,41].

In order to examine which biological pathways may be involved in the regulation of the epi-
thelial commitment of target cells, we applied the software DIANAMirPath on the 65 most
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Fig 2. Analysis of mesenchymal and epithelial markers expression in MSCs treated for two weeks. (A-B) Histograms showing
relative expression (RQ) in respect to control cells (CTR, grey bars) of mesenchymal markers (A) and epithelial markers (B) in MSCs,
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expressed miRNAs derived from EVs. We performed an enrichment analysis of predictive
miRNA target genes included in KEGG database and we found that 63 KEGG biological pro-
cesses were significantly enriched (p<0.001, FDR corrected) (S2 Table). Twenty miRNAs
found in EVs revealed a strong association to several biological pathways that are known to
modulate EMT (Table 4).

Our analysis showed that the predicted target genes of these miRNAs are principally
involved into the following EMT and MET-associated pathways: ECM-receptor interaction,
Wnt pathway, gap junction, transcriptional misregulation in cancer, TGF-beta pathway, path-
ways in cancer, MAPK signaling pathway, p53 signaling pathway, focal adhesion, PI3K-Akt
signaling pathway, regulation of actin cytoskeleton (Table 5) [11,42–45]. Fig 6 provides a
graphical representation of the most significantly enriched pathways modulated by the 20 miR-
NAs that we selected from our analysis.

We selected two miRNA targets from our predictive analysis, CCND1 and IGF-1R, and
examined their expression in MSCs after one week of incubation with EVs or TOT-CM. In
both conditions, we observed a reduction in the expression of CCND1 and IGF-1R in MSCs,
that could be attributed to miRNA-mediated inhibitory effects (Fig 7). These data suggest that
EVs may prompt an epithelial commitment in target cells, by the delivery of specific miRNAs
involved in MET-related pathways.

Role of the miR-200 family in the epithelial commitment of MSCs
We employed qRT-PCR to validate the expression levels of the five miRNAs belonging to miR-
200 family, selected from the miRNA array. We showed that all these five miRNAs were
strongly expressed in EVs and we selected them to study their possible role in MET induction
in MSCs. A mixture of mimics was used to increase the expression of miR-200a, miR-200b,
miR-200c, miR-141 and miR-429 in MSCs. After 1 week of transfection, MSCs showed lower
levels of MET markers VIM and fibronectin 1 (FN1) (Fig 8A), and higher levels of epithelial
marker KRT18 and tubular marker ENPEP (Fig 8B). Moreover, MSCs transfection with

after two weeks of co-culture with RPTECs (striped bars), or after stimulation with EVs (black bars) or RPTEC-derived conditioned
medium (TOT-CM, dotted bars). Results are expressed as mean of six independent experiments performed in triplicate. Data were
analysed via a Student’s t test (unpaired, 2-tailed); *P<0.05 versus CTR. (C-H) Representative micrographs showing the expression of
cytokeratin 18 (C, D, E) and aminopeptidase A (F, G, H) by MSCs stimulated with EVs (C-F), TOT-CM (D-G), or co-cultured with RPTECs
(E-H). Nuclei were counterstained with Hoechst dye. Original magnification: X630. (I) Significant increased uptake of FITC-labeled
albumin (BSA FITC) by MSCmonolayers co-cultured with RPTECs, stimulated with EVs or with TOT-CM; *P<0.05 versus CTR. (J)
Significant variation of TEER in MSCmonolayers co-cultured with RPTECs, stimulated with EVs or with TOT-CM; *P<0.05 versus CTR.

doi:10.1371/journal.pone.0159163.g002

Fig 3. Incorporation of EVs in MSCs.Representative micrographs of internalization by MSCs of EVs stained with Vybrant Dil
(red) at 37°C for 6 hours (A), 15 hours (B), 24 hours (C) observed by Confocal microscopy. Z-stack was performed to verify the
effective internalization of EVs. Nuclei were counterstained with Hoechst dye. Three experiments were performed with similar
results. Original magnification: X630.

doi:10.1371/journal.pone.0159163.g003
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miR-200 mimics reduced the expression of two miRNA targets from our predictive analysis,
CCND1 and IGF-1R (Fig 8C).

To assess whether miR-200 family can effectively repress translation through binding to
CCND1 and IGF1R 3’UTR, we performed luciferase reporter assay. MiR-200 family mimics

Fig 4. Characterization of EVs protein expression. (A) Characterization of EVs by cytofluorimetric analysis. Representative FACS
analyses of EVs showing the expression of CD24, CD29, CD44, alpha-5 integrin (CD49e), alpha-6 integrin (CD49f), CD73, CD146, EpCAM,
and HLA-class I surface molecules and classic exosomal markers CD63, CD81, CD107 (thick lines). Dotted lines indicate the isotypic
controls. Three different EV preparations were analyzed with similar results. (B) Representative western blot analysis on RPTEC cells and
EVs. Three different experiments were performed with similar results.

doi:10.1371/journal.pone.0159163.g004
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Table 3. Analysis of epithelial-specific mRNAs expression by RPTEC cells and EVs. Results are
expressed as mean ± SD of three independent experiments.

mRNA Cells EVs

CT Mean CT SD CT CT SD

ENPEP 23.16 0.19 31.97 0.72

KRT7 23.05 0.69 30.43 1.48

KRT18 22.10 0.36 28.27 0.42

KRT19 20.48 1.39 27.32 0.69

doi:10.1371/journal.pone.0159163.t003

Fig 5. Characterization of EVs size and RNA content. (A-B) Representative EV size analysis by direct measurement with NTA, in
EVs (A) and in RPTEC-derived conditioned medium with (TOT-CM) or without EVs (CM) (B) by direct measurement with NTA,
showing the difference of EV concentration before and after EV depletion. (C) Representative Bioanalyzer profiles, showing the size
distribution of total RNA extracted from EVs and cells. The first peak (left side of each panel) represents an internal standard.
Whereas the two peaks of ribosomal RNA 18S and 28S were detectable in cells, they were barely detectable in the corresponding
EVs. Unlike the cells of origin, EVs exhibited a relevant peak of small RNAs. RNA Integrity Number (RIN) is shown for both cells and
EVs. (D) Representative bioanalyzer profile of small RNAs performed on EVs, showing an enrichment of the miRNA fraction (range:
33–36%) in respect to the cells of origin (range: 4–7%). Three different samples tested in triplicate were analyzed for both EVs and
cells with similar results.

doi:10.1371/journal.pone.0159163.g005
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were co-transfected in HEK 293T cells with the luciferase reporter construct pEZX-MT05 con-
taining the human CCND1 or IGF1R 3’UTR immediately following the luciferase coding
sequence. As a result, miR-200 family induced a 90% reduction of luciferase activity in trans-
fected cells.

Taken together, these results suggest that the miR-200 family carried by EVs can induce
MET in MSCs by binding to the 3’UTR sequences of predicted target genes, like CCND1 and
IGF1R (Fig 8D).

Table 4. MiRNAs shuttled by EVs and associated to EMT-related KEGG pathways. Results are
expressed as mean ± SD of three independent experiments.

miRNA CT Mean CT SD

hsa-miR-1305 18.20 0.66

hsa-miR-17-5p 20.67 0.74

hsa-miR-19b-3p 20.68 1.08

hsa-miR-106a-5p 20.77 0.78

hsa-miR-29a-3p 20.96 0.47

hsa-miR-302a-3p 21.24 0.29

hsa-miR-16-5p 21.45 0.94

hsa-miR-320a 21.79 0.24

hsa-miR-186-5p 21.82 0.27

hsa-miR-374b-5p 21.98 0.23

hsa-miR-200b-3p 22.87 0.21

hsa-let-7e-5p 23.31 0.24

hsa-miR-374a-5p 23.88 0.07

hsa-miR-20a-5p 23.90 1.15

hsa-miR-30a-5p 24.17 0.85

hsa-miR-520a-3p 24.57 0.75

hsa-miR-19a-3p 24.60 1.33

hsa-miR-429 24.63 0.32

hsa-let-7b-5p 24.78 0.22

hsa-let-7g-5p 24.88 0.29

doi:10.1371/journal.pone.0159163.t004

Table 5. Biologic pathways enriched by 20 selectedmiRNAs found in EVs, that contain EMT-related genes.

KEGG pathway p-value # genes #miRNAs

ECM-receptor interaction < 1 E-16 20 4

Wnt signaling pathway < 1 E-16 66 5

Gap junction < 1 E-16 30 5

Transcriptional misregulation in cancer < 1 E-16 60 5

TGF-beta signaling pathway < 1 E-16 41 7

Pathways in cancer < 1 E-16 126 7

MAPK signaling pathway < 1 E-16 84 8

p53 signaling pathway < 1 E-16 33 8

Focal adhesion < 1 E-16 94 8

PI3K-Akt signaling pathway < 1 E-16 159 12

Regulation of actin cytoskeleton < 1 E-16 20 1

HIF-1 signaling pathway 5.076362 E-08 17 1

Hedgehog signaling pathway 1.950418 E-05 15 2

doi:10.1371/journal.pone.0159163.t005
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Fig 6. Heat map showingmiRNAs versus pathways. Using the option union of pathways, DIANAMirPath provided a graphical
overview of pathways enriched by the 20 selected EVs-derived miRNAs. Darker colors represent lower significance values. MET-
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Discussion
The mechanism of cell communication mediated by EVs allows exchange of proteins and
genetic information between cells, as EVs may transfer mRNAs, long non coding RNAs
(lncRNAs) and miRNAs to target cells [18,20,46–48]. The epithelial commitment of bone mar-
row-derived cells induced by EVs derived from differentiated tissues has been demonstrated by
Quesenberry’s group [49]. They showed that EV-mediated transfer of proteins and genetic
information from lung injured cells to bone marrow-derived cells may reprogram marrow cell
phenotype to acquire lung epithelial-specific markers [19,20]. Moreover, EVs derived from
prostate or lung cancer cells and EVs derived from lung injured cells were also shown to trigger
stable epigenetic changes in marrow cells, activating the expression of prostate- or lung-specific
genes [50,51], following internalization of EVs into target cells [52]. Taken together, these
results indicate that EVs collected from differentiated injured tissues can effectively induce epi-
genetic modifications of marrow cells, that acquire phenotypic characteristics of the tissue of
origin.

Previous studies have shown that tubular epithelial cells and their conditioned medium may
induce an epithelial transition of MSCs [1–4]. In the present study, we have demonstrated that
EVs released by RPTECs are the main mediators of the epithelial differentiation of bone mar-
row-derived MSCs. In fact, we noticed that RPTEC-derived conditioned medium depleted of
EVs was no longer able to induce MET in MSCs. In particular, after one week of incubation of
MSCs with EVs, we observed the decreased expression of TWIST1, FOXC2, known to repress
epithelial genes expression [53,54], and of vimentin, a protein involved in cellular adhesion
and migration [55,56]. Moreover, after two weeks of MSC stimulation with EVs, we observed
the increased expression of epithelial marker cytokeratin 18, which contributes to maintenance
of epithelial cell polarity and plays an important role in cellular adhesion and cell-to-cell inter-
actions [57–59], and a slight increase in the expression of aminopeptidase A. This zinc-depen-
dent metalloproteinase is typically expressed in the brush border membrane of renal proximal

related pathways (highlighted by the circle line) are targeted by the selected miRNAs with a very low p-value (p<10−7, FDR
corrected). The attached dendrograms illustrate hierarchical clustering results for miRNAs and pathways. MiRNAs that show
similar pathway targeting patterns were clustered together. An analogous clustering was also performed for the biological
pathways.

doi:10.1371/journal.pone.0159163.g006

Fig 7. Analysis of miRNA predictive target genes in MSCs stimulated with EVs.Histograms showing relative expression (RQ) of miRNA
predictive target genes in MSCs, after one (A) and two weeks (B) of stimulation with EVs (black bars), or RPTEC-derived conditioned medium
(TOT-CM, dotted bars), in respect to control cells (CTR, grey bars). Results are expressed as mean of six independent experiments performed in
triplicate. Data were analyzed via a Student’s t test (unpaired, 2-tailed); *P<0.05 versus CTR.

doi:10.1371/journal.pone.0159163.g007
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tubule cells and it is known to be involved into the removal of N-terminal acid aminoacidic
remainings from different peptides, for example angiotensin II [60,61]. Taken together, these
results indicate an epithelial differentiation of MSCs induced by EVs.

To understand the mechanism of epithelial commitment of MSCs induced by EVs, we char-
acterized EV protein and RNA content. We found that EVs contained epithelial-specific pro-
teins and transcripts that after delivering to target cells may be responsible for the early
epithelial commitment of MSCs. The persistence of KRT18 expression in MSCs after 14 days of
stimulation with EVs suggests that epigenetic changes contributed to maintain MSCs epithelial
commitment. The long-term modification in MSC transcriptome was probably due to epige-
netic changes that follow the transfer of non-coding RNAs, such as miRNAs [62]. Recently, the
EVs-mediated transfer of miRNAs has been observed between differentiated normal cells
[21,63], between MSCs and differentiated cells [64–66], between MSCs and cancer cells [67–
69] and inside the tumor microenvironment [70–72].

To investigate the miRNA content of EVs, we profiled their RNA for 754 known human
mature miRNAs and we identified 20 miRNAs with a strong association to EMT pathways. In
particular, we detected the expression of some miRNAs belonging to miR-200 family. Recent

Fig 8. Analysis of mesenchymal and epithelial markers expression in MSCs transfected with miR-200mimics.
Histograms showing relative expression (RQ) of mesenchymal markers (A), epithelial markers (B) and miRNA
predictive target genes (C) in MSCs, after one week of transfection with miR-200 mimics (black bars), or with a control
miRNA (scramble, white bars), in respect to control cells (CTR, grey bars). Results are expressed as mean of three
independent experiments performed in triplicate. Data were analysed via a Student’s t test (unpaired, 2-tailed);
*P<0.05 versus CTR. (D) Luciferase expression in HEK 293T cells following co-transfection of CCND1 or IGF1R
3’UTR reporter constructs and miR-200 family mimics for 24 hours. Firefly luciferase expression is normalized to
Renilla luciferase for each gene-specific 3’UTR and presented as a percentage of the luciferase activity variation in
respect to the same cells co-transfected with a negative control vector (CTR). Values are expressed as mean of three
independent experiments; *P<0.05 versus CTR.

doi:10.1371/journal.pone.0159163.g008
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studies on tumor cells [73–76] have demonstrated that miR-200 family miRNAs (miR-200a,
miR-200b, miR-200c, miR-141, miR-429) are involved in EMT. In fact, mature miR-200 family
miRNAs promote E-cadherin expression with the acquisition of an epithelial cell phenotype
via post-transcriptional repression of zinc finger E-box binding transcription factor 1 and 2
(ZEB1 and ZEB2) [77]. During EMT, ZEB1 and ZEB2 over-expression leads to transcriptional
repression of E-cadherin, promoting a mesenchymal cell phenotype. This process may be
reversible, since an increase in miR-200 family miRNAs expression initiates MET, restoring E-
cadherin expression and promoting an epithelial phenotype [77].

Since miR-200 family miRNAs are shuttled by EVs, we investigated the effects of these miR-
NAs in MSCs and their possible contribution to MET. After one week of transfection of bone
marrow derived-MSCs with 5 synthetic miR-200 mimics, we observed a reduction in the
expression of VIM and FN1, which is another mesenchymal marker involved in cell adhesion,
cell migration, cell growth and cell differentiation [78]. Moreover, we observed an increased
expression of ENPEP, indicating that the miR-200 miRNAs can induce the epithelial commit-
ment of MSCs. These data suggest that EVs may contribute to the epithelial commitment of
MSCs by transferring a small subset of miRNAs that belong to the miR-200 family.

Furthermore, in order to validate the results of our predictive analysis on EV-derived miR-
NAs, we randomly selected cyclin D1 (CCND1) and insulin growth factor-1 receptor (IGF1R),
from all predictive miRNA target genes.

CCND1 encodes a regulatory subunit of the cyclin-dependent kinase 4 (CDK4) and of the
cyclin-dependent kinase 6 (CDK6), whose activity is required for cell cycle G1/S transition
[79]. CCND1 is involved in cell proliferation, survival, invasion, metastasis formation and its
over-expression is linked to tumorigenesis [80,81]. Recent studies have demonstrated that
CCND1 activation can induce EMT in tumor cells, such as ovarian cancer [82], breast cancer
[83], esophageal cancer [84] and epidermoid carcinoma cells [85]. In particular, Su et al. [84]
have shown that the inhibition of CCND1 down-regulates the expression of other mesenchy-
mal markers and reverses EMT in esophageal cancer cells.

IGF1R is a trans-membrane receptor tyrosine kinase which binds to its ligand IGF1, leading
to activation of the PI3K-Akt pathway and the Erk-MAPK pathway. Previous studies have
shown that IGF1R activation can induce EMT in prostate cancer [86], breast cancer [87,88],
mammary epithelial cells [89] and lung cancer cells [34,90]. Nurwidya et al. [35] found that
inhibition of IGF1R reversed hypoxia-induced EMT. Zhou et al. [90] reported that IGF1R acti-
vation induces EMT in lung cancer cells by up-regulating the expression of Snail and promot-
ing beta-catenin translocation from the cell membrane into the nucleus, which, in turn, down-
regulates E-cadherin expression.

We evaluated the expression of CCND1 and IGF1R in MSCs after incubation with EVs or
TOT-CM and after cell transfection with miR-200 mimics. We showed that both EVs and
miR-200 family miRNAs can effectively reduce CCND1 and IGF1R expression in MSCs. These
results confirmed that CCND1 and IGF1R down-regulation is indicative of MET. Luciferase
reporter assay has proved that both CCND1 and IGF1R are target genes of EV-delivered miR-
NAs, thus validating the results of our miRNA predictive analysis.

In conclusion, EVs released from tubular epithelial cells may modify the phenotype of
MSCs by inducing an epithelial commitment that may contribute to the regenerative potential
of MSCs. Whether this phenomenon occurs in vivo remains to be defined.

Supporting Information
S1 Fig. Characterization of human bone marrow-derived MSCs. A-B) Representative micro-
graphs showing the expression of vimentin (A) and cytokeratins (B) by MSCs. Nuclei were
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counterstained with Hoechst dye. Three independent experiments were performed with similar
results. Original magnification: X630. C) Representative FACS analyses of MSCs showing the
expression of CD29, CD44, CD73, CD90 and CD105 surface molecules (blue area). The
expression of EpCAM was not detected. Green lines indicate the isotypic controls. Six different
MSCs preparations were analyzed with similar results.
(TIF)

S2 Fig. Characterization of human renal tubular cells (RPTECs). A-B) Representative
micrographs showing the expression of vimentin (A) and cytokeratins (B) by MSCs. Nuclei
were counterstained with Hoechst dye. Three independent experiments were performed with
similar results. Original magnification: X630. C) Representative FACS analyses of RPTECs
showing the expression of CD24, CD29, CD44, alpha-5 integrin (CD49e), alpha-6 integrin
(CD49f), CD73, CD146, EpCAM, and HLA-class I surface molecules (blue area). The expres-
sion of VEGF receptor II (KDR), CD45 and CD105 was not detected. Dotted lines indicate the
isotypic controls. Six different RPTECs preparations were analyzed with similar results.
(TIF)

S1 Table. List of 237 miRNAs found in EVs. Results are expressed as mean ± SD of three
independent experiments.
(DOCX)

S2 Table. List of KEGG biological pathways significantly enriched (p<0.001, FDR cor-
rected) by miRNAs found in EVs.
(DOCX)
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