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Abstract
Despite the importance of characterizing genes that exhibit subcellular localization changes

between conditions in proteome-wide imaging experiments, many recent studies still rely

upon manual evaluation to assess the results of high-throughput imaging experiments. We

describe and demonstrate an unsupervised k-nearest neighbours method for the detection

of localization changes. Compared to previous classification-based supervised change

detection methods, our method is much simpler and faster, and operates directly on the fea-

ture space to overcome limitations in needing to manually curate training sets that may not

generalize well between screens. In addition, the output of our method is flexible in its utility,

generating both a quantitatively ranked list of localization changes that permit user-defined

cut-offs, and a vector for each gene describing feature-wise direction and magnitude of

localization changes. We demonstrate that our method is effective at the detection of locali-

zation changes using the Δrpd3 perturbation in Saccharomyces cerevisiae, where we cap-

ture 71.4% of previously known changes within the top 10% of ranked genes, and find at

least four new localization changes within the top 1% of ranked genes. The results of our

analysis indicate that simple unsupervised methods may be able to identify localization

changes in images without laborious manual image labelling steps.

1. Introduction
Advances in proteome-wide screening technologies [1] combined with high-throughput
microscopy techniques have led to the development of image collections [2–4] where a large
fraction of the proteome is tagged with GFP (green fluorescent protein) and systematically
imaged, often across a number of chemical or genetic perturbations. As the localization of a
protein provides important information on its regulation, identifying the proteins that change
localization between a chemical or genetic perturbation and wild-type can characterize the sys-
tems-wide response of an organism to a perturbation. Thus, a major goal of these experiments
is to systematically identify proteins that change in subcellular localization between screens
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and conditions, which we refer to as “change detection” for subcellular localization. Despite the
importance of characterizing these localization changes, automated methods remain lacking:
studies rely upon the manual assessment of localization over thousands of pairs of images
between conditions [5,6]. Thus automated detection of localization changes is currently a key
bottleneck in the discovery of key genes impacted by a perturbation.

Building upon successes of classification-based approaches in assigning localization to wild-
type yeast proteins [7], previous work approached localization change detection in Saccharo-
myces cerevisiae through supervised learning, by defining sixteen morphological classes corre-
sponding to subcellular localization classes and training classifiers from expert-curated
examples from the wild-type [8]. Then, localization change detection is accomplished by com-
paring the classes assigned to wild-type genes versus the perturbation. By comparing a wild-
type screen to a Δrpd3 screen (a genetic perturbation), 31 protein localization changes induced
by Δrpd3 were found. However, we note several limitations in this method. First, the method is
extremely time-consuming, requiring the manual curation of almost a hundred individual
examples for each localization class (to be used as a training set for the classifier) representative
of the range of variation in morphology, imaging, and intensity of markers. Second, it may not
be easily generalizable, as all of the examples are curated from the wild-type; the model may
not perform well on a perturbation that induces a change in cell morphology. Training a model
for each experimental condition (in addition to the wild-type) is not desirable either.

The extensive training and problems with generalization for the supervised method moti-
vated our development of an unsupervised method that acts directly on the image feature
space. In this approach, we build a set of quantitative descriptors (features) to represent (pro-
file) each gene, using measurements on the images. This is achieved by first segmenting images
into single cells, and then extracting features (such as average intensity of GFP or statistics
describing the spread of GFP) from each individual cell. The features corresponding to single
cells can then be aggregated into features for each gene by averaging the features of all cells for
a gene. Ljosa et al. [9] provide an evaluation of this method, in addition to several other meth-
ods of transforming single-cell features into gene features.

A naïve method for localization change detection is to simply subtract, for each gene, the
features representing the gene in the perturbation from the features representing the gene in
the wild-type (termed the “change vector”), which operates under the principle that if the
genes are in similar localizations they should have similar feature values, resulting in values
close to 0 where there is no change and highly positive/negative values where changes exist.
However, this method is hampered by the presence of “global effects”, such as microscopy con-
ditions or cell morphology changes, which lead to global changes in feature measurements, but
do not necessarily affect all proteins and features in the same way.

To compensate for this issue, we employ a k-nearest neighbour (kNN) method. We retrieve
the k-nearest neighbours of each gene in the wild-type feature space. Assuming the number of
genes that change is likely to be small, the neighbours retrieved for each gene will be majority
static (i.e. unchanged in localization in the perturbation relative to the wild-type); therefore,
their changes will be representative of genes that are static and will capture the effects of global
experimental differences in the local region of the feature space. We test if the change vector
for a gene is an outlier compared to this set of change vectors to determine if a localization
change has occurred. In principle, this method can be applied to any set of features. However,
for the scope of this paper, we specifically demonstrate using a set of interpretable features that
model the spread of protein within cells [10]. Overall, our unsupervised kNNmethod performs
quite effectively relative to its simplicity and speed, capturing 71.4% of a list of previously-
known localization changes ([8], for which we had enough data]) within the top 10% of ranked
genes and facilitating the discovery of at least four new localization changes within the top 1%
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of ranked genes for the Δrpd3 perturbation. Additionally, we demonstrate that the output of
our method is useful for facilitating further manual assessment, generating a ranked list of
genes with vectors that show the direction and magnitude of feature changes. The results of
our analysis indicate that simple unsupervised methods may be able to identify localization
changes in images without laborious manual image labelling steps.

2. Methods

2.1 Dataset
We use two screens from the publicly available CYCLoPs database for our experiments,
rpd3del_1 (a RPD3 knockout screen) and its respective wild-type screen WT3 [4]. Four sets of
micrographs per gene were retrieved from each screen, for 4143 genes.

2.2 Image Analysis and Feature Extraction
Image analysis and single-cell feature extraction was performed using the pipeline described by
Handfield et al. [10], chosen due to its easily interpretable localization features. The pipeline
first segments each image into single cells, and then extracts features from each cell based on
the intensity and spread of GFP within the cell. For example, since the intensity of a GFP signal
relates to the level of protein expression, the average distance of a protein to the centre of a cell
can be estimated by weighing the distance of each GFP pixel to the centre of the cell by its
intensity relative to the sum of intensities of all GFP pixels contained in the cell, and summing
these values. Overall, the pipeline results in the assignment of a type (mother, bud, and lone)
and six features describing localization (intensity of GFP signal, average distance between pro-
teins, average distance to protein mass centre, average distance to cell periphery, average dis-
tance to cell centre, and average distance to bud neck) to each cell.

From these single-cell features, Handfield et al. generate features for each gene by binning
the cells corresponding to that gene by size (10 bins) and by type (mother and bud, 2 bins) to
represent cell cycle stage, before averaging single-cell features within each bin to generate a vec-
tor of 120 features. We follow this strategy with a small modification, where we reduce the
number of bins for each type from 10 to 5 by merging adjacent bins. We do this to increase the
number of cells within each bin, thus improving the reliability of the gene features. At this
stage, we also filter the dataset under the criterion that a gene must have at least 5 cells in each
bin for both the Δrpd3 and wild-type screen in order to be retained. After filtering, 1985 genes
remained.

As with Handfield et al., we compute the averages of each of the 6 features for all single cells
in each of the 10 bins, resulting in a 60 feature vector for each gene in each the Δrpd3 and wild-
type screen. We note that using the mean of single-cell features sometimes results in gene fea-
tures that are skewed by outlier cells in the bins (discussed more in the Results and Discussion
section), so we also generate and benchmark two alternative profiles using the truncated mean
(5% two-tailed cut-off) and the median, respectively, in place of the mean. Finally, gene fea-
tures are rescaled to lie in similar ranges by dividing the intensity feature by 100 and multiply-
ing localization features by 10 (as in Handfield et al.).

2.3 kNN Analysis and Ranking of Output
For each gene, we generate a change vector by subtracting the gene features of the Δrpd3 screen
from the wild-type. We chose a value of 50 for k from visually assessing the results of clustering
of the wild-type gene features using hierarchical agglomerative clustering with average linkage
and Euclidean distance, clustered using the Cluster 3.0 package [11]; from this assessment, we
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determined that the vast majority of genes appear to have at least 50 other genes with very sim-
ilar localization feature patterns. We further validate this parameterization of k by evaluating
values of 10, 25, 100, and 200 for k.

Thus, for each gene, we retrieve the k nearest neighbours in the wild-type gene features
using Euclidean distance. To do this, we first calculate the pair-wise distance matrix, which
stores the distance between each pair of genes based upon their profiles. For each pair of wild
type gene feature vectors a and b, we calculate the Euclidean distance D(a, b), where i is the ith
feature of the profile and n is the number of features in the profile:

Dða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðai � biÞ2
s

For each gene’s feature vector a, we look up the k smallest D(a, b) values and add each gene
b to a set B representing the 50 nearest neighbours for a. Finally, we retrieve the change vector
for each gene in B to create a matrix of k change vectors X of the k nearest neighbours, where xa
= awt−aRPD

We then want to compare the change vector for the gene of interest to this matrix of change
vectors to determine if the gene is an outlier in its change or not. We do this in a feature-wise
manner: for each feature in the gene’s change vector, we calculate the modified z-score M
based upon the mean and the median absolute deviation of the k values for that feature in the
set of change vectors:

Mi ¼
0:6745ðxi � ~xiÞ

MADi

Where i is the ith feature, such that xi is the ith feature of the gene’s change vector and ~xi is
the median of the set of change vectors for the gene’s neighbours for the ith feature, andMADi

is the median absolute deviation of the set of change vectors for the gene’s neighbours for the
ith feature:

MADi ¼ medianimðjxim �medianinðxinÞjÞ

Where xi1, xi2 . . . xik are the features of the set of change vectors for the gene’s neighbour for
the ith feature. By repeating this for each feature in each gene, we calculate a vector of modified
z-score corresponding to the features for each gene.

We consider more strongly positive/negative modified z-score as stronger outliers and
therefore, as an indicator of a more likely or dramatic localization change. We use the modified
z-score as it is robust against outliers [12]–while we can assume the set of change vectors
largely reflects static genes due to the relative rarity of localization changes, localization changes
may still occasionally be represented. Overall, our kNNmethod is related to kNN regression,
with two key differences. First, rather than simply using neighbours to predict the conditional
expectation for a point, we detect deviation from the conditional expectation using the z-scores;
second, the neighbours are chosen based on the similarity of the gene profiles associated with
each point, and the z-score (which includes the kNN conditional expectation) are computed
based on the change vector.

From running this procedure, the output of the kNN analysis is a vector of 60 modified z-
scores for each gene, each corresponding to a gene feature. To isolate localization changes, we
take the root mean square (RMS) of the modified z-scores for only the 50 localization features
for each gene; we use RMS to smooth outliers (as a strong modified z-score in just one gene fea-
ture may be an error caused by outlier single cells or other factors) while still up-weighing
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strongly positive/negative z-scores. For each gene, the RMS is calculated as:

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

Mi
2

s

Where i is the ith feature, n is the total number of features, andMi is the modified z-score
for the ith feature.

Genes are ranked by order of descending root mean square modified z-score value.

2.4 Evaluation of Rankings
To obtain a measure of precision, we compare the output of our kNNmethod to the 31 known
genes with localization changes originally discovered by Chong et al. [8]. Within our filtered
1985 genes, 14 of these genes are retained. We note that Chong et al. appear to be able to apply
their classifiers to much more of the data; this can be explained by the features used and the fil-
tering strategies employed in our respective experiments. Whereas we choose features that bin
cells by size to capture cell cycle time-points, Chong et al. initially pool all cells together and
use a classifier to identify 3 cell cycle points. Thus, while we explicitly filter by sample size at
this stage, this task is handled implicitly within tests that Chong et al. employ to determine if a
localization change is significant or not. To visualize our results, we plot the fraction of known
localization changes found against the fraction of all genes in the dataset retrieved (by rank
cut-offs). Additionally, we retrieve the micrographs corresponding to the top ranked genes by
our kNNmethod for the mean profile and qualitatively assess these micrographs with the assis-
tance of the modified z-score vectors of the corresponding genes to determine localization
changes.

Finally, we compare our results against a naïve method using just the change vectors. We
rescale features of the change vectors by subtracting the mean and dividing by the sample stan-
dard deviation of the feature for all change vectors. Then, we calculate the RMS of the change
vector for each gene, and rank the results using RMS (as described in the previous subsection).

2.5 Visualization of Results
We visualize our matrixes of gene profiles, modified z-scores, and change vectors using heat
maps generated by Java Treeview [13]. In these visualizations, rows represent genes and col-
umns represent features. Features are ordered first by type (bud, then mother), then by bin (1
to 5), then by feature in order of intensity, average distance between proteins, average distance
to protein mass centre, average distance to cell periphery, average distance to cell centre, and
average distance to bud neck (abbreviated in figures as INT, SEF, MCT, EDG, CEN and NEC,
respectively). Colour represents sign of value (green being negative, red being positive), while
intensity of colour represents magnitude (with a brighter colour being stronger).

3. Results and Discussion

3.1 kNN Compensates for Cluster-Specific Global Changes
Retrieving and visualizing the change vectors for our clustered wild-type gene features shows
that the change matrix exhibits systematic effects that are consistent within clusters, but differ
between clusters. Additionally, some clusters exhibit more dramatic effects in terms of magni-
tude. The uneven impact of global changes upon clusters means simply looking for large mag-
nitudes in the change matrix is unreliable. As we show in Fig 1, thresholding the change matrix
simply results in the highlighting of genes in subcellular localizations disproportionately
impacted by global effects. In contrast, the thresholded modified z-scores show a spread of
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values across subcellular localizations, suggesting the kNNmethod successfully compensates
for the uneven global effects across subcellular localization clusters.

3.2 Benchmarking of Ranked kNNGenes with Known Changes
We plot the fraction of known localization changes retrieved against the logarithmic-trans-
formed fraction of all genes in the dataset retrieved for the naïve method compared to the kNN
method using various methods of profiling genes (Fig 2), using the genes found with the super-
vised method by Chong et al. [8]. We caution against taking these plots as an exact indicator of
precision as the unsupervised algorithm may be sensitive to different localization changes com-
pared to Chong et al.’s supervised method. For instance, since our kNN algorithm implements
thresholds and robust measures to reduce noise, it may not be sensitive to smaller changes in
localization. Conversely, as we demonstrate in our qualitative assessment of our top 20 ranked
results, we find some localization changes through our kNNmethod not found previously.
However, the comparison still provides a rough indication of precision–for instance, we can
see that the kNNmethod for all profiles clearly outperforms the naïve method up until at least
85% of known localization changes retrieved.

Originally, we used the mean profile for genes. However, we noted that this measure was
sensitive to outliers in the single-cell data, occasionally generating highly ranked genes that

Fig 1. Heat map visualizations of the naïvemethod versus our kNNmethod. Clustered wild-type gene features, the change matrix, the
thresholded change matrix, the naïve method (features thresholded using a cut-off of absolute feature > 12.0), and the thresholded modified z-
scores from the kNNmethod (features thresholded using a cut-off of absolute feature > 2.0) are shown from left to right. Information on the heat
map visualization can be found in the “Visualization of Results” section in the Methods.

doi:10.1371/journal.pone.0158712.g001
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showed no discernible localization change. For instance, as shown in Fig 3, for the gene
ADD37, the modified z-scores show a highly negative value in the distance between proteins
measure of bud cells in the third bin. Evaluating the wild-type single cell data identified a single
bud cell for that bin with either a highly abnormal morphology or an error in segmentation.
However, because this cell had a much lower distance between proteins feature relative to the
other cells in the bin, it ended up heavily affecting the average for this feature relative to the
Δrpd3 feature.

To make our method more robust to single-cell outliers, we implemented a truncated mean
and a median profile for genes. However, this represents a trade-off. From qualitative

Fig 2. Fraction of known localization changes retrieved against the log10 of fraction of all genes retrieved for the kNNmethod with mean,
truncated mean andmedian profiling.We also show the naïve method and the X = Y curve for comparison.

doi:10.1371/journal.pone.0158712.g002

Unsupervised Image-Based Detection of Changes in Protein Localization

PLOS ONE | DOI:10.1371/journal.pone.0158712 July 21, 2016 7 / 13



assessment of the top 20 hits, we observe that many of the genes identified to have a localiza-
tion change still have a large portion of cells in the Δrpd3micrographs with the same subcellu-
lar localization as the wild-type micrographs, with the localization change obviously affecting
the proportion of cells localizing to a compartment or producing new subcellular localization
classes not witnessed in the wild-type (or vice-versa). The truncated mean and median profiles
are less sensitive to these changes. While the performance of the truncated mean and median
later becomes comparable to the mean, we consider that in the most straightforward practical
use of retrieving images for qualitative assessment, we are primarily concerned with the top
few hits to narrow down genes for further assessment. Thus, we assess the top genes ranked by
the mean for qualitative evaluation, in spite of its greater sensitivity to single cell outliers, in
part 3.4 of this paper.

We also note that the naïve method outperforms the kNNmethod in retrieving the final
~7% of known localization changes, suggesting there are certain types of localization changes
that are difficult for the kNNmethod to discover. To an extent, this behaviour is expected.
First, we note that the naïve method still does capture localization changes to an extent, with
the key issue being the extremely large number of false positives due to noise and global effects;
in other words, the naïve method still performs better than random chance. Second, one limita-
tion of our method is that it may generate false negatives where multiple proteins exhibit

Fig 3. Example of a false positive generated by outliers in single-cell data. ADD37 is reported as a top-ranked gene for localization change
using mean profiles despite no obvious phenotype. A shows the feature for distance between proteins is very strongly negative in bud cells in bin 3.
The single cell-data for this bin is shown in B, which shows a single cell has a disproportionately high value for this feature, skewing the mean.
Looking up this cell in the micrograph in C shows that the cell is either mis-segmented or expressing the protein differently from other cells. Feature
abbreviations can be found in the “Visualization of Results” section in the methods.

doi:10.1371/journal.pone.0158712.g003
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identical localization changes. For these genes, neighboring genes in the wild-type gene features
may have similar change vectors, reducing the magnitude of the modified z-scores. While we
do not observe this specific phenomenon for this screen, we observe a similar one: the lowest
ranked of the known positives was CGR1, which was previously found as a nucleus to nucleolus
localization change by Chong et al. [8] As genes localizing to these compartments are not very
well separated by our features, the variance in the distribution of change vector for the static
nucleus-localized neighbors may have overlapped with the change vector of CGR1, de-empha-
sizing the subtle changes for this gene.

Fig 4. Fraction of known localization changes retrieved against the log10 of fraction of all genes retrieved for the kNNmethod for k = 10, 25, 50,
100 and 200, respectively.We also show the naïve method and the x = y curve for comparison.

doi:10.1371/journal.pone.0158712.g004
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3.3 Parameterization of k is a Balance
To validate our selection of k = 50, we tested the performance of the algorithm with several
other parameterizations of k (10, 25, 100, and 200). We visualize these results in Fig 4 as plots
of fraction of known localization changes retrieved against the logarithmic-transformed frac-
tion of all genes in the dataset retrieved for the naïve method compared to the kNNmethod,
using the mean profiling method for all plots.

In general, we observe the best performance from k = 50. We also observe that k = 10 per-
forms worse than k = 25, and k = 200 mostly performs worse or comparably to k = 100.
Together, these results suggest that there is an optimal point for k. Too low of a k parameter
may result in inadequately-powered change vector comparison sets, and may result in false
negatives for genes that change in localization together. But too high of a k parameter may
cause false positives from the value of k exceeding the number of genes that localize to some
compartments in the wild-type, resulting in the retrieval of a change vector comparison set
that includes genes from other localization classes. However, the differences between the vari-
ous selections of k used in this experiment are fairly subtle, suggesting the method is robust.

3.4 Qualitative Assessment of Top Ranked Genes
From the top 20 genes ranked by our kNNmethod using the mean profile for k = 50, we iden-
tify several new localization changes in addition to 3 previously found by Chong et al. (PAB1,
RAD7, and YCR061W) [8]. We show 4 examples of new changes found by our method in Fig 5
(ADE6, SED1, SRP1, and UME1), along with a description of the localization change. These
examples represent only the most visually obvious localization changes within the top 20
genes; not all examples are easily validated by human eye, as they may contain more subtle

Fig 5. Curated examples from the top 20 ranked genes from themean profile. Representative images from the wild-type and Δrpd3 screens
are shown for 4 newly-found genes exhibiting localization changes, along with a description the change and the rank of the gene using the mean
profile. In addition, we show two examples of false positives in the top 20 ranked genes. Cell segmentations are outlined in blue, with mother-bud
associations shown as white circles. The white cross-outed regions are artifacts discarded by the image analysis software.

doi:10.1371/journal.pone.0158712.g005
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changes such as shifts in proportion of cells in each localization class. Thus, while the lower
bound on the number of new changes found in the top 20 genes ranked by our method is 4,
there may be further localization changes contained.

In addition to the false positives caused by outlier cells described in the previous subsection,
we note that the kNNmethod is sensitive to localization classes that are highly variable in mor-
phology (such as the mitochondria, peroxisome, or the endoplasmic reticulum), and to genes
that are variably expressed (e.g. temporally expressed genes). Some examples are documented
in Fig 5. We suggest that part of this sensitivity is due to the feature selection. As Handfield
et al. note, while their features have the advantage of being easily interpretable, they do not nec-
essarily outperform more complex features [10]. To filter subcellular compartments with
highly variable morphology, our kNNmethod may benefit from the inclusion of features or
use of feature sets that account for this variability (e.g. texture measurements) in order to
reduce the distance of the change vector between the Δrpd3 perturbation and the wild-type in
the feature space relative to “real” localization changes. We note that previous unsupervised

Fig 6. Modified z-score vectors can be interpreted to determine direction of feature-wise change.We show the
modified z-score vector for TSR1 as a heat map (more information in “Visualization of Results” section in the Methods) and
representative images of TSR1 for the wild-type and the Δrpd3 screen; TSR1 has strongly positive modified z-score in
mother features for distance between proteins, distance to protein mass centre, distance to mass centre, and distance to
bud neck, and negative ones in features for distance to cell periphery. Thus, we expect the former features to be larger in the
wild-type than the Δrpd3 and the latter to be larger in the Δrpd3 than in the wild-type. In other words, we expect the GFP in
Δrpd3mother cells to be denser, closer to the nuclei, closer to the bud neck, and further from the cell periphery relative to
the wild-type. This interpretation is consistent with the localization patterns seen in the images.

doi:10.1371/journal.pone.0158712.g006
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approaches for tracking protein localization across the cell cycle in time-lapse microscopy have
used texture features in distinguishing some localization changes [14].

3.5 Modified Z-Score Vectors are Interpretable
Owing to the interpretable properties of the features selected for these experiments, the modi-
fied z-score vectors can be used to interpret the nature and direction of the average localization
changes of the sample. The sign of the modified z-score of a gene feature indicates the direction
in which we expect the feature to deviate from a gene that remains static; a negative modified
z-score indicates that we expect the change vector feature to be smaller, whereas a positive
modified z-score indicates that we expect the change vector feature to be larger. The change
vector is the wild-type gene features subtracted from the Δrpd3; thus, a positive value in a fea-
ture indicates that the gene feature is larger in the wild-type than the Δrpd3 profile, and a nega-
tive value indicates the opposite. We demonstrate in Fig 6 for the localization change for the
gene TSR1 (ranked 22nd by mean profile), which is also newly discovered by our method owing
to its high placement in our rankings.

Conclusion
In this paper, we demonstrate a simple but surprisingly effective unsupervised method for the
proteome-wide detection of localization changes. The key advantage of our method is that it is
extremely fast to operate compared to previous supervised attempts at this problem, requiring
only the feature space and no expert labelling of images. In addition, the method generates a
quantitatively ranked list of changes along with a modified z-score vector that represents the
feature-specific directions of change, facilitating manual qualitative assessment and providing
the potential for further refining and processing of output.
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