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Abstract

MNEI is a single chain derivative of monellin, a plant protein that can interact with the
human sweet taste receptor, being therefore perceived as sweet. This unusual physiologi-
cal activity makes MNEI a potential template for the design of new sugar replacers for the
food and beverage industry. Unfortunately, applications of MNEI have been so far limited by
its intrinsic sensitivity to some pH and temperature conditions, which could occur in indus-
trial processes. Changes in physical parameters can, in fact, lead to irreversible protein
denaturation, as well as aggregation and precipitation. It has been previously shown that
the correlation between pH and stability in MNEI derives from the presence of a single glu-
tamic residue in a hydrophobic pocket of the protein. We have used molecular dynamics to
study the consequences, at the atomic level, of the protonation state of such residue and
have identified the network of intramolecular interactions responsible for MNEI stability

at acidic pH. Based on this information, we have designed a pH-independent, stabilized
mutant of MNEI and confirmed its increased stability by both molecular modeling and exper-
imental techniques.

Introduction

Sweet proteins are a family of plant proteins able to elicit a taste sensation in humans. These
proteins have been isolated from different tropical plants, and share no sequence or structure
similarity, having in common only the vegetal origin and the physiological effect [1]. The most
studied members of this family are monellin, from Dioscoreophyllum cumminsii [2], thauma-
tin, from Thaumatococcus danielli [3] and brazzein, from Pentadiplandra brazzeana [4]. All
these proteins can interact with the sweet taste receptor, a heterodimeric G-protein coupled
receptor formed by two subunits, TIR2 and T1R3, located on specialized taste cells on the ton-
gue, palate and pharynx, which is also responsible for the perception of the sweet taste of small
sugars and low molecular weight sweeteners [5-9]. Despite the similar effect, sweet proteins
cannot bind to the same receptor site as small sweeteners because of their dimensions [10].
Hypotheses have been made to explain how such large molecules might interact with the
T1R2-T1R3 heterodimer, among which the so called “wedge model”, which is, so far, one of
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the few theories able to describe and predict the functional binding of different sweet proteins
to the same receptor [11-13]. According to this model, sweet proteins bind to a cleft on the
exterior of the heterodimer, and the complementarity of surface shape and charge between the
sweet protein and the receptor modulates their interaction [14,15]. This implies that only pro-
teins that are correctly folded can activate the receptor [14-16], suggesting that structural sta-
bility is of great importance to preserve the protein function in different conditions. These
effects have been widely investigated in the case of monellin, a prototypical sweet protein and
one of the first members of this family to be isolated and characterized. Monellin is a small
(~11 KDa), basic protein composed of two chains arranged in a cystatin like fold [17,18]. Previ-
ous studies have shown that point mutations that slightly modify the three dimensional shape
of the protein surface can greatly reduce the physiological effect, even when the overall fold is
maintained [16,19-21]. Accordingly, the loss of structural integrity that follows thermal dena-
turation or pH variations also results in a loss of effect. Native monellin loses its activity when
heated above 50°C, due to disruption of the heterodimeric structure. To increase thermal sta-
bility, single chain derivatives have been designed, joining the two subunits directly together
[22] or through a dipeptide Gly-Phe linker [23]. These proteins are more stable than the parent
protein and, at acidic pH, they regain sweetness even after few minutes boiling in water solu-
tion [22]. The reversibility and reproducibility of thermal and/or chemical unfolding of single
chain monellins has allowed for their use as model systems for folding and unfolding studies
[24-35].

In addition to temperature, single and double chain monellins also show a marked stabil-
ity dependence from pH. Analyses of the unfolding kinetics have proven that both variants
are strongly destabilized by the increase of pH from 4.0 to 10.0. Aghera et al. demonstrated
that this effect is due to a single glutamic residue [24,25] buried at the C-terminal region
of the helix (E24 according to Aghera's nomenclature, E23 according to structure 1FA3
of the Protein Data Bank, lacking the start methionine, hereafter used in the text [36]). As
a consequence of its position in a hydrophobic pocket, the side chain of E23 exhibits a
high pK,, a phenomenon often observed when ionizable residues are located in the interior
of the protein fold, which often leads to a marked pH-dependent stability [37-41]. From
the analysis of the folding kinetics, Aghera et al. estimated that the pK, of the side chain of
E23 in the native state is approximatively 7.5. The abrupt change in pK, (to ~4.5 for the
exposed glutamic side chain) that occurs with unfolding is the cause of the observed destabi-
lization of MNEI at neutral to alkaline pHs. Destabilization of the native state of globular
proteins can also lead to other unfavorable or uncontrollable phenomena, among which
aggregation [42] and former studies have indeed pointed out the tendency of MNEI to form
fibrillar aggregates, a tendency accentuated by increasing pHs or temperatures [32,33,43-
46]. All these phenomena reduce the potential of MNEI for industrial applications, and
should therefore be resolved before the protein can be actually employed in large scale pro-
cesses. On the basis of previously acquired structural knowledge, we have tried to understand
the factors involved at the atomic level in MNEI stabilization. We have evaluated the theoret-
ical pK, of E23 side chain using Multi Conformation Continuum Electrostatics calculations
on various available experimental structures, and performed molecular dynamics simulations
at different pHs and temperatures, in order to define the contribution of E23 to the fold sta-
bility. We have then designed a stabilized mutant, MNEI-E23Q, in which replacement of
the glutamic residue with a glutamine allows the preservation of the network of interactions
of the native state in a pH-independent manner. Increased stability of such mutant, as pre-
dicted by MD simulations, has been then confirmed by thermal unfolding studies using CD
spectroscopy.
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Materials and Methods
Molecular structures and continuum electrostatic calculations

Available experimental structures for MNEI used in this paper have PDB-IDs 1FA3, NMR
resolved [36] and 209U, X-ray determined [47]. Residues numbering follows 1FA3 structure,
lacking the start methionine. Protein secondary structure elements are referred to within the
text using the following nomenclature: Nt (1-4), 51 (4-6), L1 (6-9), a1 (10-27), La2 (28-34),
B2 (35-48), L23 (49-54), 53 (55-64), L34 (65-68), 4 (69-78), L45 (79-83), 55 (84-90), Ct
(91-96). Inspection and manipulation of the structures was performed with UCSF Chimera v.
1.9 [48]. Multi-conformation continuum electrostatic (MCCE) calculations were performed
with MCCE 2.7 [49-51], using a dielectric constant for the protein €p = 4 and a salt concentra-
tion of 150 mM.

MD simulations

Molecular dynamics were performed on model 1 of 1FA3 as the starting structure. Dynamics
and trajectory analysis were performed with the software package GROMACS 4.6.4 [52-54]
using the AMBER ff03 force field [55]. Structures with protonated and ionized side chain

for E23 (MNEI-GLH and MNEI-GLU) and for mutant MNEI-E23Q were generated and
immersed in a rhombic dodecahedron box with periodic boundary conditions and solvated
with TIP3P water molecules [56]. The appropriate number of Cl ions was added to neutralize
the system. Long-range electrostatic interactions were treated with the particle-mesh Ewald
method with a grid spacing of 0.12 nm [57], and a long range cutoff of 8 A was used. The
LINCS algorithm was used to constrain bond lengths and a 2 fs time step was used [58].

For the simulations at room temperature, the molecules were submitted to initial energy
minimization with 5000 steps of steepest descent, followed by 100 ps NVT and 300 ps NPT
equilibration at 300 K with position restraints. For the high temperature simulations, after sol-
vent relaxation, initial velocity distributions were generated at 300 K, followed by 50 ps equili-
bration at this temperature. Temperature was then increased step-wise over 40 ps to 473 K and
the system temperature was further equilibrated for an additional 10 ps. Production runs were
performed for 10 ns with a 2 fs step. Temperature and pressure coupling were obtained with
the v-rescale [59] and the Parrinello-Rahman [60]algorithms, respectively. Surface accessibilty
of the residues was calculated with the program g_sas from the GROMACS package was used.
Relative surface accessibility was estimated by normalizing the values obtained over time to the
maximum surface accessibility as calculated in the tripeptide Gly-X-Gly [61].

Proteins expression and purification

The synthetic gene encoding for MNEI-E23Q was purchased from Eurofins Genomic and
cloned in the pET22b+ vector (Novagen) within the Nde I and BamH I restriction sites. Vector
PET22b+ carrying the gene encoding for MNEI was the same as previously described [36,44].
To express the recombinant proteins, cells of Escherichia coli BL21(DE3) were transformed
with said plasmids; cells were cultured in 1L of LB medium containing 100 mg/L ampicillin.
Protein expression was induced at 0.6 OD with 5 mM lactose and cells were harvested by cen-
trifugation (4°C, 3000 x g, 20 min) after 20 h induction at 25°C, washed with cold PBS and
stored frozen until extraction. Purification was achieved in a one-step procedure as described
[62]. Briefly, cell lysates in 50 mM sodium acetate at pH 5.5 were applied to a DEAE-Sepharose
(20 mL, GE Lifesciences) connected in series to a Macro-Prep High S (15 mL, Bio-Rad). Pro-
teins were then eluted from the Macro-Prep High S with 2 CV of 100 mM NaCl in 50 mM
Sodium Acetate, pH 5.5. The protein containing fractions were desalted by Size Exclusion
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Chromatography on a Sephadex G-25 column (GE Lifesciences, 2.5 x 26.5 cm, 130 mL) in 75
mM AcOH at 5 mL/min and freeze-dried; purity was assessed by SDS-PAGE. Protein yield
was estimated by UV absorbance and was on average 50 mg for both proteins per liter of
culture.

CD spectroscopy

Protein fold integrity was assessed by circular dichroism (CD) spectra recorded on a Jasco J-
715 spectropolarimeter equipped with a Peltier temperature control system (PTC-348WTI).
Molar ellipticity per mean residue [0] in deg cm® dmol ™" was calculated from the equation: [0]
= [0] s mrw/(10 x 1 x C), where [0],ps is the ellipticity measured in degrees, mrw is the mean
residue molecular weight of the protein (Da), C is the protein concentration in g/mL and 1 is
the optical path length of the cell in cm. Cells of 0.1 cm path length were used. CD spectra were
recorded with a time constant of 4s, a 2 nm band width and a scan rate of 20 nm/min, and the
signal was averaged over three scans and baseline corrected by subtracting a buffer spectrum.
Spectra were recorded in 20 mM phosphate buffer at pH 3.5, 5.1 and 6.8 and in 20 mM Tris-
HCl at pH 8.0. A concentration of 0.25 mg/mL protein was used for each sample, as deter-
mined by UV absorbance at 280 nm prior to CD measurement.

Thermal denaturation experiments were recorded following the signal at 215 nm while
varying the temperature from 30 to 95°C at a rate of 1°C/min. For each condition, three inde-
pendent measures were performed. Experimental points were fitted to a Boltzmann curve, and
fraction of unfolded protein (f,) was calculated according to the formula:

AL
0,0,

where 8¢and 6, are the CD signal of the folded and unfolded state, respectively and 0 is the CD
signal at each temperature from the fitted curve.

Results

Continuum Electrostatic pK, determination

MNEI is a small, globular protein that does not contain histidine residues, but exhibits a pH
dependent behavior at near physiological values. Aghera et al. had already associated this phe-
nomenon to residue E23 and, on the basis of the unfolding energies, they had estimated that
the pK, of its side chain in the native state was approximately 7.5 [24]. As a rigorous titration
of the pK, of E23 side chain is still missing, we tried to provide a theoretical estimation of the
value expected on the basis of available experimental structures by Multi Conformational Con-
tinuum Electrostatics (MCCE [51]), to understand whether the observed behavior could be
predicted. MCCE calculations explicitly simulate side chain motions of amino acids by Monte
Carlo methods, while leaving the backbone unaffected. By choosing the MCCE approach, our
aim was to minimize the differences introduced by different side chains orientations in the
experimental structures in the continuum electrostatic pK, calculation. Both the crystal and
NMR structures of MNEI (PDB-ID 209U and 1FA3) [36,47] were used. Since the NMR
derived structure contains a conformational ensemble, we performed the calculations on each
element of the cluster. When starting from the crystal structure, we obtained a theoretical pK,
value of 5.2, lower by more than two units than the approximate experimental result [24] and
closer to the typical value of 4.5 for the exposed glutamic side chain. Calculations on structure
1FA3 resulted in pK, values ranging from a minimum of 5.9 in model 9 to 8.9 in model 15. By
comparison, the average value of pK, for the neighboring E22 side chain was 4.7 over the 20
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structures. Structures 209U and 1FA3.15 represent therefore the extremes of the theoretical
pK, interval predictable for MNEI. A comparison of region 21-33 in the two models, corre-
sponding to the C-terminus of the helix and to the facing portion of loop La:2, shows a RMSD
between heavy atoms of only 1.7 A. In the crystal structure, the region appears slightly wider
than in the NMR ensemble (Fig 1) as indicated by the distances between the carboxyl oxygens
of E23 and the carbonyl oxygen of Y29 (5.7 A and 6.2 A in 1FA3.15 and 209U, respectively)
and E23(0) and Q28(N) (2.9 and 4.7 A). The crystal structure also shows that a molecule of
water (W17 in the PDB) is stably bound and buried in correspondence of the loop, but this
water molecule was not observed in solution NMR studies with paramagnetic probes of the
hydration of MNEI surface [63]. NMR and crystallization experiments were performed at dif-
ferent pHs (2.9 and 5.6, respectively). The occurrence of water in the crystal structure might be
a consequence of forced packing interactions, leading to the underestimation of E23 pK,. On
the other hand though, the experiments might be capturing the situations occurring in differ-
ent conditions. Taken together, the results suggest that loop La2 is provided with a certain flex-
ibility, and that slight displacements, even thermal motions, can produce significant changes in
the accessibility of the protein interior to water, with consequent changes in the polarizability
experienced by E23 side chain, abrupt changes of its pK, and significant variations of MNEI
stability.

MD simulations of different protonation states

The values obtained for the pK, of E23, either from existing literature and from the NMR struc-
tures, point toward the occurrence of a switch in its protonation state at neutral to mildly alka-
line pHs. This is indeed the pH range at which irreversible denaturation and precipitation of
MNEI has been observed [14,31,43,44]. As previously noted, MNEI does not contain histidines
and E23 is the only residue that can undergo a protonation change in this range of pH. To
investigate the consequences at the atomic level of this event, we performed three independent
10 ns MD simulations for each of the two protonation states of E23 on PDB model 1FA3
(MNEI-GLU/ MNEI-GLH). The simulations were carried out at room temperature (300 K)
and high temperature (473 K), to accelerate potential local unfolding events in consequence of
different stabilities, according to well established protocols [64-72]. Although this approach
may not allow exhaustive sampling of all the conformations assumed by the partially unfolded
protein, which would require, for instance, longer simulations at lower temperature [73,74], it
is nonetheless suitable to highlight the weak spots within the structure where unfolding initi-
ates, suggesting potential sites for genetic manipulations. The simulations at room temperature
confirmed the structure stability at every pH, in accordance with experimental data [24,43,44].
The C,-RMSD plot for each simulation reaches a plateau within 2 A from the NMR structure
(S1 Fig), whereas the plot of the RMS fluctuation for each residue shows that the regions of
higher flexibility are localized, as expected, at the N- and C-termini and at the loops between
the strands (Fig 2A). The helix appears stably positioned in the 3-grasp and the mobility of its
C-terminus, where E23 is located, is substantially unaffected by its protonation state. Upon
increase of the simulation temperature to 473 K, the structure of MNEI-GLH is substantially
unaffected: the RMSD remains within 3 A of the NMR structure for the first 7 ns of the simula-
tion and unfolding begins only at the end of the MD run (S1 Fig). This is consistent with the
experimentally observed thermostability at acidic pH of MNEI [24,43,44]. When E23 is depro-
tonated, the RMSD diverges, reaching values above 5 A after only 4 ns, and the protein pro-
ceeds toward fast unfolding. A plot of the RMSF shows that N-terminal of the protein, up to
residue 40, becomes increasingly mobile (Fig 2B), with the helix being displaced from its origi-
nal position up to 7 A. The remaining portion of the protein is more stable, but either the loops
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Fig 1. Comparison of available experimental structures of MNEI. Overlay of experimental structures of MNEI derived from NMR (1FAS3, green) and X-
rays crystallography (209U, red). The image focuses on loop La2 and on the distances E23-Q28 and E23-29 (dotted lines), defining the opening of the loop
and allowing for water penetration from the bulk of the solvent.

doi:10.1371/journal.pone.0158372.9001

and the S-strands have higher mobility compared to MNEI-GLH, suggesting that the destabili-
zation is conveyed through the entire protein structure.

To understand the nature of these motions and their effect on the fold, we performed sec-
ondary structure calculations over time with DSSP [75,76]. Analysis of the simulations at 300
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Fig 2. C,-Root Mean Square Fluctuation for the different MD simulations. The figure shows the C4-RMSD for the various runs at 300 K (A) and 473 K (B)
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structure elements. When the temperature is increased, the N-terminal portion exhibits a wider displacement from the experimental fold if E23 side chain is

deprotonated.

doi:10.1371/journal.pone.0158372.9002

K shows no substantial deviation of secondary structure elements from their experimental
description, a situation also observed for MNEI-GLH at 473 K (S2 and S3 Figs). When E23 side
chain is ionized, though, we observe a partial disruption of the secondary structure starting as
early as 4 ns, which explains the observed RMSD increase. Unfolding occurs to different
extents in the three independent simulations, but it always involves residues at the C-terminal
portions of the helix, as exemplified in Fig 3A, which shows the DSSP plot for one of the high
temperature simulations on MNEI-GLU. While the helical structure is only marginally lost in
the 473 K simulations on MNEI-GLH, the percentage of residual helical structure drops up to
20% of the starting value in MNEI-GLU (Fig 3B). To understand the contribution of E23 to the
protein stability, we evaluated the intra-molecular interactions occurring in the native state
from the simulations at 300 K. The protonated side chain can form a very stable H-bond with
the carbonyl oxygen of G30: the average distance between the carboxyl in the side chain of E23
and G30(0) is 2.78 A and the occurrence of such bond is 99.4% over the three simulations.

By tightening the loop between the helix and 2, several non-secondary structure H-bonds
between side chains are formed and show high occupancy, adding stability to the fold, as
reported in Table 1. Despite being situated on a flexible loop, E23 remains stably buried
throughout the room temperature simulations. A calculation of the relative surface accessibility
(RSA) shows that on average E23 side chain is exposed to the solvent for only 4%. This value is
well below the 20-25% threshold typically used to define solvent accessible residues in two
states models [77-80]. This means that the flexibility of La:2 is not enough to expose E23 side
chain and the side chain can remain protonated (S3 Fig). In comparison, repulsive forces in
MNEI-GLU result in a slight opening of the loop and consequent partial exposure of E23,
which has an average RSA at 300 K around 20%, indicating that over time the residue can
come in contact with the solvent [77,80]. At lower temperatures, the charge on the side chain
of E23 can still be stabilized through hydration. Indeed, in each of the simulations at room tem-
perature, a water molecule penetrates in the space at the C-terminal of the helix after few pico-
seconds, mediating the interactions between E23 and the amide protons of Y29 and Q28. This
water mediated stabilization prevents the formation of the contacts observed in MNEI-GLH,
but does not compromise the protein fold in the low temperature simulations. Nonetheless, in
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MNEI-GLU_473_2 (A) and the percentage of residual helical structure (B) for MNEI-GLU (MNEI-GLU_1, black; MNEI-GLU_2, red;
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temperature simulations, MNEI-GLU consistently looses secondary structure of portions of the helix, which remains structured for as little
as 20% of the starting value. Residues in proximity of the La2 loop become partially unstructured after only 2 ns. Secondary structure plots
for all the simulations are reported in the supplementary material.

doi:10.1371/journal.pone.0158372.9003

high temperature simulations, this results in faster unfolding, as evident in the secondary struc-
ture prediction plots (S3 Fig). The most relevant non-secondary structure interactions of the
two states and their occurrence over time are reported in and Table 1 and represented in Fig 4.

Construction of the MNEI-E23Q mutant

The strong interaction between the carboxyl proton of E23 and the carbonyl oxygen in G30

contributes to maintain the integrity of the fold in MNEI by sealing a network of stabilizing H-
bonds that ensures thermal stability. In order to recreate these interactions while removing pH
dependancy, we analyzed the model of mutant MNEI-E23Q. As previously observed, removal

PLOS ONE | DOI:10.1371/journal.pone.0158372 June 24,2016
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Table 1. Hydrogen bonds from MNEI simulations.

ARG84(H,)—
ASN14(05y)
LEU32(H)—GLU23
()

ARG31(H,1)—
ASN24(0)
TYR29(H)—GLU23
(022)

ASN24(Hs)—
LEU32(0)
GLU23(H.o)—
GLY30(0)
GLN13(H,)—ILE8
()

THR12(H,{)—
ASP7(0)
LEU32(H)—ASN24
(0z1)
GLN28(H,.)—
GLU23(0,>)
GLY9(H)—THR12
(Oy1)

GLU1

35.7

21.8

49.4

87.3

16.9

38.1

GLU2 GLU3 GLH1 GLH2 GLH3
18.8 48.5 47.9 37.2 24.5
39.0 43.0 36.3
13.3 174 37.8
67.1 83.7 81.6
33.7 50.8 522 56.0
99.7 99.3 99.1
11.3 38.8 76.6 65.8 774
36.8 56.3 86.9 89.6 94.2
90.1 92.0
65.5 28.6

Principal non-secondary structure H-bonds in the La7 loop and percent occupancy from the three MD simulations at 300 K on MNEI-GLU and MNEI-GLH.

doi:10.1371/journal.pone.0158372.1001

of the jonizable side chain of E23 eliminates the dependancy of the stability from pH [24]. At
the same time, the glutamine side chain should allow the formation of the favorable network of
interactions observed in MNEI-GLH, likely increasing thermal stability at alkaline pH. More-
over, compared to the described alanine mutant [24], the presence of a side chain of compara-
ble length in Q23 would avoid small distortion in the three dimensional structure, thus
preserving the sweetness of MNEI We know in fact that even slight deformations in the pro-
tein shape and local flexibility, such as those introduced by a single point alanine mutation, are
able to impair the interaction with the sweet taste receptor and reduce the sweetness [81,82].
Again, we ran three independent simulations at 300 and 473 K. Analysis of the RMSD and
RMSF plots shows that the structure is very stable at room temperature, with the area of highest
flexibility localized in the L45 loop (residues 78-83), in accordance with what observed for the
native structure. The mutant remains stable even after 10 ns simulations at 473 K, displaying
minimal RMSD from the starting structure on the observed time scales even at such high tem-
peratures (not shown). RMSF plots (Fig 5) show that, even at high temperature, molecular
motions are limited, and deviations from the experimental structure remain below 2 A.

Loop L23 and, in general, the loops between the -strands show comparable mobility as in
MNEI-GLH. Moreover, loop Lo2 is globally more rigid than in the structures containing the
glutamic acid in either protonation state. Secondary structure analysis confirms that the o and
B elements are stable throughout the simulations (S2 and S3 Figs). In each of the three 300 K
simulations, the side chain of Q23 establishes an interaction with the backbone oxygen of G30,
helping retrace the stabilizing H-bonds between the helix and 52 of MNEI-GLH, thus incre-
menting resistance to unfolding at any pH. These interactions are listed in Table 2 and depicted
in Fig 6. Water does not penetrate in the La2 loop, as proven by a RSA below 5% for Q23 dur-
ing the whole simulation, very close to what obtained in the case of MNEI-GLH. A similar
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Fig 4. Main stabilizing interactions from MD simulations. Snapshots of MD trajectories at 300 K describing the principal non-secondary
structure interactions in MNEI-GLU (blue) and MNEI-GLH (pink). Penetration of a water molecule in the loop does not compromise the stability of
the structure at room temperature, but disrupts the zipping network of H-bonds occurring when E23 side chain is protonated, leading to faster
unfolding of the helix in the simulations at 473 K.

doi:10.1371/journal.pone.0158372.9004

situation is also observed in the simulations at 473 K. Although MNEI-E23Q would not be
affected by water penetration in loop La2, these data suggest that, despite increased molecular
motions, the structure remains steadily in place, retarding unfolding. This situation is described
in Fig 7, in which is reported the distribution of the RSA for residue 23 over the three simula-
tions in the mutant and the parent protein in both protonation states, providing an indication
of water penetration and flexibility of the hydrophobic pocket.

Thermal stability of MNEI-E23Q

In order to experimentally validate these theoretical results, we expressed and purified MNEI
and MNEI-E23Q. The mutant shared the fold of the parent protein, as confirmed by Circular
Dichroism spectroscopy (S6 Fig). CD spectroscopy was also used to monitor thermal
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el e
@ : PLOS ‘ ONE MD Driven Design of Stabilized Mutants of the Sweet Protein MNEI

8 — 8 —
7 A 7 B
6] 6]
5] 5
< 3 < 3
3 3
| \ 3
2| 2
18 / ]
EN X : JBRE
E R o W, SNRPRS e WL W2 R ]
O — A A T T e T T T e T T I T O = I P T T T T T e [ T T T
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Residue # Residue #
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to more flexibility at the loops, but stability is comparable to the simulations at room temperature.

doi:10.1371/journal.pone.0158372.9005

denaturation and compare the proteins stability. Buffers at four pH values were used, namely
3.5,5.1, 6.8 and 8.0, and unfolding was monitored through the signal at 215 nm. Fig 8 shows
the fraction of unfolded protein vs temperature for the parent protein (Fig 8A) and the mutant
(Fig 8B) at the different pHs. Despite being very resistant to thermal denaturation in acidic
conditions, at neutral to alkaline pH MNEI melting temperature decreases about 15°C com-
pared to the maximum of 90° at pH 3.5. On the contrary, MNEI-E23Q, which exhibits compa-
rable stability at acidic pH, preserves this characteristic also at pH 6 and above. Preliminary
sensory evaluation showed that the the new construct has comparable sweetness with MNEI,
indicating that the biological activity is not affected by the point mutation. A thorough evalua-
tion of the taste profile of the new protein will be the object of future studies. The melting tem-
peratures corresponding to the curves in Fig 8 are reported in Table 3.

Table 2. Hydrogen bonds from MNEI-E23Q simulations.

E23Q1 E23Q2 E23Q3
GLN23(H,,)—GLY30(0) 925 95.0 92.3
TYR29(H)—GLN23(O,,) 80.9 92.2 83.3
GLN28(H,,)—GLN23 36.7 29.3 28.3
(021)

LEU32(H)—ASN24(05) 82.9 87.0 41.9
ASN24(H5)—LEU32(0) 83.7 492
ARG31(H,;)—ASN24 20.2
(9]

THR12(H,,)—ASP7(0) 132 78.6 945
GLY9(H)—THR12(0y+) 83.0 1.9

ARG84(H,)—ASN14 182 26.4 28.9
(0s1)

GLN13(H,)—ILE8(0) 69.9 74.3

Non-secondary structure H-bonds in the La7 loop and percent occupancy from the three MD simulations at
300 K on MNEI-E23Q

doi:10.1371/journal.pone.0158372.t002
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Fig 6. Stabilizing interactions in MNEI-E23Q. Snapshot of MD trajectory at 300 K describing the principal
non-secondary structure interactions in MNEI-E23Q. These hydrogen bonds recreate the network stabilizing
MNEI-GLH, allowing for the same thermal stability at any pH.

doi:10.1371/journal.pone.0158372.g006

Discussion

The existence of a correlation between pH and stability is a common feature of proteins pre-
senting charged residues in hydrophobic regions [37-40] In many cases, these residues are
essential for the biological function of the protein in exam, nonetheless they introduce a struc-
tural fragility, which becomes even more crucial if said proteins have industrial potential. This
is the case of monellin and its single chain derivatives: these proteins, that could ideally be
employed as sugar replacers in low-calorie food and beverages, undergo denaturation, aggrega-
tion and consequent loss of activity in some of the conditions that could occur in industrial
processes. In the case of MNEIL, pH-related instability has been attributed to E23, a glutamic
residue buried in a hydrophobic pocket at the C-terminal of the a-helix. The abrupt jump in
pK. (and protonation state) deriving from exposure to water of E23 side chain is responsible
for protein destabilization at neutral to alkaline pHs [24,44]. We have tried to understand at
the atomic level the consequences of the change in the protonation state of E23 by running
MD simulations at 300 and 473 K. The simulations show that deprotonation of E23 causes an
increase of the flexibility of loop La2 and exposure of the side chain to the bulk of the solvent,
attracting water molecules to stabilize the negative charge. Nonetheless, penetration of water
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doi:10.1371/journal.pone.0158372.9007

does not immediately affect the overall protein fold, and the protein is stable at room tempera-
ture even when E23 side chain is ionized, thanks to water mediated interactions. Conventional
MD simulations cannot capture changes in protonation states, therefore this constitutes a sim-
plified description of a system that will likely switch from one state to the other depending on
the external environment. Nonetheless, these two situations are indirectly confirmed also by
the available structural data: NMR studies probing MNEI surface at pH 2.9 had in fact pointed
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Fig 8. Thermal stability of MNEI and MNEI-E23Q. Comparison of CD unfolding curves for MNEI (A) and MNEI-E23Q (B) at pH 3.5 (red), 5.1 (orange),
6.8 (green) and 8.0 (blue). The image shows that melting temperature of MNEI drops about 15°C at neutral to alkaline pHs. On the contrary, MNEI-E23Q
exhibits comparable stability to MNEI at acidic pH, and preserves this quality at neutral and alkaline pH.

doi:10.1371/journal.pone.0158372.9008
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Table 3. Thermal stability of MNEI and MNEI-E23Q at various pHs.

MNEI MNEI-E23Q
pH 3.5 91.0 86.7
pH 5.1 90.2 88.2
pH 6.8 76.3 84.3
pH 8.0 77.0 88.0

Experimental melting temperatures (°C) for MNEI and MNEI-E23Q from CD denaturation curves. All
measurements are accurate + 0.1°C.

doi:10.1371/journal.pone.0158372.t003

out a compact structure, with no internal water, whereas diffraction data on crystals obtained
at pH 5.6 indicate that a water molecule is stably buried in the La:2 loop [47,63]. Molecular
dynamic simulations suggest that the flexibility of such loop is reduced when E23 is protonated,
making it less likely for water molecules to penetrate in the hydrophobic cavity, and retaining a
strong hydrogen bond zipper that confers MNEI its well known thermostability at low pH.
When water penetrates the loop at neutral to alkaline pH, such hydrogen bond network is
perturbed, and MNEI stability is reduced. This situation can be reversed by introducing a
mutation that allows to recreate the same arrangement of stabilizing interactions in a pH inde-
pendent fashion. Mutant MNEI-E23Q preserves indeed, at alkaline pH, the stability typically
observed for MNEI in acidic conditions. Sweet proteins have been receiving increasing atten-
tion as the search for new sweeteners has become a trending topic for food and beverage
industries. Compared to other synthetic sweeteners, in fact, they offer many advantages: their
degradation follows the natural path of dietary proteins and does not lead to the accumulation
of toxic by-products, hinting to safety for human use; their non-carbohydrate nature makes
them suitable for use by people suffering from diabetes and other metabolic dysfunctions; their
enormous sweetening power allows for the use of minimal quantities and they can be obtained
in large quantities with recombinant technologies [1,83]. Moreover, comparative taste evalua-
tions of MNEI and other common sweeteners have proven that MNEI has the taste profile

that more closely resembles that of sucrose, being more palatable than sweeteners with a bitter
after-taste [84]. Therefore, the structural advantage introduced by the mutation E23Q trans-
lates in an increase of the application potential of MNEI, as the mutant becomes more resistant
to physical stressors that could be encountered in industrial processes.

Supporting Information

S1 Fig. RMSD plots from MD runs. Simulations were run at 300 K (A) and 473 K (B). Black,
MNEI-GLU_1; red, MNEI-GLU_2; green, MNEI-GLU_3; blue, MNEI-GLH_1; cyan, MNEI-
GLH_2; magenta, MNEI-GLH_3.

(TIF)

$2 Fig. Secondary structure (DSSP) plots of MD simulations at 300 K.
(TIF)

S3 Fig. Secondary structure (DSSP) plots of MD simulations at 473 K.
(TIF)

$4 Fig. Plot of the relative surface accessibility over time for MNEI. RSA was calculated
from trajectories at 300 K (A) and 473 K (B). Black, MNEI-GLU_1; red, MNEI-GLU_2; green,
MNEI-GLU_3; blue, MNEI-GLH_1; cyan, MNEI-GLH_2; magenta, MNEI-GLH_3.

(TIF)
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S5 Fig. Plot of the relative surface accessibility over time for MNEI-E23Q. RSA was calcu-
lated from trajectories at 300 K (A) and 473 K (B). Pink, MNEI-E23Q_1; dark green, MNEI-
E23Q_2; orange, MNEI-E23Q_3.

(TIF)

S6 Fig. Comparison of the CD spectra of the two proteins. Spectra were acquired on MNEI
(red) and MNEI-E23Q (black) at pH 6.8.
(TIFF)
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