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Abstract

We demonstrate how the need to cope with operational faults enables evolving circuits to
find more fit solutions. The analysis of the results obtained in different experimental condi-
tions indicates that, in absence of faults, evolution tends to select circuits that are small and
have low phenotypic variability and evolvability. The need to face operation faults, instead,
drives evolution toward the selection of larger circuits that are truly robust with respect to
genetic variations and that have a greater level of phenotypic variability and evolvability.
Overall our results indicate that the need to cope with operation faults leads to the selection
of circuits that have a greater probability to generate better circuits as a result of genetic var-
iation with respect to a control condition in which circuits are not subjected to faults.

Introduction

Explaining how random genetic changes and natural selection can lead to complex useful inno-
vation represents one of the hardest challenges for evolutionary theory. One crucial aspect
behind innovation is constituted by the organism’s capacity to generate phenotypic variations
in response to genetic and environmental variations. In that respect it is important to consider
that phenotypic variation arises not only as a result of genetic variations but also as a result of
environmental variations [1] and that the effect of genetic and environmental variations on the
phenotype depends on the organization of the phenotype itself [1-3].

The objective of the work described in this paper is to verify experimentally whether the
need to cope with environmental variations promotes evolvability, i.e. whether digital circuits
evolved in variable environmental conditions discover more fit solutions than circuits evolved
in stable environmental conditions. In particular, we investigate whether the need to cope with
internal variation caused by component faults can promote evolvability.

We decided to use digital circuits since they have been widely used in artificial evolutionary
studies [4-6] and since they share with natural systems (e.g. proteins, RNA, regulatory circuits
and metabolic networks) the following properties [7-8]: (i) any phenotype (i.e. any circuit
computing a given logic function) can originate from many different genotypes, (ii) these geno-
types, giving rise to the same phenotype, can vary significantly among themselves, (iii) these
genotypes span over vast genotype networks or neutral networks [9-10], i.e. genotypes giving
rise to the same phenotype connected through single locus variation links, (iv) genotypes
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typically have many neighbors with the same phenotype and are thus robust to some extent to
mutations, (v) the neighborhood of genotypes belonging to the same neutral network includes
genotypes that give rise to rather different phenotypes.

For sake of clarity, we define phenotype as the logic function computed by a given circuit.
We define phenotypic variability as the propensity of an individual or of a population to gener-
ate different unique phenotypes as a result of genetic variation. Variability should not be con-
fused with variation, which refers to actual variations occurring between the individuals of a
population (e.g. the heterozygosity or the degree of polymorphism of a population). Moreover
we define the term evolvability as the propensity of genetic variations to sometime produce
phenotypic adaptations. Phenotypic variability and evolvability indicate the potential or the
propensity to vary and to improve, respectively, and “thus belong to the group of ‘dispositional’
concepts, such as solubility” [2]. Notice that although phenotypic variability likely correlates
with evolvability, a high phenotypic variability does not necessarily imply a high evolvability.
Multiple definitions of the term evolvability are in use [2-3, 10-11]. We adopted the definitions
reported above since they enable us to distinguish between variations and adaptive variations
and since they can be clearly operationalized in the case of our experiments. Indeed, they can
be measured by generating from an evolving circuit a large number of genetically varied cir-
cuits and by counting the fraction of different unique phenotypes and the fraction of fitter phe-
notypes (for more details see below).

The relation between robustness to genetic variations, robustness to fault tolerance, and phe-
notypic variability in evolving digital circuits has already been investigated in several studies.

By exploring the space of 10** logic circuits (genotypes) and of 10'® corresponding logic
functions (phenotypes), Raman and Wagner [8] observed that: (i) the robustness of circuits
with respect to mutation and to faults is high on the average, (ii) different circuits with the
same phenotype have a broad distribution of robustness to genetic variations, with some cir-
cuits being much more robust than others, and (iii) larger circuits are more robust to mutations
than smaller circuits. Larger circuits are more robust than smaller circuits also with respect to
mutations that affect the components of the circuit that actively contribute to the output of the
overall circuit. Moreover, the authors observed how neutral evolution tends to select circuits
that have a high robustness with respect to mutation but a low phenotypic variability [8]. The
neutral evolutionary process was realized by choosing a circuit computing a given function,
generating an initial population composed of identical copies of the same circuit, generating
varied copies of the circuits, and selecting the variations that preserve the function computed
by the original chosen circuit.

Hu and all. [12-13], instead, analyzed in an exhaustive manner the space of 228 logic circuits
(genotypes) and of 16 corresponding logic functions (phenotypes). The circuits were consti-
tuted by 2 inputs, 4 gates and 1 output. Their analysis reveled that: (i) the genotype space is
divided into only 16 fully connected neutral networks corresponding to 16 phenotype net-
works, (ii) the size of the networks varies significantly, and (iii) the genotypes located in the
innermost core of the networks are characterized by a high level of robustness to genetic varia-
tion and by a low level of phenotypic variability. Moreover, by analyzing the course of random
walk exploration processes carried out from a randomly selected genotype belonging to a given
network toward the first encountered genotype belonging to a different network, the authors
observed that: (i) different networks have rather different accessibility levels (i.e. probability to
be reached through neutral and/or adaptive variations), (ii) the time necessary to reach a net-
work through neutral and/or adaptive variations is correlated with the accessibility of the net-
work (iii) the accessibility of a network is correlated with the robustness to genetic variations of
the genotypes forming the network, and (iv) genotypes robust to genetic variations are more
likely to be reached than less robust genotypes.
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Finally, in a series of studies conducted by evolving digital circuits for the ability to perform
a given target function, the authors demonstrated how forcing the circuits to operate in the
presence of failures of circuit components lead to the evolution of circuits that are more robust
against these faults 5, 14-15]. The robustness of evolving circuits is not achieved through the
development of redundant solutions, i.e. solutions that include multiple copies of components
and in which the failure of one component is compensated by the activity of another identical
component. Rather robustness is achieved through degeneracy, i.e. through the ability of struc-
turally different components to perform the same function [16-17].

In general terms, as discussed by Wagner (2008), the relationship between robustness to
genetic variations and phenotypic variability is characterized by both antagonistic and syner-
getic factors. In fact, from the perspective of a specific genotype, the higher robustness to
genetic variation of the genotype is, the lower phenotypic variability of the genotype is. On the
other hand, from the perspective of a specific phenotype (i.e. from the perspective of the neu-
tral network that includes all the genotypes connected through single genetic variations that
give rise to the phenotype), the higher robustness of the genotypes forming the neutral network
is, the higher the variety of the phenotypes that can be accessed in the neighborhood of the
neutral network of the corresponding phenotype is [10]. Apparently, in some cases, the inter-
play of these factors can have an overall negative effect on phenotypic variability while in other
cases it can have a positive effect. Indeed, by studying simulated RNA molecules that evolve
toward a predefined target shape in a constant environment, Ancel and Fontana [18] observed
a dramatic loss of variability throughout generations that ultimately traps populations in
regions where most genetic variation is phenotypically neutral (a phenomena named “neutral
confinement”). On the other hand, the systematic exploration of the genotype and phenotype
space of simulated RNA molecules reported in Wagner [10] indicates that populations with
robust phenotypes have a higher phenotypic variability than populations with less robust
phenotypes.

In this paper we investigate the relation between environmental variations, phenotypic vari-
ability and evolvability. More specifically, we analyze whether the occurrence of faults drives
the evolutionary process toward circuits with a high phenotypic variability and with a high
evolvability. Moreover we analyze whether the occurrence of faults enables the evolutionary
process to find more fit circuits with respect to a control condition in which circuits are not
subjected to faults.

The results demonstrate that the need to cope with faults promotes the selection of pheno-
typically variable and evolvable circuits, and this, in turn, speeds up the evolution of effective
circuits.

Method

Digital circuits (Fig 1) are systems that compute logic functions, such as the multiplication of
digital numbers, by receiving as input two or more binary (Boolean) values and by producing
as output one or more binary values. They are composed of multiple logic gates that receive as
input two binary values (from the input pattern and/or from the output of other logic gates)
and produce as output one binary value by computing an elementary logic function (OR,
AND, NAND ext.) of the input. The logic function computed by a circuit depends on the func-
tions computed by its constituent logic gates and by the way in which they are wired.

Digital circuits can be realized in hardware or simulated in a computer. In standard elec-
tronic digital circuits the number and type of gates and the way in which they are wired is hard-
wired and hand-designed. In reconfigurable electronic digital circuits (such as the FPGA, see
[19]), instead, the logic function computed by each gates and the way in which gates are wired
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Fig 1. Top. A digital circuit with two inputs, two outputs, and four gates. The right side of the panel shows the
four symbols that correspond to the four kinds of permissible logic gates. The numbers 1-2 indicate the
binary states that are provided as inputs to the circuit (input pattern). The numbers 3—-6 indicate the output
computed by the four corresponding logic gates. The output of the circuit corresponds to the output of the two
logic gates that are wired to the output pattern (4 and 5). The lines indicate the wiring of the circuit. Bottom.
The genotype of the circuit shown on the top picture. The first 4 vectors of 3 numbers encode the
characteristics of the four gates (from top to bottom and from left to right). The blue numbers encode the input
states of each gate. The black numbers encode the function computed by each of the four gates (i.e. 0 = OR,
1=AND, 2 =NAND, 3=NOR). The last two numbers shown in green encode the output states of the circuit.

doi:10.1371/journal.pone.0158627.g001

can be varied. In evolvable hardware applications and in simulated evolving circuits the logic
functions computed by each gates and the way in which gates are wired are encoded in artificial
genotypes and evolved [4-6, 20]. Evolving circuits are selected on the basis of their fitness
which is usually computed by measuring how well the function computed by a circuit approxi-
mates a given target function.

In our experiments we evolved simulated digital circuits with four inputs, 256 logic gates
divided into 16 layers of 16 gates, and one output for the ability to compute a 4-bit even parity
function (i.e. to produce as output 1 when there is an even numbers of 1 in the input pattern
and 0 otherwise). We choose this function since it constitutes a rather difficult problem for
evolving circuits including OR, AND, NAND, and NOR logic gates [6].

The genotype of evolving circuit is described by a vector of integer numbers that encodes
the type of function computed by each logic gates and the way in which gates are wired (see Fig
1, bottom). This approach has been named Cartesian Genetic Programming [21]. More specifi-
cally each genotype includes 256*3 genes that specify the type and the inputs of each logic gate
and 1 additional gene that specifies the ID number of the gate that determines the output of the
entire circuit. The genes that encode the characteristic of each logic gate include three integers
that represent the type of the logic gate and the ID number of the inputs of the gate. The values
of the genes are bounded in the range {1, 4} in the case of integers encoding the type of the
logic gate (1 = OR, 2 = AND, 3 = NAND, 4 = NOR), in the range {1, 4+(L-1)*16} in the case of
the integers that encode the ID of the inputs of logic gates (where L is the layer of the corre-
sponding logic gate), and in the range {5, 261} in the case of the gene that encodes the ID of the
gate that constitutes the output of the entire circuit.

As in several related works [5, 8, 22], we choose to provide digital circuits with a fixed num-
ber of gates since this enables us to use a simple encoding schema. For alternative approaches
in which the number of gates is variable see [15, 23]. However, notice that the usage of a fixed
number of logic gates only limits the maximum size of the circuits. Indeed, as we will see, evolv-
ing circuits typically use a much smaller number of gates than the maximum number, i.e. they
include several non-functional gates that do not contribute to the function computed by the
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circuit itself (for an example, see the gate computing the state 6 in Fig 1). In other words, the
size of the evolving circuits varies in any case within the limit imposed by the maximum num-
ber of gates [20].

To evolve the circuits we created an initial population of 20 randomly generated genotypes
encoding 20 corresponding digital circuits. Each circuit was allowed to produce an offspring,
i.e. a mutated copy of the parent genotype in which genes were replaced with a certain proba-
bility (MutRate) with a number randomly generated with an uniform distribution in the appro-
priate range. Each mutant’s fitness was then compared to the lowest fitness in the parent
population. If the mutant was better or equally good, it replaced the parent. The selection and
reproduction process was repeated for a certain number of generations.

Circuits are evaluated for the ability to map the 2" possible input patterns into the corre-
sponding desired outputs (i.e. 1 for input patterns with an even number of 1 and 0 otherwise).
More specifically the fitness is calculated on the basis of the following equation:

1 &
F:l—?Z|Oj—Ej|ig (1)
p

Where # is the number of inputs of the circuit, j is the number of the input pattern varying
in the range {1, 2"}, O; is the output of the circuit for pattern j, E; is the desired output for pat-
tern j and € is a noise value randomly selected in the range {-Stochasticity, Stochasticity} with a
uniform distribution.

The function of noise is that to make the selection process probabilistic [24]. We decided to
use this technique, rather than probabilistic selection operators such as roulette wheels or tour-
nament selection, since its impact can be tuned quantitatively by varying a single parameter
and since it is qualitatively similar to the stochastic variation of fitness caused by uncontrolled
variations occurring in non-deterministic settings. As examples of non-deterministic setting
consider the case of circuits subjected to random operation faults in which the effect of the
faults is stronger or weaker depending on the malfunctioning gates or the case of evolutionary
robotics experiments in which the fitness scored by a robot depends also on aspects that are
variable (e.g. the initial position/orientation of the robot in the environment and/or the posi-
tions of the obstacles in the environment, see [25]).

In the fault experimental condition each logic gate fails with a certain probability, i.e.
responds to its input by producing the wrong output. To promote the evolution of circuits
robust to faults affecting different gates and combinations of gates, we evaluated the circuit for
one trial without faults and for 200 trials with faults. Each trial includes all possible 2" input
patterns. The fitness is computed by averaging the fitness scored in the no-fault trial (calculated
on the basis of Eq 1) and the average fitness scored on the worst trials subjected to faults:

F +F
Fitness = —— (2)
1 Wtrials
F=—— N F . WTrials € [0,200 3
£ WTrials ; / rials € | ) (3)

Where WTrials is the number of worst trials considered to calculate the fitness scored on
fault trials, Fn is the fitness scored during the no-fault trials calculated in the basis of Eq 1, Ffis
average fitness scored during the worst fault-trials, and 200 is the total number of trials carried
out with faults.

PLOS ONE | DOI:10.1371/journal.pone.0158627 July 13,2016 5/17



@’PLOS ‘ ONE

Robustness Promotes Evolvability

Finally, to promote the evolution of progressively more robust solutions, the probability fr
that a logic gate undergoes to a fault (that is initially set to 0.3) is increased or decreased at the
end of each generation when the average fitness scored during the worst trials is larger or
smaller than ¥ of the fitness scored in the no-fault trial, respectively:

1
— 2) /vFaultRate ,  0.04 < fr < 0.8 (4)

Ff

fr+=fr * <Fn

Where fr, that is constrained in the range {0.04, 0.8}, is the probability that gates undergo to
faults and vFaultRate is a constant that determines the variation rate of fr. The rationale behind
this variation of the fault probability is that it enables to maintain a more constant level of varia-

tion to select upon. Comparative experiments performed by using constant fault probabilities led

to worse performance (results not shown). The reason why we decided to use only the worst fault

trials for the calculation of the fitness instead than all trials is that this increases the selective pres-

sure toward the selection of circuits that are robust with respect to operation faults.

Results

In this and in the following section we report the results obtained in the no-fault experimental con-
dition. The results obtained by subjecting evolving circuits to faults are reported in section 3.2.

Readers might replicate all the experiments described in this paper by downloading and
installing FARSA from “https://sourceforge.net/projects/farsa/” and the experimental plugin
and configurations files from “http://laral.istc.cnr.it/res/digcir/digital-circuits-faults.zip”. Addi-
tional data and results not reported in the paper for reason of space can be downloaded from
“http://laral.istc.cnr.it/res/digcir/faults-supplementary-matherial zip”

To verify the role of the mutation rate and of Stochasticity we measured the percentage of
experiments that lead to optimal solutions within 6,000 generations for different values of the
parameters (Table 1). As can be seen, in the case of the best combination of parameters (Sto-
chasticity = 0.05 and MutRate = 0.02), evolving circuits find optimal solutions in 50% of the
replications of the experiment. By continuing the evolutionary process for 300,000 generations
(Fig 2) we can see how evolving circuits manage to achieve optimal performance sooner or
later. However the discovery of optimal solutions might require a rather long evolutionary
time, i.e. up to 300,000 generations.

The data reported in Table 1 also show that the introduction of moderate level of noise in
the selection process leads to better results (for similar results see [26,27,28]). This can be
explained by considering that the addition of noise enables to select a limited number of less fit
individuals, i.e. enable to reduce the selective pressure. This in turn increases the variation
among the individuals of the population and reduces the risk of premature convergence.

Evolution leads to the selection of small circuits with low evolvability

The analysis of evolved circuits in the no-fault condition indicates that, overall, they are very
robust with respect to mutations. Indeed, by analyzing the effect of single point mutations we
observed that the large majority of them are neutral (Table 2). This high robustness, however,

Table 1. Percentage of evolutionary experiments that achieve maximum fitness in the no-fault condition in 20 experiments carried out with differ-
ent mutation rate and stochasticity range. Each experiment has been replicated 30 times and continued for 6000 generations.

MutRate 0.01
Stochasticity 0.0 26.66%
Stochasticity 0.05 33.33%
Stochasticity 0.08 26.66%
Stochasticity 0.1 20%

doi:10.1371/journal.pone.0158627.t001

MutRate 0.02 MutRate 0.03 MutRate 0.04 MutRate 0.05
33.33% 33.33% 36.66% 36.66%

50% 46.67% 40% 36.66%
26.66% 33.33% 36.66% 30%

30% 30% 30% 26.66%
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Fig 2. Percentage of evolutionary experiments that achieve maximum fitness through out
generations in the no-fault condition. Data obtained by running 30 replications of the experiment for
300,000 generations with Stochasticity = 0.05 and MutRate = 0.02. Notice that the x-scale is semilogarithmic.

doi:10.1371/journal.pone.0158627.g002

is largely due to the fact that the size of the evolved functional circuit is small. Indeed by
restricting the analysis to the mutations that affect the functional part of the circuits (i.e. to the
mutations that alter the characteristics of the logic gates that actively contribute to the output
of the overall circuit), the percentage of neutral mutations drops from 95% to 9%.

The factor that drives evolution toward the selection of small circuits (i.e. circuit with a
small functional part) is the fact that the smaller a circuit with respect to the other individuals
of the population is, the larger the probability that its offspring will receive mutations that do
not affect its functional gates, and consequently, the higher the probability that its offspring
will have a relative higher fitness. This might present some similarities with the protection
hypothesis that postulates that non-functional coding regions of the genotype might protect
the evolving individuals from the deleterious effect of crossover [20].

This is demonstrated by the fact that the number of logic gates that actively contribute to
the output of the circuit is only 30.4 and 18.3, on the average, in the case of circuits evolved for
6,000 generations displaying optimal or sub-optimal performance, respectively. Moreover, it is
demonstrated by the fact that in most of the cases the size of the functional part of evolved cir-
cuits decreases through out generations, when they are subjected to a neutral evolutionary pro-
cess in normal conditions (Fig 3, top, Wilcoxon Rank Sum Test, p < 0.001) while increases in a
control condition in which selected offspring are used to replace only their own parent (Fig 3,
bottom, Wilcoxon Rank Sum Test, p < 0.01). Notice that the latter condition corresponds to a

Table 2. Percentage of single point mutations that do not alter the fitness of the circuit. Data obtained
by subjecting the best circuits of generation 6,000 to 10,000 single point mutations. The “functional” data refer
to the mutations affecting the genes of functional gates (i.e. the gates that actively contribute to the output of
the circuit). In this and in the following Tables/Figs of this section we refer to the 30 replications of the evolu-
tionary experiment carried out in the no-fault condition with Stochasticity = 0.05 and MutRate = 0.02.

% Neutral Mutations
Overall 95%

Functional 9%

doi:10.1371/journal.pone.0158627.t002
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Fig 3. Variation of the functional size of evolved circuits while they are subjected to a neutral evolutionary phase for
100,000 generations. During the neutral phase, individuals are evaluated on the basis of a binary fitness function that assign
a fitness of 1.0 to circuits that compute the same function of the initial circuits and a fitness of 0.0 otherwise. Circuits with
fitness 1.0 and 0.0 are always selected or discarded, respectively. The black disks represent the average size of the evolved
circuits before neutral evolution. The blue crosses indicate the average size every 100 generations during neutral evolution.
Finally, the red disks represent the average size of circuits at the end of the neutral evolutionary phase. The top figure shows
the results obtained in a normal condition in which selected offspring are used to replace one of the parents chosen randomly
(all parents compute the same logic function and have the same fitness). The bottom figure shows the results obtained in a
control condition in which offspring are used to replace their own parent. Data obtained by subjecting to neutral evolution 30
populations each composed of 20 circuits evolved for 6,000 generations.

doi:10.1371/journal.pone.0158627.9003

situation in which the population is divided into 20 different single-individual sub-populations
that evolve independently without competing with each other during selection. The tendency
to select functionally small solutions, therefore, originates as a result of the selection process
(only the best individuals reproduce) and as the result of the fact that smaller circuits have a
greater probability to generate viable offspring than larger circuits.
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Fig 4. Distribution of the number of new unique functions found in the neighborhoods of evolved
circuits and of the size of the circuits. Data obtained by analyzing the neighborhood of 600 evolved circuits
obtained by running 30 evolutionary experiments for 6,000 generations. For each circuit, phenotypic
variability has been calculated by counting the number of novel unique functions computed by sample circuits
found in the neighborhood of the original circuit. Sample circuits have been selected by performing for 10
times a 1,000 steps function-preserving random walk from the original circuit. During each step we generated
a varied circuit, through the application of a single point mutation, that was included in the sample set and
used to generate additional varied circuits or discarded, depending on whether it computed the same function
of the original circuit or not.

doi:10.1371/journal.pone.0158627.g004

Unfortunately, however, the size of the evolving circuits strongly correlates with the pheno-
typic variability of the circuits, i.e. with the number of new unique phenotypes that can be
found in the neighborhoods of the circuits (Fig 4, Spearman Test, rho 0.90229, phi 1.1153*
107>*° n = 600). This implies that evolution in normal conditions leads to the selection of func-
tionally small circuits with low phenotypic variability and low evolvability (see also the results
of the comparison with circuits evolved in the fault condition described below).

A correlation between circuit size and phenotypic variability has already been found by
Raman and Wagner [8]. In their case the correlation was observed by comparing randomly
generated circuits of different size that computed the same logic function. The correlation,
therefore, seems to characterize all circuits, irrespectively from whether they were evolved or
not and irrespectively from the function that they compute.

The fact that the growth of non-coding regions of the genotype can protect evolving individ-
uals from deleterious genetic variations has already been pointed out in previous works [see
20]. Here we show that this protection can be achieved by shrinking the coding regions at the
cost of a reduced phenotypic variability and evolvability.

The tendency of the population to move toward functionally small circuits during neutral
evolutionary phases is a consequence of: (i) the fact that under neutral evolution the population
tend to concentrate toward highly connected parts of the neutral network that correspond to
individuals that are relatively robust against mutations [29-31], and (ii) the fact that individu-
als that are robust against mutations generally correspond to functionally small circuits (Fig 5,
top).

The analysis of the relation between robustness to genetic variation and evolvability reveals
a strong negative correlation with respect to overall variations (Fig 5, top, Spearman Test rho -
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different unique functions and has been calculated by using the same procedure described in the caption of
Fig 4.

doi:10.1371/journal.pone.0158627.g005
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Table 3. Percentage of evolutionary experiments that achieved maximum fitness with different values of the vFaultRate and wTrial parameters.
The MutRate and Stochasticity parameter are set to 0.02 and 0.0, respectively. Data obtained by running 30 replications, each lasting 6,000 generations, for
each combination of parameters. The percentage of success refers to the performance achieved during the trial in which the circuits are not subjected to oper-
ational faults.

vFaultRate =1 vFaultRate = 3 vFaultRate = 5 vFaultRate =7 vFaultRate =9
WTrials = 35% 46.66 43.33 50 53.33 43.33
WTrials = 30% 50 50 60 53.33 40
WTrials = 25% 53.33 53.33 60 46.66 40
WTrials = 20% 50 46.66 53.33 40 36.66
WTrials = 15% 46.66 46.66 50 43.33 36.66
WTrials = 10% 33.33 30 33.33 30 26.66

doi:10.1371/journal.pone.0158627.t003

0.87538, phi 6.4189* 107" n = 600) and a strong positive correlation with respect to variations
affecting the functional components of the circuits only (Fig 5, bottom, Spearman Test rho
0.70301, phi 6.4189* 10" n = 600). This can be explained by considering that the circuits that
are more robust to genetic variations overall are generally circuits with a small number of func-
tional gates (see Fig 5). The robustness of these circuits with respect to genetic variations, there-
fore, is due primarily to their small size and not to a genuine ability to compensate the effects
of variations. On the contrary, the circuits that are robust with respect to variations affecting
their functional components are larger and are genuinely robust, i.e. are able to compensate to
a greater extent the effects of genetic variations affecting functional gates (Fig 5, bottom).
Larger circuits that are genuinely robust to genetic variations are also more evolvable with
respect to smaller circuits that are robust only thanks to their small size.

The need to face faults promote evolvability

In this section we report the results obtained by evolving circuits in the fault condition, i.e. in a
condition in which each circuit gates is subjected to fault during operation with a certain
probability.

To identify the optimal value of the two additional parameters that characterizes the evolu-
tionary process in the fault condition we systematically varied the fraction of worst trials con-
sidered in the fitness function and the rate of variation of the fault frequency across
generations. As shown in Table 3, the values of the parameters that maximize the percentage of
replications leading to optimal performance in 6,000 generations are WTrials = 25% and vFaul-
tRate = 5 (see Table 3). For the mutation rate we kept the same value that resulted optimal in
the no-fault condition (MutRate = 0.02). The stochasticity range was set to 0.0 given that in the
fault condition the fitness measure is already subjected to the stochastic effects caused by the
randomly occurring faults, i.e. by the fact that the fitness loss caused by faults depends on the
specific gates that are affected by faults. Indeed, in this case the usage of a stochasticity range
greater than 0.0 is counter productive (see Table 4) and not beneficial as in the case of the no-
fault condition (Table 1).

The comparison of the results indicates that, as expected, the circuits evolved in the fault
condition are more robust with respect to genetic variations affecting their functional

Table 4. Percentage of evolutionary experiments that achieve maximum fitness in experiments carried out with different values of the Stochasti-
city parameter. Data obtained by running 30 replications lasting 6,000 generations for each value of the parameter. The Whrial, vFaultRate, and MutRate
parameters have been set 25%, 5, and 0.02, respectively. The percentage of success refers to the performance achieved during the trials in which the circuits
are not subjected to operational faults.

Stochasticity = 0.0 Stochasticity = 0.01 Stochasticity = 0.02 Stochasticity = 0.03 Stochasticity = 0.04 Stochasticity = 0.05

60 36.66 30 33.33 23.33 20
doi:10.1371/journal.pone.0158627.1004
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Table 5. Characteristics of the neighborhoods of circuits evolved in the no-fault and fault conditions. Functional variations refer to variations affecting
the gates that actively contribute to the output of the circuits. Data obtained by analyzing 600 evolved circuits obtained by running 30 evolutionary experi-
ments for 6000 generations in each condition. Each circuit was subjected for 100 times to a 1,000 steps function-preserving random walk (see caption of

Fig 4).
No-fault Fault p-value (Wilcoxon Rank Sum test)
% neutral variations 94.2601 89.3427 <107'%
% maladaptive variations 5.7389 10.6559 <1071%6
% adaptive variations (evolvability) 0.0010 0.0014 <107°
% functional neutral variations 0.9986 2.0705 <1073
% functional maladaptive variations 4.0953 7.6177 <107'42
% functional adaptive variations 0.0008 0.0011 <107
number of new unique phenotypes (phenotypic variability) 583.42 914.80 <1078

doi:10.1371/journal.pone.0158627.t005

components than the circuits evolved in the no-fault condition (Table 5). Indeed, the percent-
age of variations affecting functional gates that do not produce any loss in performance is
2.05% and 1.01% on the average, in the case of fault and no-fault circuits, respectively. The cir-
cuits evolved in the no-fault conditions are more robust with respect to overall variations than
the circuits evolved in the fault condition. As discussed above, however, this does not reflect a
genuine robustness but simply the fact that circuits evolved in the no-fault conditions are
smaller than the circuits evolved in the fault condition.

The circuits evolved in the fault condition are larger than those evolved in the no-fault con-
dition from generation 6,000 on (see Fig 6, left).

The circuits evolved in the fault condition have a greater phenotypic variability (Table 5).
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Fig 6. Left: Average size of functional circuits throughout generations in the no-fault and fault conditions. Right: Fraction of replications
achieving optimal performance throughout generations in the no-fault and fault conditions. Data obtained by running 30 replications in
each condition for 15,000 generations with the best parameters (i.e. Mutrate = 0.02 and Stochasticity = 0.05 in the no-fault condition;
Mutrate = 0.02, stochasticity = 0.0, Wtrial = 25% and vFaultRate = 5, in the fault condition). The experiments conducted in the fault
condition are considered successful when the evolving circuits display optimal performance during the trial in which the circuit component
are not subjected to fault. In other words, the data displayed in the right Figure are not influenced by the level of robustness of the circuits
with respect to operational faults. Wilcoxon rank sum tests p-value < 10762,

doi:10.1371/journal.pone.0158627.9006
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Finally, the circuits evolved in the fault condition have a greater evolvability. This is demon-
strated both by the fact that the percentage of genetic variations leading to improvements is
higher in the case of the circuits evolved in the fault condition (Table 5) and by the fact that the
circuits evolved in the fault condition achieve better performance from generation 6,000 on
with respect to circuits evolved in the no-fault condition (Fig 6, right). As expected the proba-
bility that random genetic variations lead to improvement (evolvability) is rather low in both
cases (Table 5). However it is higher for circuit evolved in the fault than in the no-fault condi-
tion. Notice that the evolvability is necessarily 0 for circuits displaying optimal performance.
Since the number of optimal circuits evolved in the fault condition is greater than the number
of optimal circuits evolved in the no-fault condition, the difference in evolvability between the
two conditions is even greater than that reported in Table 5. This strengthens our conclusion
that circuits evolved in the fault condition have a greater evolvability than circuits evolved in
the no-fault condition.

The analysis of the relation between robustness to genetic variations and phenotypic vari-
ability reveals, also in this case, a strong negative correlation with respect to overall variations
(Fig 7, top, Spearman Test rho -0.8679, phi 7.2153* 10~"** n = 600) and a positive correlation
with respect to variations affecting the functional gates of the circuits only (Fig 7, bottom,
Spearman Test rho 0.54292, phi 2.6872* 10™*" n = 600).

Conclusions

In this paper we investigated whether the need to cope with component faults promotes evolva-
bility in evolving digital circuits. To verify this hypothesis we compared the results obtained in
two series of experiments in which the evolving circuits were subjected or not subjected to
faults, respectively. The evolvability of the circuit was measured both directly, by calculating
the fraction of variations that lead to improvements in evolving circuits, and indirectly, by veri-
tying whether evolving circuits subjected to fault were able to achieve better performance in a
given number of generations. The data collected demonstrate that indeed circuits subjected to
fault are more evolvable than the circuits that are not subjected to faults, with respect to both
direct and indirect measures of evolvability (see Fig 5 right and Table 5). As far as we know,
this is the first time that this effect is demonstrated through artificial evolutionary experiments.
Moreover, the analysis of our results indicates why the need to cope with faults promotes
evolvability.

The analysis of the circuits evolved in the no-fault condition indicates that they tend to be
very robust with respect to genetic variations. Indeed, the large majority (95%) of the genetic
variations affecting evolved circuits are neutral, i.e. do not alter the fitness of the circuits. This
is due to the fact that mutations enhancing robustness with respect to genetic variation tends
to be retained in further generations even if they are adaptively neutral (i.e. even if they do not
cause any fitness improvement). This in turn is due to the fact that the offspring of individuals
that are more robust to genetic variations, with respect to the other individuals of the popula-
tion, have a lower probability to generate offspring affected by maladaptive mutations.

The tendency to select individuals that are robust with respect to genetic variations have
both negative and positive effects [32]. The negative effect arises as a consequence of the fact
that the robustness with respect to genetic variations is negatively correlated with phenotypic
variability, i.e. with the number of different unique phenotypes that can be generated by mutat-
ing an individual genotype. The positive effect arises as a consequence of the fact that the
robustness with respect to genetic variations enables the evolving population to retain a higher
number of (neutral) variations that in turn enable the population to explore a larger portion of
the neutral networks on which the evolving individuals are currently located. As claimed by
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Fig 7. Distribution of phenotypic variability and robustness in evolving circuits. The top and the bottom
Figures show the correlation between phenotypic variability and robustness to variations overall and to
variations affecting the functional gates only, respectively. The color of each dot indicates the size of the
corresponding circuit. Data obtained by analyzing the neighborhood of 600 evolved circuits obtained by
running 30 evolutionary experiments for 6,000 generations. Phenotypic variability has been calculated by
using the same procedure described in the caption of Fig 4.

doi:10.1371/journal.pone.0158627.g007
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Wagner (2008), the net effect of these negative and positive effects can be positive. This can be
explained by considering that the increase in phenotypic variability gained from the population
thanks to its enhanced ability to retain genetic variations is greater than the loss of phenotypic
variability occurring at the level of the single individuals. This in turn can be explained by con-
sidering that what matters from the point of view of innovating is the possibility to access to
new phenotypes not accessed before and that the neighborhoods of individuals located in dif-
ferent areas of the same neural networks tend to include different unique phenotypes [8, 10].

Unfortunately, however, the selection of individuals robust with respect to genetic variation
drives the evolutionary process toward the synthesis of minimal solutions, i.e. toward circuits
that operate on the basis of a minimum number of functional logic gates (see Figs 3 and 6). In
other words, it drives the evolutionary search toward a specific subarea of the neutral network.
This might reduce and/or eliminate the advantage that can be gained by exploring different
areas of the neutral networks, i.e. the advantage deriving from the fact that different areas of
the neutral networks tend to include different unique phenotypes in their neighborhoods.
Moreover, due to the negative correlation between robustness to genetic variation and pheno-
typic variability (Fig 5 top, [8]), the tendency to maximize robustness by selecting minimal
solutions drives the evolving population toward a sub-area of the neutral network that is char-
acterized by a low phenotypic variability. This implies that the selection of individuals that are
robust with respect to mutations might drive the evolutionary process toward low evolvable
solutions and eventually to evolutionary stagnation. Overall this implies that robustness to
genetic variations achieved in this way, i.e. achieved by simply minimizing the number of genes
encoding functional traits, does not promote but rather reduces evolvability. These minimal
circuits are actually not truly robust with respect to genetic variations. They are not able to tol-
erate genetic variations through redundancy or degeneracy.

Instead, the need to cope with faults drives the evolutionary process toward the selection of
circuits that are not only robust against operation faults (as shown in [5, 14-15]) but that are
also genuinely robust against genetic variations (i.e. that are able to tolerate a greater number
of variations affecting their functional components with respect to circuits evolved in the no-
fault condition, see Table 5). The synthesis of circuits characterized by this form of robustness
reduces the tendency to select minimal solutions (Fig 6) and promotes the selection of solu-
tions characterized by higher phenotypic variability (Fig 7 and Table 5) and higher evolvability
(Table 5). In other words it enhances the probability to generate new better phenotypes as a
result of genetic variation both from the perspective of the single individuals and from the per-
spective of the population that is no more constrained toward the specific sub-area of the neu-
tral network containing small circuits.

Robustness to operational faults constitutes probably the simplest form of environmental
variation that one can study. In future research we plan to investigate the relation between evol-
vability and other form of environmental variations, e.g. systematic non-random variation of
the external environment. Future work should also investigate the effect of operation faults in
experiments in which variations are introduced also through crossing over, duplication, and
deletion genetic operators.
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