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Abstract
The Pacific coast of the Tohoku region of Japan experiences repeated tsunamis, with the

most recent events having occurred in 1896, 1933, 1960, and 2011. These events have

caused large loss of life and damage throughout the coastal region. There is uncertainty

about the degree to which seawalls reduce deaths and building damage during tsunamis in

Japan. On the one hand they provide physical protection against tsunamis as long as they

are not overtopped and do not fail. On the other hand, the presence of a seawall may induce

a false sense of security, encouraging additional development behind the seawall and

reducing evacuation rates during an event. We analyze municipality-level and sub-munici-

pality-level data on the impacts of the 1896, 1933, 1960, and 2011 tsunamis, finding that

seawalls larger than 5 m in height generally have served a protective role in these past

events, reducing both death rates and the damage rates of residential buildings. However,

seawalls smaller than 5 m in height appear to have encouraged development in vulnerable

areas and exacerbated damage. We also find that the extent of flooding is a critical factor in

estimating both death rates and building damage rates, suggesting that additional mea-

sures, such as multiple lines of defense and elevating topography, may have significant

benefits in reducing the impacts of tsunamis. Moreover, the area of coastal forests was

found to be inversely related to death and destruction rates, indicating that forests either mit-

igated the impacts of these tsunamis, or displaced development that would otherwise have

been damaged.
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Introduction
Over the past century, the Pacific coast of Japan’s Tohoku region (Fig 1) has experienced
repeated offshore tsunamis. In 1896, a tsunami occurred after the magnitude 8.5 Meiji Sanriku
Earthquake at 7:32 pm Japan Standard Time (JST) on June 15, 1896. The 1933 tsunami was
generated by the magnitude 8.4 Showa Sanriku Earthquake on March 3, 1933 at 2:30 am JST.
The magnitude 9.5 Great Chilean Earthquake (the only far-field event considered in this analy-
sis) sent waves across the Pacific Ocean, arriving along the coast of Tohoku approximately 22
hours later, on May 24, 1960 at about 2:30 am JST. The magnitude 9.0 Great East Japan Earth-
quake occurred on March 11, 2011 at 2:46 pm JST, generating a tsunami which arrived along
the Sanriku (Iwate and northern Miyagi) coast as quickly as 20 minutes later and along the
Sendai Plain (southern Miyagi) coast about 1 hour later [1]. The source and impact of each of
these events are summarized in [2,3].

After the 1933 event, a limited number of cities in Iwate Prefecture constructed “hard” tsu-
nami defense structures along the coast specifically to protect lives and property from tsuna-
mis. After the 1960 event, the number of projects for this purpose increased rapidly [4]. In
order to protect lives, “soft” countermeasures have also been implemented; an example of this
is the nationwide tsunami warning system, which began operation in 1952 [5]. Coastal forests
have also been used for tsunami mitigation in the region since the 17th century, though their
effectiveness during large events is an active topic of research [6].

The Japanese government’s reconstruction plan [7,8] relies heavily on seawalls (encompass-
ing flood walls, embankments, and river-mouth gates) and bay-mouth breakwaters. From
FY2011-2015, reconstruction projects were given a total budget of 25 trillion yen (about $200
billion) by the central government [9]. From FY2016-2021, the planned reconstruction budget
is 6.5 trillion yen (about $55 billion), with 22 billion yen to be contributed by Fukushima,
Miyagi, and Iwate Prefectures [10].

However, detractors conjecture that hard coastal structures cause a sense of complacency in
residents [11,12], leading to lower evacuation rates and to the tendency to develop residences
in hazardous low-lying areas such as the town of Taro. Some residents oppose seawall con-
struction because of possible negative effects on ocean views and tourism [13]. Aldrich and
Sawada [14], who analyzed municipal level data from the 2011 tsunami, contend that seawalls
had no effect on preventing casualties, and that the $1.6 billion Kamaishi breakwater (the
world’s tallest) “crumbled upon impact” [12] and failed to provide the town with any protec-
tion. Rather, they cite social factors such as community cohesiveness as the main factor affect-
ing mortality in 2011.

Contrarily, Tomita et al. [15] showed that the Kamaishi and Ofunato breakwaters, even in
their post-tsunami damaged state, significantly reduced the extent of each town flooded by the
tsunami, mitigated flow speed and depth in the inundated areas, and delayed tsunami arrival
time long enough to aid the evacuation of residents. Furthermore, others cite the example of
Fudai, where a large river-mouth gate saved the town from destruction [16]. To address this
debate in a quantitative fashion, we implement a statistical analysis of the effectiveness of hard
coastal defense structures on damage to dwellings and loss of lives using municipal and sub-
municipal level historical data from the 1896, 1933, 1960, and 2011 tsunamis. The role of
coastal forests in mitigating [6] vs. exacerbating damage [17] is examined in like manner.

Data Collection and Visualization
S1 Table presents historic data on casualties and damage in each coastal municipality of Miyagi
and Iwate Prefectures due to the 1896, 1933, 1960, and 2011 tsunamis, as well as sub-municipal
data for 2011. Table 1 lists sources for the data shown in S1 Table. Due to mergers of
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municipalities throughout the 20th century, the number of municipalities has decreased since the
1896 and 1933 events. Elevations are reported with respect to the Tokyo Peil (TP) vertical datum.

In this study, the number “dead” includes both those reported as “dead” and those reported
as “missing”. Dwellings “destroyed” includes the sum of the number of dwellings reported as
“swept away”, “collapsed”, and “completely damaged”. “Death rate” or “mortality” is defined as
the ratio of the number dead in each municipality (or sub-municipality) divided by the total
population of the municipality (or sub-municipality). Likewise, “damage rate” is the number of
dwellings destroyed in the municipality divided by the total number of dwellings in the munici-
pality. Other studies (i.e., [14]) define mortality differently, with the denominator containing
only the population of the municipality within the area inundated by the tsunami. However,
records from historical tsunami events (1896, 1933, and 1960) do not contain information on
population and number of dwellings within the inundated area, so total municipal area is used
for all events in order to maintain consistency.

In S1 Table, seawall elevations in 2011 are listed as crest elevation before the 2011 event,
though many locations experienced various modes of failure, such as scour (especially during
drawdown), parapet toppling, and overtopping [19,20,21]. The bay mouth breakwaters listed
in S1 Table were also damaged. Despite the damage these coastal facilities experienced, [15,22]
showed these structures delayed tsunami arrival time by several minutes, thus affording resi-
dents more time to evacuate. The structures also reduced overland inundation extent, depth,
and flow speed, reducing the number of homes destroyed. Since damaged structures provided
protection, and since time and extent of damage are not precisely known, the statistical analysis

Fig 1. Map of coastal municipalities in Iwate and Miyagi Prefectures in 2011. In addition, the
municipalities of Shiogama, Tagajo, Rifu, Shichigahama, and Matsushima lie between Sendai and
Higashimatsushima. Figure created by the authors using prefecture boundary data from [18] and MATLAB
software.

doi:10.1371/journal.pone.0158375.g001
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below is carried out using the pre-tsunami values of seawall crest height and bay mouth break-
water presence. In many municipalities, maximum and minimum values of seawall heights are
listed; this represents non-uniformity of seawall heights in those municipalities. Tsunami eleva-
tions listed in S1 Table represent the maximum run-up in each municipality as recorded in
each source of Table 1.

In addition to census, municipal, and damage data, topography is listed in S1 Table as a var-
iable affecting vulnerability to tsunami. Topography is parameterized as either coastal “plain”
or “ria”. For the most part, the coast south of Ishinomaki (Fig 1) is a broad, open plain, while
the ria coast north of Ishinomaki consists of very narrow valleys surrounded by high moun-
tains. [23] showed the importance of local topography (distance to high ground) and warning
time on mortality in 2011. [24] also cited topography as a major factor determining mortality
in 2011, and found that mortality varied widely even among cities with similar damage rates.
Topography also controls the manner in which tsunamis impact coastal towns; ria towns see
tsunamis arrive as a gradually to rapidly rising water level [25], while tsunamis can impact the
coastal plain as bores (vertical walls of water). [26] showed the effect of topography on runup,
the primary parameter used to indicate local tsunami height in this analysis.

Histograms of total death and destruction rates are shown in Fig 2 below. It can be seen that
both distributions are positively skewed with mortality rates being more heavily skewed than
destruction rates.

The empirical cumulative distribution function (ecdf) plots of total damage and destruction
rates for each prefecture have been plotted in Fig 3. Table 2 summarizes the ranges for the
death and damage rates for the two prefectures.

It can be seen both from Fig 3 and Table 2 that while destruction rates were only slightly
higher in Iwate than in Miyagi, maximum death rates have been substantially higher in Iwate
compared to Miyagi; this is mostly a result of heavy casualties in Iwate during the 1896 tsunami
(S1 Table).

Furthermore, it is interesting to compare the seawall characteristics and tsunami heights for
each prefecture. As can be seen in Fig 4, seawalls as well as tsunami heights are on average
higher in Iwate than Miyagi.

Fig 5 depicts the summary statistics of maximum tsunami and seawall heights, as well as
death and damage rates during 1896, 1933, 1960 and 2011. It can be seen that the most extreme

Table 1. Data Sources.

1896
Miyagi

1896
Iwate

1933
Miyagi

1933
Iwate

1960
Miyagi

1960
Iwate

2011 Miyagi 2011 Iwate 2011 sub-municipal

Tsunami runup
elevation

[45] [79]
[78]

[45] [79]
[78]

[45] [79]
[78]

[45] [79]
[78]

[56] [78] [56] [78] [57] [58] [59]
[60] [78]

[51] [57] [58]
[59] [60] [78]

[78]

Seawall elevation N/A N/A N/A N/A N/A [48] [66] [71] [72] [70]

Municipal area [81] [81] [81] [81] [75] [75] [43] [43] [46] [80] [55] [67] [68] [76]
[74] [61] [65] [73] [69]Inundated area [45] [45] [50] [45] [45] [63] [50] [42] [42] [54] [65]

Population before
tsunami

[62] [47] [75] [75] [75] [75] [75] [75]

Number of people
killed

[62] [47] [45] [45] [56] [63] [49] [56] [64] [51]

Number of dwellings
before tsunami

[62] [47] [45] [45] [63] [52] [41] [41] [52]

Number of dwellings
destroyed

[62] [47] [45] [45] [56] [63] [49] [56] [53] [57] [58]
[59] [60] [64]

[53] [44] [57]
[58] [59] [60]

Forest area [77] [77] [77] [77] [77] [77] Google Earth Google Earth Google Earth

doi:10.1371/journal.pone.0158375.t001
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maximum tsunami heights were observed in 2011, and the far-field 1960 event was the mildest
in terms of its tsunami height. Also, except for only 6 cases in 1960 (5 of which were in Iwate
Prefecture), no seawalls existed during the 1960 and earlier events. It is also interesting to note
that while the destruction rates were not significantly different between 1896 and 2011, the
death rates were much higher in 1896 compared to 2011. This is in large part due to the fact
that the 1896 earthquake did not produce violent ground motion (similar to the more recent
events described in [27] and [28]), so many residents did not evacuate [2].

The bubble charts in Fig 6 depict the impact of maximum tsunami heights and maximum
seawall heights on damage and destruction rates, for cases in which seawalls existed. The size
of the bubbles corresponds to percentage death and destruction rates respectively. One would
expect to see the largest bubbles clustered in the upper left-hand side of the plot. While this is
mostly the case, particularly for death rates, it is apparent from the plots that tsunami heights
and seawalls heights alone do not depict a full picture.

Conditional density plots describe how the conditional distribution of a given categorical
response variable changes as the explanatory variable changes. In Fig 7, the response variables
represent whether death or damage rates are above or below their median values. The median

Fig 2. Histograms of total death and destruction rates caused by tsunamis of 1896, 1933, 1960 and
2011. The red dashed lines represent kernel density plots of death and destruction rates respectively.

doi:10.1371/journal.pone.0158375.g002

Fig 3. Empirical cumulative distribution function (ecdf) plots of total damage and destruction rates for
prefectures of Iwate and Miyagi.

doi:10.1371/journal.pone.0158375.g003
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death rates and destruction rates are around 1% and 20% respectively. Small seawalls (around
5 m high) are associated with a higher likelihood of death and destruction rates being above
their median values (more destruction), while large seawalls are associated with higher likeli-
hood of the death and destruction rates being below their median values (less destruction).

Methods
A brief review of statistical learning methods relevant to analyzing the tsunami data is pre-
sented in this section. We begin by stating the distinction between supervised and unsupervised
learning methods and discuss different classes of supervised learning methods, namely,
parametric, semi-parametric and non-parametric methods. We then deliberate the details of
the statistical models used in this paper. We conclude by discussing bias-variance trade-off and
also the trade-offs between predictive accuracy and model interpretability.

Supervised Learning Methods
Broadly speaking, statistical learning methods refer to a large pool of algorithms and tools used
for data analysis. Statistical learning methods can be categorized into two groups of supervised
(the focus of this paper) and unsupervised learning methods. Unlike unsupervised learning
methods (ULM), in supervised learning methods (SLM) the observed target variable of interest
(e.g. tsunami-induced damage rates in a given year) guides the learning process. Models can be
developed to predict the target variable based on a range of input variables (e.g. tsunami height
and sea-wall heights). The ultimate goal is developing a model that can best capture the

Table 2. Ranges of percentage destruction and death rates in Miyagi and Iwate Prefectures.

Variable Prefecture Min. 1st Q. Median Mean 3rd Q. Max.

Destruction Rate (%) Miyagi 0.00 2.57 20.74 31.72 51.45 100.00

Destruction Rate (%) Iwate 0.00 2.82 20.63 24.24 38.40 92.39

Death Rate (%) Miyagi 0.00 0.00 0.67 3.96 4.80 29.23

Death Rate (%) Iwate 0.00 0.13 1.29 9.50 7.63 81.62

doi:10.1371/journal.pone.0158375.t002

Fig 4. Seawall heights and tsunami heights in Iwate and Miyagi Prefectures.

doi:10.1371/journal.pone.0158375.g004
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Fig 5. Boxplots of maximum tsunami height, max seawall height, death and damage rates for the
years of 1896, 1933, 1960, 2011.

doi:10.1371/journal.pone.0158375.g005

Fig 6. Plots of maximum tsunami heights versusmaximum seawall heights for death and destruction rates.

doi:10.1371/journal.pone.0158375.g006
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relationship between the predictors and response and minimize the loss function (i.e. the dif-
ference between the observed and predicted values of the target variable).

The target variable of interest can be denoted as Y and the matrix of input variables as X. As
mentioned earlier, supervised learning methods seek to approximate the unknown functional
dependence of X and Y such that the specified loss function L(y,f) is minimized. This relation-
ship can be summarized as the Eq 1 below:

f̂ ðXÞ ¼ Y and f̂ ðXÞ ¼ argmin Lðy; f ðxÞÞ ð1Þ

Linear and non-linear supervised statistical learning methods can be parametric, semi-
parametric or non-parametric. In this paper, we develop a range of models to best predict tsu-
nami-induced death and damage rates.

Parametric models
In parametric methods, assumptions are made about the shape of function f that relates the
input variables to response. The advantage is that by assuming a functional form, the problem
of estimating an arbitrary p-dimensional function is reduced to estimating a set of parameters.
The disadvantage of parametric models is that the assumed shape usually does not match the
true unknown function f.

Generalized linear models (GLM). The term generalized linear models was coined by
Nelder andWedderburn in early 1970s [29]. A GLM extends ordinary linear regression by
allowing the response to take a probability distribution other than the normal distribution, and
be related to the predictors through a link function. In a generalized linear model, the outcome
variable Y is assumed to be generated from the family of exponential distribution (such as

Fig 7. Conditional density plots for death and damage rates versusmaximum seawall heights.Here the
response variables are binary, representing whether death and damage rates are above or below their median
values. For a given seawall height, a greater proportion of red means lower death or damage rates, while a greater
proportion of gray means higher death or damage rates.

doi:10.1371/journal.pone.0158375.g007
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Gaussian, binomial, Poisson, gamma, or inverse-Gaussian) as shown in Eqs 2 and 3 below

Yi � fYiðyiÞ ð2Þ

fYi yið Þ ¼ exp
yiyi � bðyiÞ

að�Þ þ c yi; �ð Þ
� �

ð3Þ

where θ and ϕ are location and scale parameters. The parameter(s) of the response (μ) is then
tied to the linear combination of the input variables through a link function (g). This can be
summarized in the equation below

E½Yi� ¼ mi ð4Þ

gðmiÞ ¼ x0ib ð5Þ

Semi-parametric models
Semi-parametric models lie at the fuzzy boundary between parametric and non-parametric
techniques. Semi-parametric models offer more flexibility compared to parametric models and
better interpretability compared to non-parametrics.

Generalized additive models (GAM). Generalized additive models are non-linear exten-
sions to generalized linear models [30]. Similar to a GLMmodel, the mean of the response vari-
able is linked to the covariates via a link function. However, the linear functional form of
combining the covariates is relaxed as shown in the Eq 6.

gðmiÞ ¼
P

sjðxjÞ þ ε ð6Þ

where sj represent the smoothers applied over the input variables.
Multivariate adaptive regression splines (MARS). MARS is a semi-parametric model

that allows for local non-linearities and interaction effects which makes it suitable for modeling
high-dimensional datasets [31]. A MARS model consists of sum-of-splines that allow the
response to vary non-linearly with the input variables.

f ðxÞ ¼ b0 þ
P

bmhmðXÞ þ ε ð7Þ

where hm represents the linear splines, β0 represents the intercept and βm represents the vector
of the coefficients. βm coefficients are estimated by minimizing the sum of square errors.

Non-parametric models
Non-parametric models do not make assumptions about the shape of the function f. Instead
they use the data in novel ways to approximate it. While it has the advantage of not assuming
unrealistic functional form and potentially better approximating the true function, it is very
data intensive. Also, improved prediction comes at the cost of reduced interpretability which
will be discussed later in this section.

Bayesian additive regression trees (BART). BART is a Bayesian, tree-based approach. A
BARTmodel consists of the summation ofm binary decision trees, each constrained by a prior
that restrict each tree’s contribution to the final model, making each decision tree a ‘weak learner’
[32]. A BARTmodel can be summarized using the equation below. The error term of the model
is assumed to be normally distributed with a mean of 0 and constant standard deviation.

Y ¼ Pm
j¼1gðx; Tj;MjÞ þ ε ε � Nð0; s2Þ ð8Þ

The Role of Seawalls and Coastal Forests in Mitigating Tsunami Impacts in Japan
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In the equation above, g is a single tree model with attributes: terminal nodes T and associated
terminal node parameterM. The function g(x; Tj,Mj) assigns the mean values (μ) to the vector of
x covariates. Model fit and inference in BART are achieved via Markov Chain Monte Carlo
(MCMC) algorithm.

Random forest (RF). Random forest is a non-parametric, tree-based ensemble data-miner
[33]. An RF model consist of a large number of bootstrapped regression trees. There are two
layers of randomness involved in developing an RF model. First the training data fitted to the
trees are randomly sampled with replacement. Second, the subset of predictors selected at each
node is also randomly selected. These levels of randomness result in reduced correlation levels
amongst the generation trees. The final estimate is the result of averaging the predictions of all
regression trees which results in a low-bias low variance final estimate.

Support vector machines. Support vector machines (SVM) is a powerful tool for big data
analytics. Contrary to many data-mining methods that use greedy algorithms, SVM is a con-
strained optimization problem and does not suffer from local optima and handles high-dimen-
sional data very well. In SVM-regression the input space is first mapped onto an m-
dimensional feature space. A linear model is the constructed in this feature space. In other
words, SVM regression involves developing a linear regression in a high dimensional feature
space [34,35].

Gradient boosting machines (GBM). This flexible data-mining technique was developed
by [36]. In boosted trees method a greedy algorithm is used to minimize the overall loss func-
tion. GBM fits a sequence of single trees, using each tree to fit data variance not accounted for
by the earlier sequence of trees. In other words, trees are iteratively added to the residuals of
the preceding trees such that the additive weighted expansions of the trees yield great fit to the
data.

The Trade-Off Between Prediction Accuracy and Model Interpretability
As mentioned earlier, semi-parametric and non-parametric techniques are usually not con-
strained with the (often non-realistic) assumptions of more restrictive parametric models.
While this offers the advantage of better approximating the systematic relationship between X
and Y and better predictive power, the interpretability of these models are more limited than
parametric models. However, there are methods available for conducting variable inference
even for non-parametric models and one of these methods is outlined below

Partial Dependence Plots (PDP). Partial dependencies show the influence of a covariate
of interest, on the response, given that the effect of the rest of the covariates on the response are
averaged out as shown in the equation below [37].

fs Xsð Þ ¼ 1

N

PN
i¼1f ðXs; xicÞ ð9Þ

In the equation above, SX stands for the variable for which the partial dependence plot is
being calculated, and xic represents the remaining predictors used in the final model other than
Xs. In plotting the partial dependence plots, the x variable is varied (at small increments) while
other variables are held constant; and the delta response is averaged across all the records. Par-
tial dependence plots show the average change in the response variable as a function of variable
x, while all other variables are held constant.

Bias-Variance Trade-off
The generalization performance of a statistical model hinges on model’s capability to yield
accurate predictions on an independent test sample. Bias-variance trade-off is central to
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ensuring minimized generalization error [30]. Cross-validation is the most widely used tech-
nique in estimating average generalization error and assessing bias-variance trade-off [37]. In
this paper, we use the method of k-fold cross validation to estimate predictive accuracy of our
models. K-fold cross-validation involves randomly subdividing the dataset into k subsets of
almost equal sizes. In each iteration, the kth subset is held-out; and the model is trained to the
remaining subsets and the predictive accuracy is assessed based on the models performance on
the kth subset. This procedure is repeated multiple times to ensure that all data has been used at
least once. In this paper we implemented 30 iterations of 10% hold-out cross validation. The
reported mean absolute error (MSE) and mean absolute deviations (MAE) are the average
errors across the 30 iterations.

Results
This section summarizes the results our predictive models of damage rate and death rate
respectively and discuss the importance of various factors such as tsunami heights, seawall
heights, and coastal forest areas.

Damage rates
This section summarizes the predictive performance of a series of models trained to our data-
set. In these models, the response variable is damage rates and the independent variables
include: the year of the event, the city population before the event, municipal area, maximum
tsunami height, coastal forest area, presence of a bay-mouth breakwater, maximum and mini-
mum seawall height, flooded area, prefecture, and topography. In order to deal with the miss-
ing data in our input variables, we used the Multivariate Imputation by Chained Equations
(MICE) algorithm.

Out-of-sample prediction errors. As mentioned in the Methods section, we trained the
data with a range of parametric and nonparametric models including: generalized linear model
(GLM), generalized additive model (GAM), Bayesian additive regression trees (BART), ran-
dom forest (RF), multi-variate regression splines (MARS), support vector machines (SVM)
and gradient boosted trees (GBM). Table 3 summarizes the mean absolute error (MAE) and
mean squared errors (MSE) and their associated standard errors (SE) for each of the models
except for GLM and GAM since their errors were an order of magnitude larger than the rest of
the models. The errors in Table 3 are based on 30 iterations of 10% random holdout cross-vali-
dations, where each time 10% of the data is randomly held-out and models are trained with the
remaining 90%. The reported errors are calculated based on testing each model’s performance
on the holdout samples. The ‘Null’model below refers to not having a statistical model and

Table 3. Out-of-sample predictive accuracy across different models.

Model MSE SE MAE SE

Null 813.1 54.9 23.6 0.7

BART 387.9 24.3 15.4 0.5

RF 323.6 18.9 13.9 0.4

MARS1 526.3 51.2 16.8 0.6

MARS2 512.6 55.1 16.5 0.6

MARS3 649.8 136.9 17.0 0.7

MARS5 690.1 202.7 16.6 0.7

SVM 582.2 43.2 17.8 0.7

GBM 755.9 51.4 22.7 0.7

doi:10.1371/journal.pone.0158375.t003
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using the mean as a predictor. It can be used to examine how much a given statistical model
has contributed to explaining the variance in the response. We can see that the errors associ-
ated with RF are substantially lower than the ‘mean-only’model indicating the effectiveness of
the model in capturing the variance of damage rates.

The method of Random Forest (RF) outperformed all other models in terms of out-of-sam-
ple predictive accuracy. The difference between the MSE and MAE values of RF and all other
models were statistically significant (based on the Wilcoxon signed-rank test).

To examine how well our selected final model (RF) fitted the data, we plotted observed
destruction rates versus our model’s estimates along with the model’s residuals as shown in Fig
8. The correlation between the observed values and model’s estimate is 92% and the residuals
fall along the 45-degree line of the normal quantile plot. This shows that our RF model fits the
data well in addition to offering strong out-of-sample prediction as shown in Table 3.

Fig 9 shows the relative importance of each of the explanatory variables used in the RF
model of destruction rate. The importance of population is self-explanatory, being an indicator
of the presence of vulnerable housing. The influence of tsunami height and flooded area on
destruction rate is also obvious. City area is important because it is necessary for describing
what fraction of each municipality lies inside, and what fraction outside, the inundation zone.
Year represents many factors related to destruction rate, such as building codes and land use
planning. Protective measures (seawall height and coastal forest area) show less importance in
the model than the tsunami itself, but are nonetheless significant. The presence of a bay mouth
breakwater is insignificant in the model because of the lack of data points (a bay mouth break-
water was only present in 3 of the municipalities investigated in 2011, with none present during
earlier events). The variables of prefecture and topography are closely related to one another,
and neither has a strong effect on the model result.

Partial dependence plots. Since our best model (RF) is non-parametric, to examine the
relationship between each covariate and response we use partial dependency plots as discussed
in the Methods section. Fig 10 shows the partial dependencies between seawall heights and
mean destruction rate. It is interesting to see that the destruction rates peak at seawall heights
of 5 meters, afterwhich there is a decreasing trend suggesting that seawalls higher than 5 meters
have been effective in reducing building damage. This is a similar conclusion to that reached
with Fig 7. Fig 11 shows the partial dependencies to maximum tsunami height, coastal forests

Fig 8. Plot of observed versus fitted values of destruction rate for methods of RF (correlation 0.96)
together with the normal Q-Q plot. The red dashed lines in the QQ-plot represent 95% confidence intervals.

doi:10.1371/journal.pone.0158375.g008
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Fig 9. Importance of each of the explanatory variables used in the RFmodel for predicting
Destruction Rates.

doi:10.1371/journal.pone.0158375.g009

Fig 10. Partial dependence plots of minimum andmaximum seawall heights andmean destruction rate. The red
lines represent bootstrapped confidence intervals around model estimates.

doi:10.1371/journal.pone.0158375.g010
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area, and flooded area. As expected larger tsunami heights are associated with higher destruc-
tion rates. Coastal forest area shows an inverse relationship with destruction rate, indicating
that forests either mitigate tsunami damage, or prevent development where they are planted
which in turn reduces what is there to be damaged. It must be kept in mind that coastal forests
did not always mitigate death and destruction rates. A case in point is Rikuzentakata, which
had a large coastal forest, but in 2011 saw this forest destroyed, together with a large portion of
the city’s buildings [38]. However, over all 4 historical events and throughout all municipalities
investigated, larger forest areas correlate with lower damage rates.

Death Rates
This section summarizes the predictive performance of a series of models fitted to our data. In
this case the response is death rates and the explanatory variables include the year of the event,
number of dwellings before the event, maximum tsunami height, municipal area, coastal forest
area, presence of a bay-mouth breakwater, maximum and minimum seawall height, flooded
area, prefecture and topography. In order to deal with the missing data in our input variables,
we used the Multivariate Imputation by Chained Equations (MICE) algorithm.

Out-of-sample prediction errors. The methods of Bayesian Additive Regression Trees
(BART) and Random Forest (RF) out-performed all other models in terms of their predictive
accuracy. Even though the errors look slightly less for BART, the difference between BART and
RF is not statistically significant. It can be seen from Table 4 that the errors associated with
BART and RF are substantially lower than the ‘mean-only (aka Null)’model suggesting the
effectiveness of the models in capturing the variability in death rates. Even though BART’s out-
of-samples errors were slightly lower than RF, the RF model fitted our data better (with

Fig 11. Partial dependence plots of maximum tsunami height, coastal forest area, and flooded areas with mean destruction rate.
The red lines represent bootstrapped confidence intervals around model estimates.

doi:10.1371/journal.pone.0158375.g011
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correlation of model’s estimate and the observed values being 94% for RF as opposed to 90% in
BART). Given that differences between the predictive accuracies of RF and BART were not sta-
tistically significant and better fit of the RF model, we selected RF as our final best model.

Fig 12 summarizes our model’s fit. It can be seen that our model tends to under-estimate
death-rates for values above 30% and lean towards over-estimation for values below 20%. The
normal quantile plot also shows non-ideal tail behavior, suggesting that there are possibly
other key variables (e.g. effectiveness of warning systems) that are essential for understanding
death rates and are missing from our models.

Fig 13 shows that, as with the case of destruction rate, year is a very important explanatory
variable. In this case, Year is a proxy for factors such as the presence of tsunami warning sys-
tems, evacuation centers, evacuation training and drills, access to warning media, and the dif-
ferent physical characteristics of each earthquake, including time of day, magnitude of ground
shaking before each tsunami, and location (near-field vs. far-field) of the tsunami source. Sea-
wall height is less important to the prediction of death rate than to destruction rate, indicating
that people tend to evacuate regardless of the presence of these protective measures (people
can evacuate, but buildings can’t). However, this trend may also be due to the fact that the
model predicts destruction rate better than it does death rate.

Table 4. Out-of-sample predictive accuracy across different models.

Model MSE SE MAE SE

Null 204.0 28.3 8.8 0.4

BART 107.8 16.6 5.1 0.3

RF 121.0 19.8 5.5 0.3

MARS1 149.8 17.8 7.4 0.3

MARS2 156.4 19.8 7.4 0.3

MARS3 139.2 23.8 6.8 0.4

MARS5 152.6 20.3 6.8 0.4

SVM 159.7 25.8 5.8 0.4

GBM 189.9 27.2 8.4 0.4

doi:10.1371/journal.pone.0158375.t004

Fig 12. Plot of observed versus fitted values of death rate for methods of RF. The red dashed lines in
the QQ-plot represent 95% confidence intervals.

doi:10.1371/journal.pone.0158375.g012
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Partial dependence plots. Fig 14 shows the partial dependencies of seawall heights with
death rates. Just as in destruction rates (Fig 10), it can be seen than large seawalls are associated

Fig 13. Importance of each of the explanatory variables used in the RFmodel for predicting Death
Rates.

doi:10.1371/journal.pone.0158375.g013

Fig 14. Partial dependencies of minimum andmaximum seawall heights with death rates. The red lines
represent bootstrapped confidence intervals around model estimates.

doi:10.1371/journal.pone.0158375.g014
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with lower death rates. Fig 10 showed that relatively small seawalls (5 m high) exacerbated
destruction; a similar trend appears in Fig 14 with death rates as well, but this trend is not as
pronounced as it is with destruction rates. Also in line with destruction rates, Fig 15 shows that
higher death rates are associated with larger tsunami heights and flooded areas, and that larger
coastal forests are associated with lower death rates.

Discussion and Recommendations
The significant outcome of this work is seen in the partial dependence of mortality and destruc-
tion rate on seawall height and coastal forest area (Figs 7, 10, 11, 14 and 15). Large seawalls are
shown to have been effective at reducing both mortality and damage rate, but smaller seawalls
(around 5 m high) showed no effectiveness in reducing impact. Coastal forests are shown to
have been effective at reducing both mortality and damage rates, though this study could not
determine if this was due to the physical mitigating effect of forests, or due to the prevention of
development in tsunami-prone areas after these forests were planted. Furthermore, seawall
height and coastal forest area had a stronger effect on predicting destruction rates than on
death rates, hinting that people’s decisions to evacuate were not dependent on the presence of
protective measures, though this inference needs to be tempered by the fact that the model pre-
dicted destruction rate much better than death rate overall.

In order to concentrate on the effectiveness of man-made coastal defense structures in miti-
gating death and damage, the present work neglects the importance of other factors. [39] points
out that mortality is determined by other factors as well: water rise rate, proximity to dike
breach, flow speed, and warning time. [14] shows the importance of community cohesiveness
in reducing mortality, while [40] stresses the importance of education, warning, and evacuation

Fig 15. Partial dependencies betweenmaximum tsunami height, coastal forest area, and flooded areas with mean death rates.
The red lines represent bootstrapped confidence intervals around model estimates.

doi:10.1371/journal.pone.0158375.g015
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over physical flood mitigation measures. Nonetheless, the historical data used in the present
work clearly show the effect of seawalls themselves, and can be used to end the debate on
whether these walls reduced or exacerbated mortality and damage.

Supporting Information
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(XLSX)
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