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Abstract

Articular cartilage has a limited capacity to heal itself and thus focal defects often result in
the development of osteoarthritis. Current cartilage tissue engineering strategies seek to
regenerate injured tissue by creating scaffolds that aim to mimic the unique structure and
composition of native articular cartilage. Decellularization is a novel strategy that aims to
preserve the bioactive factors and 3D biophysical environment of the native extracellular
matrix while removing potentially immunogenic factors. The purpose of this study was to
develop a procedure that can enable decellularization and recellularization of intact articular
cartilage matrix. Full-thickness porcine articular cartilage plugs were decellularized with a
series of freeze-thaw cycles and 0.1% (w/v) sodium dodecyl sulfate detergent cycles. Chon-
droitinase ABC (ChABC) was applied before the detergent cycles to digest glycosaminogly-
cans in order to enhance donor chondrocyte removal and seeded cell migration. Porcine
synovium-derived mesenchymal stem cells were seeded onto the decellularized cartilage
scaffolds and cultured for up to 28 days. The optimized decellularization protocol removed
94% of native DNA per sample wet weight, while collagen content and alignment were pre-
served. Glycosaminoglycan depletion prior to the detergent cycles increased removal of
nuclear material. Seeded cells infiltrated up to 100 um into the cartilage deep zone after 28
days in culture. ChABC treatment enhances decellularization of the relatively dense, imper-
meable articular cartilage by reducing glycosaminoglycan content. ChABC treatment did
not appear to affect cell migration during recellularization under static, in vitro culture,
highlighting the need for more dynamic seeding methods.
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Introduction

Articular cartilage defects result in joint pain and often develop into osteoarthritis over time
[1]. Osteoarthritis is the most common joint disease in the US, affecting an estimated 27 mil-
lion Americans [2]. Current clinical therapies such as abrasion arthroplasty and microfracture
for articular cartilage defects are insufficient to restore the functionality of the load-bearing car-
tilage [3]. Implantation of tissue-engineered cartilage has not been successful in the past
decades, either [4-7]. The major roadblock has been the inability to mimic the unique native
articular cartilage ultrastructure that provides the ability to withstand compressive and shear
forces within the joint. The lack of functional mechanical strength and physiological ultrastruc-
ture in engineered cartilage has resulted in the breakdown of neocartilage in vivo and the failure
of cartilage replacement strategies in joints. Implantation of osteochondral allografts could be
an alternative; however, immune rejection, availability of fresh tissue, and storage conditions
limit feasibility [8]. Osteochondral autograft transplantation allows higher patient post-surgery
activity levels than microfracture surgery because it preserves the hyaline cartilage composition
and structure, including the collagen II ultrastructure [9, 10]. However, autograft transplanta-
tion is limited in its availability and results in donor site morbidity. To overcome these limita-
tions, several groups have used devitalized cartilage and bone fragments as raw materials
without an intact ultrastructure to reconstitute osteochondral matrices [11-22]. While this
method provides versatile bioactive building blocks for engineering cartilage, disruption of the
matrix structural integrity eliminates its strength at the tissue-level and much of its intrinsic
biophysical cues at the cellular level.

The articular cartilage extracellular matrix (ECM) has a highly specialized architecture that
is zonally organized: the superficial zone consists mostly of collagen II fibers aligned parallel to
the articular surface to resist shear forces, whereas the deep zone consists of the same fibers
aligned perpendicularly to the bone interface to absorb compressive loads [23]. Water and pro-
teoglycans occupy the remaining space and maintain hydrostatic pressure, which provides
much of the tissue’s compressive strength. In addition to defining the tissue’s mechanical prop-
erties, the physical and biochemical properties of the articular cartilage ECM plays a major role
in maintaining the chondrogenic phenotype [24-26].

Decellularization of intact cartilage matrix would provide an ideal scaffold for articular carti-
lage tissue engineering by preserving the unique ultrastructure and bioactivity of the native tissue
while removing immunogenic factors [11, 27-29]. With reduced antigen content, decellularized
allogeneic and xenogeneic donor tissue would reduce the need for fresh allografts and autografts
[30]. Storage of an acellular scaffold would have a reduced risk of protease-mediated ECM deg-
radation and thus lengthen shelf-life relative to that of fresh autografts and allografts [31].

Decellularization has been extensively explored in a wide variety of tissues and a number of
native ECM-based scaffolds have successfully been applied at the clinical level [32]. Several
groups have decellularized intact articular cartilage using freeze-thaw cycles, detergents and
enzymatic removal of DNA [33-36]. Others have used chemical decellularization methods on
nasal septal cartilage, however recellularization attempts have resulted in inhomogeneous cell
seeding [37]. Recellularization of cartilage remains a challenge, likely due to the relatively
dense proteoglycan and collagen matrix.

In this study, we hypothesized that specific reduction of proteogylcans in the cartilage
matrix will enhance decellularization without compromising the collagen network. We
employed the enzyme chondroitinase ABC (chABC) to digest aggrecan, the largest and most
abundant proteoglycan in articular cartilage, in combination with a freeze-thaw and detergent-
based decellularization protocol on porcine articular cartilage [35]. We characterized the decel-
lularized cartilage scaffolds through mechanical, biochemical and histological assessments. In
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addition, we seeded synovium-derived mesenchymal stem cells on the decellularized cartilage
scaffolds to investigate in vitro recellularization. This approach resulted in enhanced removal
of nuclear material without destruction of collagen content or alignment, which could provide
mechanical support and bioactive factors in an in vivo setting.

Materials and Methods
Cell and Tissue Harvest

Postmortem tissue harvest from pig cadavers was carried out in accordance with the Lifespan
Institutional Animal Care and Use Committee (IACUC) Policy for the Responsible Conduct of
Animal Research and Use of Central Research Facilities, which does not require review of post-
mortem tissue harvesting from cadavers. Full-thickness articular cartilage was harvested from
the distal femurs of a 3-month-old female Yorkshire pig, after euthanization was carried out by
another IACUC approved protocol at Rhode Island Hospital. Synovial membrane was har-
vested from the tibiofemoral joints from a 4-month-old female pig legs purchased from a local
abattoir (RI Beef and Veal, Johnston, RI). 4-mm-diameter cylindrical cartilage plugs of heights
ranging from 1 mm to 4 mm were excised using biopsy punches. Each plug was weighed then
stored at -20°C in a 1.8-ml cryotube with a strip of PBS-moistened filter paper. Plugs were
grouped such that there were no significant differences among average group weights. Syno-
vium-derived mesenchymal stem cells (SDSCs) were isolated from the synovial membranes
according to previously developed protocols [38].

Decellularization

The decellularization procedures employed in this study were based on a protocol developed by
Kheir et al. [35] and optimized in our lab [39, 40]. Plugs underwent two “dry” freeze-thaw cycles
(FTCs), followed by two “wet” FTCs. One dry FTC consisted of being thawed completely at
room temperature (RT) and being returned to the -20°C freezer overnight. For each wet FTC,
the plugs were allowed to thaw at RT, fresh hypotonic buffer (10 mM tris-HCIl) was added to
each tube, and then the plugs were frozen overnight at -20°C. For the remaining steps, the plugs
were transferred to 48-well flat-bottom plates and agitated at 220 RPM on an orbital shaker.
ChABC treatment was added to the decellularization procedure to maximize glycosaminogly-
cans (GAG) extraction; chABC application was based on the protocol developed by Schmidt
etal. [41] and optimized for decellularization in previous experiments in our laboratory [40].
Each plug was incubated in 0.125 U/ml chABC from Proteus vulgaris (Sigma-Aldrich) at 37°C
for 24 h; phosphate-buffered saline (PBS) was used as a control. The plugs then underwent
three anionic detergent cycles, each consisting of two steps. The first step was incubation in
hypotonic buffer at 45°C for 24 h. The second step was incubation in 0.1% (w/v) sodium dodecyl
sulfate (SDS) detergent at 45°C for 24 h. After three detergent cycles, the plugs were rinsed four
times in PBS with 2.95 pl/ml Protease Inhibitor Cocktail (PIC; Sigma-Aldrich). The plugs were
then treated with nucleases (100 U/ml DNase, 1 U/ml RNase). Plugs were rinsed in PBS with
PIC, then decontaminated in 0.1% (v/v) peracetic acid. Finally, samples were rinsed three times
in PBS. Fig 1 summarizes the optimized decellularization procedure.

Recellularization

Passage 2 SDSCs were labeled with Vybrant™ Dil Cell Labeling Solution (Life Technologies)
prior to seeding. Fig 2 summarizes the recellularization procedure. The acellular cartilage scaf-
folds were transferred to 24-well plates and immersed in 10% fetal bovine serum-supplemented
culture medium for 24 h before seeding. A 30-gauge (310 um-diameter) needle was used to
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Fig 1. Overview of optimized decellularization procedure used in study. Harvested cartilage plugs were frozen at -20°C then
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subjected to two dry FTCs followed by two wet FTCs with hypotonic buffer. Plugs were then incubated in multiwell plates on an orbital
shaker with high frequency agitation (220 RPM) for the remaining steps. Samples were submerged in a 0.125 U/ml chABC solution to

digest GAGs. This was followed by three wash cycles of alternating hypotonic buffer and 0.1% (w/v) SDS detergent to increase cell

membrane permeability and promote cell lysis. Finally, DNase and RNase were added to degrade nuclear material.

doi:10.1371/journal.pone.0158976.9001
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Fig 2. Overview of recellularization procedure. Three channels were created in the decellularized
cartilage scaffolds. The cells were pipetted onto the scaffolds in two steps. For the first step, half of the cell
suspension was pipetted onto the deep zone (DZ) surface and the samples were centrifuged. A syringe was
used to create a vacuum in the centrifuge tubes to maximize seeding. For the second step, the remaining cell
suspension was pipetted onto the superficial zone (SZ) surface. Samples were cultured in serum-free

chondrogenic medium.

doi:10.1371/journal.pone.0158976.9002
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create three channels in each scaffold to enhance cellular infiltration throughout the depth of
the plug. The cells were seeded onto the scaffolds in two steps for a total density of 30 million
SDSCs per cc sample. For the first seeding step, scaffolds were transferred to individual 1.5-ml
centrifuge tubes and half of the seeding volume was pipetted onto the deep zone surface. The
tubes were then centrifuged at 400g for 5 min to force the cell suspension into the matrix [42].
A 10-ml syringe was used to create a vacuum in each tube for 10 s in order to maximize cell
seeding [43]. After 1 h scaffolds were transferred to 24-well plates. For the second seeding step,
the remaining cell suspension was pipetted onto the superficial zone surface. After 1 h, 2 ml
serum-free medium [Dulbecco’s Modified Eagle Medium with 25 mM D-glucose and 1 mM
sodium pyruvate (Gibco), 1% ITS+ Premix (Corning), 1% Penicillin-Streptomycin-Glutamine
(Gibco), 0.4% Amphotericin B (Gibco), 1% Nonessential Amino Acids (Sigma), 0.4 mM L-pro-
line] was added to each well and the plates were placed on an orbital shaker at 50 RPM at 37°C
and 5% CO, overnight. The next day, the plates were removed from the orbital shaker and
chondrogenic factors [50 pg/ml ascorbate-2-phosphate, 100 nM dexamethasone, 10 ng/ml
TGF-p1 (R&D Systems)] were added to the medium. 50% of the media was replaced every 2-3
days. Seeded scaffolds were cultured for 6, 14, or 28 days.

Biochemical Analyses

Samples were lyophilized, weighed, and digested overnight at 60°C in 0.125 U/ml papain from
papaya latex (Sigma-Aldrich). GAG, double-stranded DNA (dsDNA), and collagen contents
were measured using the 1,9-dimethylmethylene blue (DMMB) assay, the PicoGreen™ dsDNA
Quantitation Assay (Life Technologies), and the hydroxyproline assay (Sigma-Aldrich),
respectively. For the hydroxyproline assay, we used a hydroxyproline:collagen ratio of 1:7.64
[44]. Biochemical content was normalized by pre-decellularization sample wet weight (WW)
or post-decellularization sample dry weight (DW).

Histology

Samples (n = 3) were fixed in 4% neutral buffered formalin, embedded, and cryosectioned. Sec-
tions were stained with hematoxylin and eosin (H&E) for nuclei or Safranin-O and Fast Green
for proteoglycans, then imaged using bright-field microscopy at 100X. Sections were also
stained with Picrosirius Red and imaged with cross-polarized light microscopy for collagen
fiber alignment. To observe cellular infiltration, recellularized sections were labeled with
4’,6-diamidino-2-phenylindole (DAPI), then imaged with differential interference contrast and
fluorescence microscopy at 100X or 200X.

Mechanical Testing

Mechanical testing was performed in unconfined compression using Instron Electropuls
E1000. First, a tare load of 0.02 N was applied to the superficial zone surface of the plug for 5
min. Subsequently, a stress relaxation test was performed at 10% strain until equilibrium was
reached. The equilibrium modulus was calculated using the stress at the end of the relaxation
period.

Statistical Analyses

One-way analysis of variance with Tukey’s post hoc test (p<0.05) was used to assess the differ-
ences in biochemical and mechanical properties [45]. Numerical data are represented as arith-
metic mean of n = 5-13 samples + standard error of the mean (SEM).
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Results
Decellularization

Safranin-O and Fast Green staining of decellularized cartilage showed a trend of decreasing
proteoglycan content with the addition of chABC (Fig 3). H&E staining of decellularized carti-
lage showed removal of cellular material in lacunae in both decellularized groups (Fig 4). Dark
nucleic acid staining was virtually nonexistent in the superficial and middle zones of the PBS-
and chABC-treated scaffolds, indicating that the decellularization procedure successfully
removed most nucleic material from the cartilage in those regions (Fig 4A-4F). There appeared
to be more cellular remains in the deep zone of the PBS group (Fig 4H), where there were also
more proteoglycans (Fig 3H), compared to the same region in the chABC group (Figs 4 & 31).

Ntv PBS ChABC

Superficial Zone

Middle Zone

Deep Zone

A

Fig 3. Safranin-O and Fast Green staining of longitudinal cross sections of decellularized cartilage. Compared to native cartilage (Ntv), both
groups of decellularized cartilage had significantly less proteoglycan staining, with more proteoglycan removal in the chABC-treated scaffolds compared
to the PBS controls. Scale bar = 100 um and magnification = 100X.

doi:10.1371/journal.pone.0158976.9003
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Ntv PBS ChABC

Middle Zone Superficial Zone

Deep Zone

Fig 4. H&E staining of longitudinal cross sections of decellularized cartilage. Compared to native cartilage (Ntv), both groups of decellularized
cartilage contained less cellular material in the superficial, middle, and deep zones. The PBS group had slightly more residual nucleic material than the
chABC group, especially in the deep zone (G-l). Scale bar = 100 pm and magnification = 100X.

doi:10.1371/journal.pone.0158976.9004

Native dsDNA/WW was reduced by over 90% in both PBS and chABC scaffolds (Fig 5A);
p<0.05), supporting the results of the H&E staining. dssDNA/DW was 503.7, 34.6 and 47.6 ng/
mg for the native, PBS, and chABC groups, respectively. The dsDNA/WW of the PBS and
chABC groups were not significantly different. The DMMB assay results confirmed that more
GAG/WW was removed in the chABC group than in the PBS group, although this difference
was not significant (Fig 5B; p>0.05). Both decellularized groups had significantly less GAG/
WW compared to native cartilage (p<0.05). The hydroxyproline assay showed that collagen
content was maintained after both decellularization procedures (Fig 5C; p>0.05).

The same subset of plugs were mechanically tested before and after decellularization, so that
each specimen’s stiffness could be compared to its original stiffness. Fig 5D shows the equilib-
rium modulus of the decellularized plugs as a percent of their pre-decellularization equilibrium

PLOS ONE | DOI:10.1371/journal.pone.0158976 July 8, 2016 7/15



@'PLOS ‘ ONE

Cartilage Decellularization and Recellularization

B C D
140 > ® 80 2 45
—~ 30 2o z
@120 o téo 70 < 40
2100 g% S 60 g
; 80 ; 20 * E 50 _§ 25
2 60 s 15 * e 40 = 20
<Z( G} oo 30 E 15
40 < 10 © S
o O 3 20 < 10
20 .« X 5 S 10 =R
0 0 0 0
Ntv  PBS ChABC Ntv  PBS ChABC Ntv  PBS ChABC || o PBS ChABC

Fig 5. Biochemical content and mechanical properties of decellularized cartilage. (A) dsDNA/WW, as quantified by the
PicoGreen assay. The decellularization procedure significantly reduced dsDNA/WW from native cartilage (Ntv), with no significant
difference between the PBS and chABC groups. (B) GAG/WW, as quantified by the DMMB assay. Both decellularized groups had
significantly lower GAG compared to native cartilage. (C) Collagen/WW, as quantified by the hydroxyproline assay. Collagen
content was maintained after both decellularization procedures. (D) Equilibrium modulus, represented as percent of pre-
decellularization equilibrium modulus. Both groups showed a decrease in equilibrium modulus after decellularization. Data is
plotted as arithmetic mean + SEM; asterisks denote significant differences from native cartilage (p<0.05; n = 5-13).

doi:10.1371/journal.pone.0158976.g005

modulus. Both groups significantly decreased in stiffness after decellularization. ChABC-
treated scaffolds had a larger decrease in equilibrium modulus compared with control PBS-
treated scaffolds, although this difference was not significant (p>0.05). Mean equilibrium
modulus of chABC-treated scaffolds decreased from 145 kPa (range from 81 kPa to 200 kPa)
to 35 kPa (range from 19 kPa to 56 kPa). Mean equilibrium modulus of PBS-treated scaffolds
decreased from 155 kPa (range from 87 kPa to 278 kPa) to 60 kPa (range from 9 kPa to 174
kPa). Table 1 summarizes the biochemical and mechanical properties of both test groups as
percentages of native cartilage values.

Cross-polarized light imaging of Picrosirius Red-stained sections showed preservation of
collagen fiber alignment after decellularization in the superficial zone (Fig 6A-6C) as well as
the deep zone (Fig 6D-6F), as indicated by the bright intensity along the edges of the tissue.

Recellularization

Fluorescent labeling of seeded SDSCs showed adhesion to all outer surfaces of the scaffolds
after 6 days in culture (Fig 7A-7F). Infiltration occurred as early as 6 days in culture, but only
in the deep zone (Fig 7C & 7F). After 28 days in culture, outer cell layers grew thicker and infil-
trating cells migrated up to 100 um into the deep zone (Fig 7G-7L). Seeded cells were found
throughout the channels created by the 30-gauge needle (Fig 7M and 7N), with little evidence
of radial infiltration into the surrounding ECM after 28 days. dssDNA/WW after the 28-day
culture period was significantly higher in the seeded scaffolds compared to unseeded ones,
indicating successful SDSC attachment (Fig 70; p<0.05). There was no significant difference
in dsDNA/WW between the seeded PBS and chABC groups. GAG/WW remained constant
before and after the 28-day culture period for both chABC and PBS groups (data not shown;
p>0.05; n = 6-10). There was no significant difference in equilibrium modulus before and after

Table 1. Mean Biochemical and Mechanical Properties of Decellularized Cartilage as Percentages of Native Values.

Group GAG/WW
PBS 44.5+3.3%
ChABC 29.0+6.1%

Values expressed as % native value + SEM.

doi:10.1371/journal.pone.0158976.t001

dsDNA/WW Collagen/WW Equilibrium Modulus
3.2+0.7% 90.5+8.8% 35.9+11.3%
6.0+1.8% 96.818.7% 24.8+2.2%
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Ntv PBS ChABC

Superficial Zone

Deep Zone

Fig 6. Picrosirius Red staining of longitudinal cross sectionsof decellularized cartilage, viewed with
cross-polarized light. Regions of high collagen fiber alignment appear with greater intensity. Collagen fiber
alignment in the superficial (A-C) and deep (D-F) zones was maintained after decellularization. Scale

bar = 100 pm and magnification = 100X.

doi:10.1371/journal.pone.0158976.9006

the 28-day culture period for both chABC- and PBS-treated scaffolds (data not shown; p>0.05;
n=5-13).

Discussion

In this study, we demonstrated that chABC treatment during decellularization enhances
removal of cellular material from lacunae compared to the control treatment. We established a
protocol for controlled GAG digestion, while preserving the native collagen matrix, by applying
chABC to the cartilage during decellularization. Chondroitinase ABC application increases
GAG digestion, as suggested by the Safranin-O and Fast Green staining, and increases cellular
material removal, as shown by H&E staining. After 28 days of static in vitro culture, we demon-
strated cell infiltration as far as 100 um into the deep zone and cell attachment on the outer sur-
faces of each plug, as shown by fluorescent cell labeling and imaging.

Our decellularization protocol using chABC resulted in a 94% decrease in dSSDNA/WW, in
keeping with previous studies [34, 35]. Furthermore, similar to these previous studies, the final
dsDNA content reported here falls below the 50 ng/mg ECM dry weight threshold for preven-
tion of adverse host reactions described by Crapo et al. [46]. Although there was no significant
difference in dSSDNA/WW between the PBS-treated and chABC-treated scaffolds, there
appeared to be less nucleic material staining with H&E in the chABC-treated plugs, suggesting
that chABC treatment enhances removal of cellular remains. While Kheir et al. found no evi-
dence of inflammation after subcutaneous implantation despite evidence of chondrocyte
remains in the ECM, F4/80+ macrophage infiltration was observed [35]; such occurences have
been associated with both host rejection and constructive remodeling [47]. Therefore,
increased removal of donor chondrocytes may be beneficial for preventing a negative immune
response upon implantation [48].

The approach of digesting ECM components to improve diffusion of decellularization
agents has been employed in other tissues. Utomo et al. found that the addition of elastase
treatment to the Kheir et al. protocol [35] resulted in greater removal of residual cellular
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Fig 7. Summary of Recellularization Results. (A-N) Fluorescent labeling of seeded SDSCs. Seeded SDSCs were labeled with red Dil and all cells
(seeded and native) were labeled with blue DAPI; fluorescent images were superimposed onto differential interference contrast images to more
easily view infiltration. (A-F) Within 6 days, SDSCs attached to all outer surfaces, with some infiltration into the deep zone. (G-L) After 28 days, the
outer cell layers grew thicker and there were generally more cells in the deep zone. (M-N) SDSCs were found throughout the lengths of the channels
(channel borders indicated by small white arrows). (O) dsDNA/WW after 28 days in culture, as quantified by the PicoGreen assay. The seeded
groups had significantly more dsDNA/WW compared to their respective unseeded controls, with no significant difference between the seeded PBS
and chABC groups. For histology, scale bar = 100 ym and magnification = 200X for superficial and middle zones and 100X for circumference and
channels. For biochemistry, data is plotted as arithmetic mean + SEM; asterisks denote significant differences between groups (p<0.05; n = 6-10).

doi:10.1371/journal.pone.0158976.9g007

material in human ear cartilage [49]. While ECM digestion can improve decellularization, it
also compromises the mechanical strength of the tissue. GAG depletion has repeatedly been
shown to decrease the compressive stiffness of articular cartilage because the loss of the charged
molecules no longer supports hydrostatic pressure [41, 50-53]. The decrease in GAG content
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and compressive stiffness relative to native cartilage observed in this study is comparable to
similar losses observed in other cartilage decellularization studies [35, 37, 50]. We hypothesize
that, once successful repopulation occurs, the scaffolds will promote relatively rapid synthesis
of GAGs to replace those that were lost in decellularization. Several studies have shown that, in
tissue-engineered cartilage, chABC treatment depleted GAG and decreased compressive stiff-
ness; however after two weeks of culture, these losses showed marked recovery [54-56]. There-
fore, GAG depletion may be considered a temporary consequence.

Our decellularization procedure successfully preserved the collagen content and fiber align-
ment of native tissue, consistent with the findings of other studies that used SDS detergent to
decellularize intact cartilage [35, 36, 49]. We hypothesize that keeping the hyaline cartilage
ultrastructure intact will induce chondrogenesis and prevent fibrocartilage formation upon in
vivo implantation, which is a major problem in the widely utilized microfracture surgery [57].

In vitro recellularization of decellularized cartilage is a major challenge for in vivo success.
Because the high density of the articular cartilage ECM physically inhibits cell migration, we
investigated the effects of GAG depletion on recellularization potential and characterized the
interactions of seeded cells with scaffolds in in vitro culture. Seeded SDSCs attached to all sur-
faces of the scaffolds, regardless of their GAG content. These outer layers of cells and ECM
grew thicker from Day 6 to Day 28 in culture, suggesting that the decellularized cartilage pro-
vided a proliferative environment to the SDSCs. A thicker layer of cells formed on the superfi-
cial zone. This could be due to the initial incubation period, when the plugs were all placed
with superficial zone facing upwards in the 24-well plates. After the first media change, orienta-
tion of the plugs in their wells was random, which may account for differences in thicknesses
of new cell layers from sample to sample. After 28 days in culture, we observed limited cell
infiltration in porcine articular cartilage. Our infiltration results are similar to those of Schwarz
et al., who found seeded chondrocytes 100-150 pm deep in decellularized porcine native septal
cartilage after 28 days in culture [37]. However, there did not appear to be a difference in either
the number of cells infiltrating or the migration distances between the chABC-treated group
and the control group, suggesting that removal of GAGs did not meaningfully increase the
porosity of the matrix. Utomo et al. cultured bone marrow-derived mesenchymal stem cells
with acellular ear cartilage for 21 days with no evidence of infiltration into the scaffold [49].
Higher ECM porosity may be necessary for efficient recellularization under static conditions.

Seeded cells filled the 310-um-diameter channels, showing cell attachment in the inner
regions of the scaffold. A recent study by Juran et al. has shown that, by introducing an array of
120-um-diameter channels into decellularized temporomandibular joint discs, in vitro cellular
infiltration into the matrix increased without significantly affecting the compressive modulus
[58]. The higher degree of cellular infiltration seen by Juran et al. could be due to the more per-
meable, softer nature of temporomandibular joint disc cartilage in comparison to distal femur
articular cartilage [59, 60]. Luo et al., who used hyaluronidase to eliminate GAGs from decellu-
larized porcine articular cartilage, observed limited (under 100 um) cell migration from 400-
pm-diameter channels after 28 days in culture [33]. In the current study, there was no evidence
of radial cell migration from the channels; the addition of rotational culture, as in the Luo et al.
study, may promote radial migration by improving seeded cell viability and distribution [50].

Dynamic culture environments usually improve cell seeding efficiency on porous scaffolds
over static cultures. The decellularized scaffold has a low porosity and this likely requires a
higher degree of dynamic physical stimuli to induce cell infiltration. Combination of these acel-
lular, GAG-depleted scaffolds with bone marrow stimulation in vivo may enhance cell migra-
tion into the matrix. Wang et al. found no evidence of infiltration 12 weeks after implantation
of unseeded decellularized ear cartilage in a leporine distal femur model [61]; however, they
did not instigate bone marrow flow through the matrix, as in autologous matrix-induced
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chondrogenesis surgery [62]. They demonstrated that the decellularized cartilage that was pre-
cultured for three weeks with adipose-derived mesenchymal stem cells contained cells through-
out the ECM 12 weeks after implantation. However, acellular scaffolds may be more clinically
relevant because of their off-the-shelf potential and fewer regulatory obstacles. Our results are
significant because decellularized articular cartilage scaffolds are more physiologically relevant
for implantation into load-bearing joints. Future studies should focus on developing more
dynamic cell seeding methods, possibly involving flow perfusion culture to better mimic bone
marrow stimulation. The addition of a chemokine gradient to induce cell migration or lyophili-
zation of the scaffold to increase porosity and absorption of the cell suspension during seeding
may also facilitate recellularization. Decellularization coupled with proteoglycan depletion is a
promising approach for creating a biomimetic matrix that can improve clinical outcomes in
cartilage repair.

Conclusion

In this study, we established a procedure for producing a GAG-depleted collagen-based scaf-
fold and demonstrated the potential for cells to penetrate and migrate through the matrix. Our
results suggest that decellularized articular cartilage is a promising scaffold for treating focal
defects, as it preserves the native collagen content and alignment and provides a supportive
environment for seeded cells.
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