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Abstract

Information carried by an image can be distorted due to different image processing steps
introduced by different electronic means of storage and communication. Therefore, devel-
opment of algorithms which can automatically assess a quality of the image in a way that is
consistent with human evaluation is important. In this paper, an approach to image quality
assessment (IQA) is proposed in which the quality of a given image is evaluated jointly by
several IQA approaches. At first, in order to obtain such joint models, an optimisation prob-
lem of IQA measures aggregation is defined, where a weighted sum of their outputs, i.e.,
objective scores, is used as the aggregation operator. Then, the weight of each measure is
considered as a decision variable in a problem of minimisation of root mean square error
between obtained objective scores and subjective scores. Subjective scores reflect ground-
truth and involve evaluation of images by human observers. The optimisation problem is
solved using a genetic algorithm, which also selects suitable measures used in aggregation.
Obtained multimeasures are evaluated on four largest widely used image benchmarks and
compared against state-of-the-art full-reference IQA approaches. Results of comparison
reveal that the proposed approach outperforms other competing measures.

Introduction

Visual information is often a subject of many processing steps, e.g., acquisition, enhancement,
compression, or transmission. After processing, some information carried by the content of the
image can be distorted. Therefore, its quality should be evaluated from a human perception point
of view. There are three categories of image quality assessment (IQA) measures (metrics or mod-
els), depending on availability of a pristine, i.e., distortion-free, image: (1) full-reference, (2) no-
reference, and (3) reduced-reference models. In this paper, the full-reference approach is consid-
ered, in which for each distorted image in a benchmark dataset its reference image is provided.
Application of peak signal-to-noise ratio (PSNR) is one of the simplest approaches to IQA.
However, an output of PSNR is not well correlated with human evaluation; therefore this tech-
nique often serves as a bottom model for comparison. In [1], Damera-Venkata et al. presented
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noise quality measure (NQM) in which a distorted image is modelled using a linear frequency
distortion and an additive noise injection. Wang et al. [2] introduced universal image quality
index (UQI). UQI evaluates quality of an image using loss of correlation, luminance distortion,
and contrast distortion. Further extension of UQ]I, structural similarity (SSIM), was proposed
by Wang et al. [3]. A multi-scale SSIM, MSSIM, was presented in [4]. Wang and Li in [5] pro-
posed information content weighted SSIM (IW-SSIM) approach as an extension of MSSIM. In
that work, local information was measured using statistical models of natural scenes. Statistical
properties of natural environment are also utilised in visual information fidelity (VIF) [6] mea-
sure and information fidelity criterion (IFC) [7]. In [8], Riesz-transform based feature similar-
ity (RFSIM) was proposed. The measure is computed by comparing Riesz-transform features
at key locations between the distorted image and its reference image. Authors of feature simi-
larity index (FSIM) [9] developed an approach which uses phase congruency and image gradi-
ent magnitude as low-level local features. FSIMc is a version of FSIM developed for processing
colour images. In [10], spectral residual based similarity (SR-SIM) using visual saliency map
was proposed. A visual saliency to calculate a local quality map of the distorted image is used in
visual saliency-induced index (VSI) [11]. The gradient similarity (GSM) measure [12] esti-
mates image quality taking into consideration structure and contrast changes, as well as lumi-
nance distortions. In [13], image structural degradation was considered and determined using
local binary patterns. In SURF-SIM [14], multiscale differences between features detected and
described by Speed Up Robust Features (SURF) approach are combined with a pooling strat-
egy. An IQA measure that evaluates images taking into account inter-patch and intra-patch
similarities was described in [15]. In that work, authors used modified normalised correlation
coefficient and image curvature.

Development of full-reference IQA measures can also involve different fusion strategies. For
example, Liu and Yang [16] combined SNR, SSIM, VIF, and VSNR using canonical correlation
analysis. A most apparent distortion algorithm (MAD) [17] adopts two strategies for IQA. In
that approach, a local luminance and a contrast masking evaluate high-quality images. Changes
in the local statistics of spatial-frequency components are used for images with a low quality.
Three IQA metrics, MS-SIM, VIF and R-SVD, were non-linearly combined by Okarma in [18,
19]. A non-linear fusion of IQA measures was also investigated in [20]. In [21], up to seven
IQA models were combined using a regularised regression. Peng and Li in [22] presented an
approach based on conditional Bayesian mixture of experts model. In that paper, a support
vector machines classifier was used for prediction of the type of distortion, and then SSIM,
VSNR, and VIF with k-nearest-neighbour regression were fused. Authors in their other paper,
[23], presented and adaptive combination of IQA measures with an edge-quality based on
preservation of edge direction. In [24], a combination of local and global distortion measures
was considered using saliency maps, gradient and contrast information.

Recently, many complex fusion approaches have been introduced, and therefore, the main
contribution of this paper is to show that a solution based on linear combination, which,
together with a genetic algorithm, is able to find well-performing fusion of IQA measures.
Apart from comparison of different approaches performed in accordance to a widely accepted
protocol, the paper provides some insights on a selection of IQA techniques which are likely to
be fused. In this paper, a decision fusion of 16 full-reference IQA measures is defined as an
optimisation problem of finding weights in a weighted sum of their outputs. A genetic algo-
rithm finds the solution that minimises root mean square error (RMSE) of prediction perfor-
mance. The number of used measures and parameters of the regression model for fitting
objective scores to subjective scores prior to RMSE calculation are found by the algorithm.
Finally, the proposed approach is evaluated on four largest IQA image benchmarks and com-
pared with the state-of-the-art approaches.
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The rest of this paper is organised as follows. In the section Methods, a formulation of the
optimisation problem and the development of the proposed approach are presented. Experi-
mental results with related discussions are covered in the section Results and Discussion.
Finally, the last section concludes the paper.

Methods

Since digital processing can alter an appearance of the image and that may lead to different
opinions on its quality, many IQA algorithms have been proposed for automatic assessment
[25]. In order to compare IQA approaches, specific image databases have been proposed.
They contain reference images, their corresponding distorted images, and ground-truth
information obtained from human observers. Information on the perceived quality is
reported as mean opinion scores (MOS values) or differential mean opinion scores (DMOS
values).

The desired IQA metric should produce objective scores which are consistent with human rat-
ings (subjective scores). In this work, it is assumed that joint metric can provide better results, in
terms of prediction quality, than a single metric that contributes to the multimeasure.

Let Q be an output of an aggregated decision of # IQA measures, where n € N. It can be
expressed as:

Q:A(Q]anv"'in)a (1)

where A is an aggregation operator. The operator often has a form of a weighted sum [26-28],
therefore Q can be expressed as follows:

Q= i‘xiQi? (2)

where x =[x}, X,, . . ., x,,] denotes a vector of weights, x € R". The vector x contains decision
variables in an optimisation problem of finding an effective fusion of IQA measures. Since
many fusions can be proposed, a given x should be evaluated. For this purpose one of typically
used IQA measures quality evaluation indices can be used. In order to measure consistency of
the output of the examined IQA model with human assessment, the following indices of pre-
diction accuracy, monotonicity, and consistency are often considered [29, 30]: Spearman Rank
order Correlation Coefficient (SRCC), Kendall Rank order Correlation Coefficient (KRCC),
Pearson linear Correlation Coefficient (PCC), and Root Mean Square Error (RMSE). Evalua-
tion indices are calculated after a nonlinear mapping between a vector of objective scores, Q,
and MOS or differential MOS (DMOS), S, using the following mapping function for the non-
linear regression [30]:

LN S
2 exp(fy(Q—By))

where B = B, Bo, . . ., Bs] are parameters of the regression model [29], and Q, is a mapped
equivalent of Q. SRCC is calculated as follows:

Q,=F(Q.p) =ﬂ1( >+ﬁ4Q+ﬁ5, (3)

6> ., d
SRCC(Q,8) =1 ——==1 4
@) =1 2 ®)
where d; is the difference between i" image in Q and S, and  is the total number of images.
KRCG, in turn, uses the number of concordant pairs in the dataset, m,, and the number of
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discordant pairs in the dataset, m,. It is illustrated by Eq (5).

_ mt: B md
KRCC(Q,5) = ey g
PCC is defined as:
> 15
p
PCC(QP,S) =, (6)
Q,'Q,5'S

where, Qp and S denote mean-removed vectors. RMSE is given by Eq (7).

RMSE(Q,. §) — \/(Q,, -9)'(Q, - s). 7)

m

Higher SRCC, KRCC, and PCC values are considered better, in contrary to the values of
RMSE.

One of these performance indices could be used as an objective function in a considered
optimisation problem. Preliminary experiments revealed that maximisation of SRCC or KRCC
may lead to fusion providing unacceptably high RMSE values. On the other hand, RMSE
requires determination of #. Finally, RMSE was used as the objective function in the considered
problem (Eq (8)), and  components were considered as decision variables in addition to the
weights of fused IQA measures.

minimise RMSE(F(Q,B),S) (8)
x 8

subject to xl.E‘R,nEN,ﬁZO.

Linear combination may produce negative weights which can be unintuitive in terms of
contribution of IQA measures that take part in the aggregation. Therefore, different combina-
tion types were considered starting from convex combination, in which weights are positive
and their sum is equal one, affine combination with preserved sum condition, or conical com-
bination with positive weights. Preliminary results confirmed that the proposed approach pro-
vides best performance without constraining the weights.

In this paper, an optimisation-based fusion was performed using N = 16 IQA measures with
publicly available source code. The following techniques were used: VSI [11], FSIM [9], FSIMc
[9], GSM [12], IEC [7], IW-SSIM [5], MAD [17], MSSIM [4], NQM [1], PSNR [29], RESIM
[8], SR-SIM [10], SSIM [3], VIF [6], IFS [31], and SFF [32]. In the proposed approach, the vec-
tor of decision variables, x, is obtained in a data-driven fashion. Since there are four largest
widely used IQA image benchmarks, in this paper four IQA fusion measures are introduced.
For this purpose, 20% of the reference images from the given dataset along with their distorted
counterparts were used for training. In the literature, sometimes more images were utilised in
order to tune parameters of developed methods, e.g., 30% [9, 11], 80% [13], or parameters were
generated for each image dataset separately [13, 21-23]. Some approaches used images from all
datasets for this purpose [15]. In order to show dataset-independent results, each fusion mea-
sure developed in this paper was evaluated on all datasets.

Finally, the vector x4, where d denotes a dataset, was obtained in the following steps: (1)
Selection of the 20% reference images from a given dataset and their distorted equivalents; (2)
Evaluation of images using N = 16 full-reference IQA measures; (3) Selection of n € NIQA
measures, finding weights of linear combination of their opinion scores and . Objective scores
of used measures, if needed, were scaled to be in a 0-1 range.
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Fig 1. Flowchart of the proposed approach. In an offline training process, the proposed approach is obtained using some of images from a benchmark
dataset. Images are assessed by full-reference IQA measures. Then, a genetic algorithm selects IQA measures and assigns weights to them. Obtained
weights for linear combination of selected measures are used in image quality assessment tasks.

doi:10.1371/journal.pone.0158333.g001

The optimisation problem was solved using a genetic algorithm (GA) [28, 33], since the
number of possible solutions grows exponentially with the number of used IQA metrics. The
GA uses a population of individuals, where each individual represents a single solution. Then,
from generation to generation, after applying selection, crossover and mutation operators, bet-
ter solutions are emerging. The GA was run for 200 generations, with a population of 100 indi-
viduals, elite count equal to 0.05 of the population size, and 0.8 crossover fraction. Scattered
crossover, Gaussian mutation and stochastic uniform selection rules were used [33]. All pre-
sented calculations were performed using Matlab software (version 7.14) with GA Tool-
box [34]. After 100 runs, the best solution, x5, was selected. The individual in the proposed
solution is represented by real-valued vector, where dimensions refer to weights of IQA mea-
sures, X, and B values. Parameters of the GA were determined experimentally observing con-
vergence of the objective function over the generations.

Fig 1 presents a flowchart of the approach with a process in which the introduced fusion
measure is obtained and its usage for image quality assessment.

In experiments, the following four image benchmarks were used: TID2013 [35], TID2008
[36], CSIQ [17], and LIVE [3]. The number of reference images, distortions, and subjects for
each dataset are shown in Table 1. Each database contains reference images, their correspond-
ing distorted images and subjective scores.
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Table 1. IQA benchmark image datasets.

Dataset No. of reference images No. of distorted images No. of distortions No. of observers
TID2013 [35] 25 3000 24 971
TID2008 [36] 25 1700 17 838
cslQ [17] 30 866 6 35
LIVE [3] 29 779 5 161

doi:10.1371/journal.pone.0158333.t001

Finally, four IQA measures, namely Linearly Combined Similarity Measures (LCSIMs),

were obtained:

LCSIMI = x, - = 24.9166VSI — 1.1853FSIM + 7.2735FSIMc

—1.0367IW — SSIM — 1.3816 MAD — 2.5171MSSIM

— 0.8420PSNR + 6.1916SR — SIM + 5.67671IFS,

LCSIM2 = xbt, o = —14.0578VSI — 2.4925IW — SSIM + 4.5530MAD
+ 3.4421MSSIM — 3.7502PSNR — 0.7722RFSIM

—10.9245SR — SIM + 5.6138SSIM — 6.1125VIF — 7.6139IFS,

LCSIM3 = x%, = 2.1056VSI — 5.5300FSIM + 0.1928FSIMc
+6.4580GSM — 9.2595MAD — 10.7249MSSIM
+ 2.8804RFSIM + 9.8189SR — SIM + 4.4817VIF
+9.45911FS + 13.7206SFF,

LCSIM4 = X%, = —2.5748FSIM + 12.3199GSM + 1.1860IFC
+1.3884IW — SSIM + 7.7745MAD + 1.4430NQM
+0.6367RFSIM — 5.3659VIF — 2.87391FS.

Their corresponding # components are as follows:

Biesnn [13.0262,0.1286, 19.4659, 1.4283, 12.8159],
Bisna = [0.8714,6.2907,4.2059,8.1359,12.6196),
= |

[

7.9955,7.1928, 15.2802, 5.0426, 3.4213],
8.3862,8.0861, 9.0601, 11.5365, 13.3231].

ﬂ LCSIM3

ﬂ LCSIM4

Results and Discussion

©)

(10)

(11)

(12)

This section presents experimental evaluation of the proposed approach in comparison with
state-of-the-art techniques, as well as discussion on influence of the aggregated IQA measures

and f on resulting fusion models.

Comparative evaluation

For evaluation, four largest image benchmarks (TID2013, TID2008, CSIQ, and LIVE) and four

performance indices (SRCC, PCC, KROCC, RMSE) were used.
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Table 2. Performance comparison of resulted fusion measures with IQA models that were used in optimisation.

VA FSIM | FSIMc| GSM MAD | MSSIM| SR-SIM VIF IFS SFF LCSIM1| LCSIM2| LCSIM3 LCSIM4
SRCC | 0.8965| 0.8015| 0.8510| 0.7946 | 0.7807 | 0.7859 | 0.7999 | 0.6769 | 0.8697 | 0.8513| 0.9044 | 0.8139 0.8307 0.8086
KRCC | 0.7183| 0.6289| 0.6665| 0.6255| 0.6035| 0.6047 | 0.6314 | 0.5147 | 0.6785| 0.6581 0.7326 | 0.6387 0.6534 0.6292
PCC 0.9000 | 0.8589 | 0.8769| 0.8464 | 0.8267 | 0.8329 | 0.8590 | 0.7735| 0.8791| 0.8706| 0.9140| 0.7993 0.8659 0.8651
RMSE | 0.5404 | 0.6349| 0.5959 | 0.6603| 0.6975| 0.6861 | 0.6347 | 0.7856| 0.5909 | 0.6099 0.5030 | 0.7449 0.6201 0.6218
TID2008
SRCC | 0.8979| 0.8805| 0.8840| 0.8504 | 0.8340| 0.8542 | 0.8913 | 0.7491| 0.8903| 0.8767| 0.9057 | 0.9178 0.9107 0.8892
KRCC | 0.7123| 0.6946 | 0.6991| 0.6596 | 0.6445| 0.6568 | 0.7149 | 0.5860 | 0.7009 | 0.6882 0.7271 | 0.7495 0.7391 0.7053
PCC 0.8762 | 0.8738| 0.8762| 0.8422| 0.8306| 0.8451 | 0.8866 | 0.8084 | 0.8810| 0.8817| 0.8956 | 0.9202 0.9113 0.8965
RMSE | 0.6466 | 0.6525| 0.6468 | 0.7235| 0.7473| 0.7173 | 0.6206 | 0.7899| 0.6349| 0.6333| 0.5970| 0.5253 0.5525 0.5945
csiQ
SRCC | 0.9423| 0.9242| 0.9310| 0.9108 | 0.9466| 0.9133 | 0.9319 | 0.9195| 0.9582| 0.9627 | 0.9494| 0.9658 0.9733 0.9624
KRCC | 0.7857| 0.7567 | 0.7690| 0.7374| 0.7970| 0.7393 | 0.7725 | 0.7537 | 0.8165| 0.8288 0.7994 | 0.8396 0.8579 0.8323
PCC 0.9279| 0.9120| 0.9192| 0.8964| 0.9500| 0.8991 | 0.9250 | 0.9277 | 0.9576| 0.9643| 0.8968 | 0.9665 0.9780 0.9704
RMSE | 0.0979| 0.1077| 0.1034| 0.1164| 0.0820| 0.1149 | 0.0997 | 0.0980| 0.0757 | 0.0695 0.1162 | 0.0674 0.0547 0.0634
LIVE
SRCC | 0.9524 | 0.9634| 0.9645| 0.9561| 0.9669| 0.9513 | 0.9618 | 0.9636 | 0.9599 | 0.9649 0.9627 | 0.9710 0.9722 0.9749
KRCC | 0.8058| 0.8337| 0.8363| 0.8150 | 0.8421| 0.8045 | 0.8299 | 0.8282| 0.8254 | 0.8365 0.8281 | 0.8484 0.8526 0.8600
PCC 0.9482| 0.9597| 0.9613| 0.9512| 0.9675| 0.9489 | 0.9553 | 0.9411| 0.9586 | 0.9632 0.8463 | 0.9580 0.9662 0.9757
RMSE | 8.6816| 7.6781| 7.5297 | 8.4327| 6.9073| 8.6188 | 8.0813 | 9.2402| 7.7765| 7.3461| 14.5553 | 7.8351 7.0457 5.9821
Overall direct
SRCC | 0.9223 | 0.8924| 0.9076 | 0.8780| 0.8820| 0.8762 | 0.8963 | 0.8273| 0.9195| 0.9139 0.9306 | 0.9171 0.9217 0.9088
KRCC | 0.7555| 0.7285| 0.7427 | 0.7094| 0.7218| 0.7013 | 0.7372 | 0.6707 | 0.7553| 0.7529 0.7718 | 0.7691 0.7758 0.7567
PCC 0.9131| 0.9011| 0.9084 | 0.8840| 0.8937| 0.8815| 0.9065 | 0.8627 | 0.9191| 0.9199 0.8882 | 0.9110 0.9304 0.9269
RMSE | 0.4283| 0.4650| 0.4487 | 0.5000| 0.5089| 0.5061 | 0.4517 | 0.5578 | 0.4338| 0.4376| 0.4054 | 0.4459 0.4091 0.4266
Overall weighted
SRCC | 0.9103| 0.8598| 0.8851| 0.8458 | 0.8412| 0.8424 | 0.8628 | 0.7657 | 0.8988| 0.8877| 0.9183| 0.8823 0.8895 0.8722
KRCC| 0.7370| 0.6898| 0.7107 | 0.6738| 0.6711| 0.6622 | 0.6980 | 0.6061| 0.7220 | 0.7121 0.7524 | 0.7223 0.7295 0.7065
PCC 0.9036 | 0.8829 | 0.8931| 0.8653| 0.8625| 0.8599 | 0.8875 | 0.8252| 0.9004 | 0.8981 0.8982 | 0.8745 0.9061 0.9019
RMSE | 0.5025| 0.5566| 0.5333| 0.5932| 0.6150| 0.6050 | 0.5456 | 0.6779| 0.5226 | 0.5313| 0.4703 | 0.5706 0.5098 0.5249

The best two IQA models for each criterion are shown in boldface. Overall results for RMSE do not take into account LIVE dataset due to range

difference.

doi:10.1371/journal.pone.0158333.t002

Table 2 presents evaluation results for the best ten models and LCSIMs. The top two models
for each criterion are shown in boldface. The table also contains direct and weighted averages
of obtained values. For the weighted average, the number of images in the database is used as

its weight. Overall results for RMSE do not take into account LIVE dataset due to range
difference.

The obtained results show that LCSIM3 clearly outperformed other measures, since it
yielded the best results on LIVE and CSIQ. It was also the second best measure on TID2008
dataset, after LCSIM2. LSIM1 outperformed other measures on TID2013. Overall results are
biased towards techniques that performed well on TID2013, which is the largest benchmark,
i.e., LCSIM1, VSI, and IFS. Among results obtained by measures that took part in the LCSIM1
fusion, VSI and MAD are worth noticing. Such good performance of LCSIM family should be

PLOS ONE | DOI:10.1371/journal.pone.0158333 June 24,2016
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Table 3. Statistical significance tests.
vsi| FsIM| FSiMc| GSM| MAD| MssIM| SR-SIM| VIF| IFS| SFF| LCSIMi| LCSIM2| LCSIM3| LCSIM4

TID2013

1 1 1 1 1 1 1 1 1 1 0 1 1 1 LCSIM1
-1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 0 -1 -1 LCSIM2
-1 -1 -1 1 1 1 1 0 -1 -1 1 0 -1 LCSIM3
-1 0 -1 1 1 1 0 1 -1 0 -1 1 0 LCsIM4

TID2008
1 1 1 1 1 1 1 1 1 1 0 -1 -1 -1 LCcsIM1
1 1 1 1 1 1 1 1 1 1 1 0 1 1 LCsIM2
1 1 1 1 1 1 1 1 1 1 1 -1 0 1 LcsIM3
1 1 1 1 1 1 0 1 1 1 1 -1 -1 0 LCcsIm4
csia
1 1 1 1 -1 1 1 1 -1 -1 0 -1 -1 -1 LCSIM1
1 1 1 1 1 1 1 1 1 0 1 0 -1 -1 LCSIM2
1 1 1 1 1 1 1 1 1 1 1 0 1 LCSIM3
1 1 1 1 1 1 1 1 1 1 1 1 -1 0 LCSIM4
LIVE

-1 -1 -1 -1 -1 -1 -1 1 -1 -1 0 -1 -1 -1 LCsIM1
1 0 0 1 -1 1 -1 1 0 -1 1 0 -1 -1 LCsIM2
1 1 1 1 0 1 1 1 1 1 0 -1 LcsIM3
1 1 1 1 1 1 1 1 1 1 1 1 1 0 LCsIM4

The fusion measure in the row is significantly better than the IQA measure in the column ('1°), worse (-1’), or indistinguishable ('0’).

doi:10.1371/journal.pone.0158333.t003

confirmed using statistical significance tests. In order to evaluate statistical significance of
obtained IQA models, hypothesis tests based on the prediction residuals of each measure after
non-linear mapping were conducted using left-tailed F-test [17]. In the test, smaller residual
variance denoted the better prediction. Table 3 presents results of these tests, where a symbol
“17,“0” or “-1” denotes that the IQA fusion measure in the row is statistically better with a con-
fidence greater than 95%, indistinguishable, or worse than the IQA measure in the column.

Significance tests confirm good performance of the developed family of multimeasures.
LCSIM3 was significantly better than other measures on TID2013, LIVE and CSIQ databases.
Its results on TID2013 were also good. However, since it was developed using information car-
ried by scores being a reflectance of the dataset which do not contain many of distortions that
are present in CSIQ benchmark, its opinion scores were less correlated in this case than scores
of VSI, FCSIM, or IFS. Consequently, LCSIM that was obtained on TID2013 (LCSIM1) per-
formed worse than other measures on LIVE benchmark.

Fig 2 presents the scatter plots for LCSIM3 and the two best performing IQA models for
each benchmark. It can be seen that compared models for databases other than TID2013
yielded less accurate quality predictions for large DMOS values and small MOS values (i.e., in
presence of severe distortions) than LCSIM3. Fig 3, in turn, contains absolute values of the dif-
ference between subjective scores and objective scores for the five best IQA measures after non-
linear fitting (Eq (3)). Here, the values were obtained for 50 images from the most popular
LIVE dataset. The figure shows how scores obtained by IQA measures differ from the expected
scores; smaller values are considered better. It can be seen that the introduced fusion measure,
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Fig 2. Scatter plots of subjective opinion scores against scores obtained by the two best IQA measures and LCSIM3 on used datasets. Different
types of distortions are represented by different colours; the set of colours is coherent within a dataset. Curves fitted with logistic functions are also shown.

doi:10.1371/journal.pone.0158333.g002
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Fig 3. Absolute values of the difference between objective scores and nonlinearly fitted subjective scores for 50 exemplary images from LIVE

dataset. For each image, a smaller value denotes objective assessment which is closer to human evaluation.

doi:10.1371/journal.pone.0158333.9003

LCSIM3, returned scores which are visibly closer to subjective scores obtained in tests with
human subjects. This is also confirmed by RMSE values reported for this dataset.

The proposed family of multimeasures aggregates different IQA measures. Therefore, it is
worth examining their time- and memory-consumption. The processing time and memory
requirements have been determined for all aggregated IQA measures assessing an exemplary
image from TID2013 dataset. The results are shown in Table 4. It can be seen that MAD and
VIF are the most demanding techniques. Taking into account that processing time

Table 4. Time and memory costs of IQA measures used in the optimisation.

IQA measure Time [s] Memory [MB]
VSI 0.2207 98.01
FSIM 0.2835 73.62
FSIMc 0.2835 73.62
GSM 0.1796 43.20
IFC 0.8102 356.18
IW-SSIM 0.7160 227.27
MAD 1.1032 725.74
MSSIM 0.1402 33.80
NQM 0.3159 135.55
PSNR 0.0343 1.50
RFSIM 0.0801 3.01
SR-SIM 0.0336 6.95
SSIM 0.0958 17.43
VIF 0.9461 343.89
IFS 0.1213 21.73
SFF 0.0971 17.63

doi:10.1371/journal.pone.0158333.t004
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Table 5. Comparison of the approach with other fusion IQA measures based on SRCC values.

IQA measure TID2013
MAD [17] 0.7807
CQM [18] -

Lahouhou et al. -
[21]

ADM [38] -
BMMF [39] 0.8340
BME [22] -
RMSSIM [23] -
IGM [40] -
EHIS [19] -
MMF [37] -
GLD-PFT [24] -
Barri et al. [41] -
DOG-SSIM [42] 0.8942
ESIM [20] 0.8804
LCSIM1 0.9044
LCSIM2 0.8139
LCSIM3 0.8307
LCSIM4 0.8086

TID2008 csia LIVE Overall direct Overall weighted
0.8340 0.9466 0.9669 0.9158 0.8944
0.8720 - - - -

- - 0.9500 - -
0.8617 0.9333 0.9460 0.9137 0.9001
0.9471 - - - -
0.8882 0.9573 0.9711 - -
0.8569 0.9453 0.9633 -

0.8902 0.9401 0.9580 0.9294 0.9190
0.9098 0.9498 0.9622 - -

0.9487 0.9755 0.9732 - -

0.8849 0.9549 0.9631 0.9343 0.9186
0.8100 0.9630 0.9570 0.9100 0.8843
0.9259 0.9204 0.9423 0.9295 0.9282
0.9026 0.9620 0.9420 0.9420 0.9300
0.9057 0.9494 0.9627 0.9393 0.9280
0.9178 0.9658 0.9710 0.9515 0.9408
0.9107 0.9733 0.9722 0.9521 0.9395
0.8892 0.9624 0.9749 0.9422 0.9251

The result for the measure that was trained using images from the dataset indicated in the column is italicised in order to show the lack of the dataset
independence. Overall results were calculated on the basis of three most popular datasets (i.e., TID2008, CSIQ and LIVE) taking into account IQA
measures that provided independent results for at least two datasets. The two best measures for each dataset are shown in boldface.

doi:10.1371/journal.pone.0158333.1005

requirements for image quality assessment algorithms are less demanding than for video qual-
ity assessment techniques, obtained timings on ordinary 2200MHz CPU seem to be acceptable.
LCSIMs aggregate several IQA measures; therefore, their running time will be longer in case of
sequential execution of used measures or close to the execution time of MAD measure in case
of more memory-consuming parallel implementation.

It would be desirable to compare the proposed multimeasures with other related fusion IQA
measures. Table 5 contains such comparative evaluation based on SRCC values. SRCC was
used as a basis for comparison since many papers do not report other performance indices.
Two best results for a given benchmark dataset are written in boldface, some results were not
reported in referred works; therefore, they are denoted by “-”. IQA measures which were devel-
oped using images from the benchmark in the column are excluded from the comparison.
Moreover, overall results were calculated excluding TID2013 since some measures have not
been evaluated on it. Furthermore, in order to provide fair comparison, overall results exclude
works in which authors obtained a separate IQA measure for each benchmark without provid-
ing cross-database evaluation, e.g., [18, 19, 21-23], or [37]. Results for approaches that are not
dataset independent are written in italics.

Evaluation results show that LCSIM3 and LCSIM2 outperformed other approaches which
use fusion of IQA measures. Among other measures, DOG-SSIM and ESIM provided good
results on TID2013 benchmark, and the approach developed by Barri et al. turned out to be the
second best technique on CSIQ dataset. Outstanding performances of LCSIM3 and LCSIM2
are also confirmed by overall results. Here, they are followed by ESIM, LCSIM4, LCSIM1, and
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DOG-SIM. Most of these models were trained on TID2008, except LCSIM3 that was trained
on images from CSIQ. This happened since all three most popular datasets share the same
types of distortions.

Influence of parameters and IQA measures on fusion

The already presented results confirm good performance of obtained IQA fusion measures in
comparison with state-of-the-art fusion and single IQA measures. However, it would be desir-
able to answer why some measures took part in the fusion more often than others. A contribu-
tion of aggregated models also requires some attention, since the linear combination can
produce unintuitive negative weights.

At first, in order to show the contribution of a given measure, SRCC values between objec-
tive and subjective scores were obtained for each distortion type. This may explain why some
measures were involved in a fusion, and also show how well perform developed LCSIMs in
comparison with IQA measures that were used in optimisation, from distortion type point of
view. Table 6 contains SRCC values of the best ten IQA models and LCSIMs obtained on
benchmark datasets. The two best IQA measures for each distortion type are written in
boldface.

Results for distortion types reveal that VSI, FSIMc, GSM, VIF, IES, and SFF are among best
single IQA models. They also were often a part of fusion models, what can be seen in Egs (9)-
(12). Here, LCSIM family was better or close to best IQA models and showed outstanding per-
formance on CSIQ dataset. In order to provide further investigation why some measures were
fused together, SRCC values between IQA models on CSIQ dataset were obtained. They are
shown in Table 7. This time correlation sign was preserved, since it may suggest why some
measures have negative weights in fusions. Negative correlations can also be seen on Fig 2. Sim-
ilar pairwise relations between IQA models were noticed on other datasets. It can be seen that
some measures are less correlated with each other while preserving good correlation with sub-
jective scores. VIF is the less correlated measure with MSSIM and MAD, all these measures
perform well on CSIQ dataset. SRCC values for these measures are written in boldface in the
Table 7. IQA measures in pairs MAD—VIF and MSSIM—VTF are complementary and thus
likely to be fused together.

These findings were confirmed in an experiment in which a predefined number of IQA
measures, k € N, could take part in the fusion. Such reduced fusion models are helpful to deter-
mine the contribution of each fused measure. In the experiment, k varied from 2 to 5. In order
to estimate the influence of the IQA measure on the results obtained by the fusion model, the
percentage decrease of RMSE without the measure was calculated. Table 8 contains such
reduced LCSIMs for CSIQ dataset, their RMSE values, and contributions. The table also con-
tains LCSIM3, since it was developed on images from CSIQ.

Results shown in Table 8 confirm that the IQA measures that achieve good performance on
CSIQ dataset and are less correlated with each other, are likely to be aggregated. In obtained
fusion measures, weights do not reflect well the contribution of selected IQA measures, what
can be seen in case of three (k = 3) fused models, where VIF and MAD with lower weights con-
tributed more than SFF. The sign of the weight depends on correlation of the measure with
objective scores (MOS or DMOS) but it can also be used as compensation, making the resulting
vector of objective opinion scores closer to the vector of subjective scores, since the optimisa-
tion utilise RMSE between them for finding better aggregated models.

It is worth noticing that RMSE results obtained by all measures developed in experiments
with the predefined number of IQA measures are better than results of state-of-the-art
approaches on this dataset (see Table 8).

PLOS ONE | DOI:10.1371/journal.pone.0158333 June 24,2016 12/17



D)
@ : PLOS | ONE Full-Reference IQA with Linear Combination of Genetically Selected Quality Measures

Table 6. SROCC values of IQA measures for each distortion type.

Dist. Type| VSl | FSIM| FSIMc| GSM | MAD | MssiM| SRSIM| VIF | IFS | SFF | LCSIM1| LCSIM2| LCSIM3 LCSIM4
TID2013

AWGN | 0.9460| 0.8973| 0.9101| 0.9064 | 0.8843 | 0.8646 | 0.9212 | 0.8994 | 0.9382| 0.9066 | 0.9389 | 0.9248 | 0.9240 | 0.9141

AWGNc | 0.8705| 0.8208| 0.8537 | 0.8175| 0.8019| 0.7730 | 0.8496 | 0.8209 | 0.8537 | 0.8166| 0.8584 | 0.8482 | 0.8481 | 0.8464

SCN 0.9367 | 0.8750 | 0.8900| 0.9158 | 0.8911| 0.8544 | 0.9150 | 0.8835| 0.9340 | 0.8982 | 0.9335 | 0.9253 | 0.9223 | 0.9090
MN 0.7697 | 0.7944 | 0.8094 | 0.7293| 0.7380| 0.8073 | 0.7645 | 0.8450 | 0.7960 | 0.8185| 0.7732 | 0.8175 | 0.8021 0.7901
HFN 0.9200 | 0.8984 | 0.9040| 0.8869| 0.8876 | 0.8604 | 0.9102 | 0.8972| 0.9140| 0.8977 | 0.9085 | 0.9081 0.9098 | 0.9002
IN 0.8741| 0.8072| 0.8251| 0.7965| 0.2769 | 0.7629 | 0.8249 | 0.8537 | 0.8389| 0.7871| 0.7989 | 0.7905 | 0.7218 | 0.5710
QN 0.8748| 0.8719| 0.8807 | 0.8841| 0.8514 | 0.8706 | 0.8447 | 0.7854| 0.8335| 0.8607 | 0.8787 | 0.8523 | 0.8721 0.8574
GB 0.9612| 0.9551 | 0.9551 | 0.9689 | 0.9319| 0.9673 | 0.9612 | 0.9650 | 0.9658 | 0.9675| 0.9588 | 0.9623 | 0.9642 | 0.9503
DEN 0.9484 | 0.9302 | 0.9330| 0.9432| 0.9252 | 0.9268 | 0.9371 | 0.8911| 0.9183| 0.9091 | 0.9423 | 0.9194 | 0.9307 | 0.9144
JPEG 0.9541 | 0.9324 | 0.9339 | 0.9284 | 0.9217 | 0.9265 | 0.9398 | 0.9192| 0.9290 | 0.9273 | 0.9346 | 0.9234 | 0.9256 | 0.9274
JP2K 0.9706 | 0.9577 | 0.9589 | 0.9602 | 0.9511| 0.9504 | 0.9655 | 0.9516| 0.9611| 0.9571| 0.9627 | 0.9605 | 0.9614 | 0.9574
JGTE 0.9216 | 0.8464 | 0.8610| 0.8512| 0.8283 | 0.8475 | 0.8527 | 0.8409 | 0.8925| 0.8831| 0.8917 | 0.8626 | 0.8607 | 0.8540
J2TE 0.9228 | 0.8913 | 0.8919| 0.9182| 0.8788 | 0.8889 | 0.9047 | 0.8761| 0.9010| 0.8708 | 0.9184 | 0.9194 | 0.9204 | 0.9008
NEN 0.8060| 0.7917 | 0.7937| 0.8130| 0.8315| 0.7968 | 0.7617 | 0.7720| 0.7839| 0.7668 | 0.8100 | 0.8129 | 0.8166 | 0.8286
BWD 0.1713| 0.5489 | 0.5532 | 0.6418 | 0.2812| 0.4801 | 0.4571 | 0.5306| 0.1004 | 0.1786| 0.3522 | 0.3295 | 0.1854 | 0.4517
IS 0.7700| 0.7531| 0.7487 | 0.7875| 0.6450 | 0.7906 | 0.6402 | 0.6276| 0.6575| 0.6654| 0.6778 | 0.4537 | 0.6150 | 0.5572
cC 0.4754 | 0.4686 | 0.4679 | 0.4857| 0.1972| 0.4634 | 0.4644 | 0.8386| 0.4469| 0.4691| 0.4445 | 0.6286 | 0.4253 | 0.5324
CCs 0.8100| 0.2748 | 0.8359 | 0.3578 | 0.0575| 0.4099 | 0.1875 | 0.3099 | 0.8257 | 0.8269 | 0.8324 | 0.8094 | 0.8171 0.7155
MGN 0.9117 | 0.8469 | 0.8569 | 0.8348 | 0.8409 | 0.7786 | 0.8719 | 0.8468| 0.8790| 0.8434 | 0.8952 | 0.8830 | 0.8812 | 0.8746
CN 0.9243 | 0.9121| 0.9135| 0.9124| 0.9064 | 0.8528 | 0.9199 | 0.8946| 0.9037 | 0.9007 | 0.9180 | 0.9116 | 0.9127 | 0.9074
LCNI 0.9564 | 0.9466 | 0.9485| 0.9563| 0.9443 | 0.9068 | 0.9591 | 0.9204 | 0.9433 | 0.9262 | 0.9600 | 0.9503 | 0.9498 | 0.9436
IcQD 0.8839| 0.8760 | 0.8815| 0.8973| 0.8745| 0.8555 | 0.8727 | 0.8414| 0.9007 | 0.8795| 0.9019 | 0.8840 | 0.8983 | 0.8825
CHA 0.8906 | 0.8715| 0.8925| 0.8823 | 0.8310| 0.8784 | 0.8746 | 0.8848 | 0.8862 | 0.8789| 0.8805 | 0.8765 | 0.8736 | 0.8611
SSR 0.9628 | 0.9565| 0.9576 | 0.9668 | 0.9567 | 0.9483 | 0.9613 | 0.9353| 0.9556 | 0.9522 | 0.9656 | 0.9585 | 0.9619 | 0.9545
TID2008

AWGN 0.9229 | 0.8566 | 0.8758 | 0.8606 | 0.8386| 0.8086 | 0.8990 | 0.8797 | 0.9172| 0.8731| 0.9087 | 0.9147 | 0.8998 | 0.8803
AWGNc 0.9118 | 0.8527 | 0.8931| 0.8091| 0.8255| 0.8054 | 0.8953 | 0.8757| 0.8958 | 0.8626 | 0.8928 | 0.8993 | 0.8897 | 0.8852

SCN 0.9296 | 0.8483| 0.8711| 0.8941| 0.8678 | 0.8209 | 0.9083 | 0.8698 | 0.9307 | 0.8939| 0.9224 | 0.9330 | 0.9187 | 0.8967
MN 0.7734| 0.8021| 0.8264 | 0.7452| 0.7336| 0.8107 | 0.7870 | 0.8683 | 0.8021 | 0.8365| 0.7288 | 0.8530 | 0.8181 0.7822
HFN 0.9253 | 0.9093 | 0.9156| 0.8945| 0.8864 | 0.8694 | 0.9197 | 0.9075| 0.9215| 0.9119| 0.9108 | 0.9190 [ 0.9205 | 0.9023
IN 0.8298 | 0.7452 | 0.7719| 0.7235| 0.0650 | 0.6907 | 0.7665 | 0.8327 | 0.8143| 0.7484| 0.7325 | 0.7524 | 0.6178 | 0.3996
QN 0.8731| 0.8564 | 0.8726 | 0.8800| 0.8160 | 0.8589 | 0.8364 | 0.7970| 0.7973 | 0.8448 | 0.8608 | 0.8541 0.8536 | 0.8297
GB 0.9529 | 0.9472 | 0.9472| 0.9600| 0.9196 | 0.9563 | 0.9549 | 0.9540| 0.9602 | 0.9624 | 0.9519 | 0.9574 | 0.9568 | 0.9405
DEN 0.9693 | 0.9603 | 0.9618 | 0.9725| 0.9433 | 0.9582 | 0.9668 | 0.9161 | 0.9491| 0.9383| 0.9633 | 0.9594 | 0.9569 | 0.9424
JPEG 0.9616 | 0.9279 | 0.9294 | 0.9393| 0.9275| 0.9322 | 0.9394 | 0.9168| 0.9279| 0.9323| 0.9340 | 0.9444 | 0.9344 | 0.9257
JP2K 0.9848 | 0.9773| 0.9780| 0.9758| 0.9707 | 0.9700 | 0.9807 | 0.9709 | 0.9778 | 0.9772| 0.9821 0.9825 | 0.9796 | 0.9768
JGTE 0.9160 | 0.8708 | 0.8756 | 0.8790| 0.8661| 0.8681 | 0.8881 | 0.8585| 0.8735| 0.8567 | 0.9123 | 0.8984 | 0.8987 | 0.8938
J2TE 0.8942| 0.8544 | 0.8555| 0.8936| 0.8394 | 0.8606 | 0.8903 | 0.8501| 0.8799| 0.8386| 0.8925 | 0.9137 | 0.9005 | 0.8816
NEN 0.7699 | 0.7491| 0.7514| 0.7386| 0.8287 | 0.7377 | 0.7670 | 0.7619| 0.7035| 0.6970| 0.7770 | 0.8031 0.7985 | 0.8238
BWD 0.6295| 0.8492 | 0.8464 | 0.8862| 0.7970| 0.7546 | 0.7787 | 0.8324| 0.0871| 0.5369 | 0.6329 | 0.7376 | 0.6665 | 0.8259
IS 0.6714| 0.6720| 0.6554| 0.7190| 0.5163 | 0.7336 | 0.5728 | 0.5096 | 0.5215| 0.5225| 0.3808 | 0.5587 | 0.4928 | 0.4602
cC 0.6557 | 0.6481| 0.6510| 0.6691| 0.2723 | 0.6381 | 0.6483 | 0.8188 | 0.6273 | 0.6461| 0.6096 | 0.7258 | 0.5764 | 0.6323
CsIQ
AWGN 0.9636 | 0.9262 | 0.9359 | 0.9440| 0.9541| 0.9471 | 0.9628 | 0.9575| 0.9593 | 0.9467 | 0.9618 | 0.9717 | 0.9718 | 0.9625
JPEG 0.9618 | 0.9654 | 0.9664 | 0.9632| 0.9615| 0.9634 | 0.9671 | 0.9705| 0.9660 | 0.9641| 0.9206 | 0.9711 0.9708 | 0.9570
JP2K 0.9694 | 0.9685| 0.9704 | 0.9648| 0.9752 | 0.9683 | 0.9773 | 0.9672| 0.9712| 0.9763| 0.9759 | 0.9781 0.9791 0.9731
(Continued)
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Table 6. (Continued)

Dist. Type VSl FSIM | FSIMc| GSM MAD | MSSIM| SR-SIM VIF IFS SFF | LCSIM1| LCSIM2| LCSIM3| LCSIM4
AGPN 0.9638 | 0.9234 | 0.9370| 0.9387| 0.9570| 0.9331 | 0.9520 | 0.9511| 0.9526 | 0.9550 | 0.9668 | 0.9650 [ 0.9657 | 0.9650
GB 0.9679| 0.9729 | 0.9729 | 0.9589| 0.9682| 0.9711 | 0.9767 | 0.9745| 0.9621| 0.9751| 0.9640 | 0.9790 | 0.9774 | 0.9735
GCD 0.9504 | 0.9420 | 0.9438 | 0.9354 | 0.9207 | 0.9526 | 0.9528 | 0.9345| 0.9485| 0.9536 | 0.9510 | 0.9590 | 0.9443 | 0.9449
LIVE
JP2K 0.9604 | 0.9717 | 0.9724 | 0.9700| 0.9676 | 0.9627 | 0.9701 | 0.9696 | 0.9694 | 0.9672| 0.9695 | 0.9690 | 0.9682 | 0.9721
JPEG 0.9761| 0.9834 | 0.9840 | 0.9778| 0.9764 | 0.9815| 0.9823 | 0.9846 | 0.9778 | 0.9786| 0.9761 0.9823 | 0.9792 | 0.9818
AWGN 0.9835| 0.9652 | 0.9716| 0.9774| 0.9844 | 0.9733 | 0.9810 | 0.9858 | 0.9883 | 0.9859 | 0.9855 | 0.9878 | 0.9884 | 0.9873
GB 0.9527 | 0.9708 | 0.9708 | 0.9518 | 0.9465| 0.9542 | 0.9660 | 0.9728 | 0.9665| 0.9752 | 0.9664 | 0.9641 0.9640 | 0.9589
FF 0.9430 | 0.9499 | 0.9519| 0.9402| 0.9569 | 0.9471 | 0.9465 | 0.9650 | 0.9404 | 0.9529 | 0.9499 | 0.9604 | 0.9616 | 0.9694

doi:10.1371/journal.pone.0158333.t006

Table 7. SRCC between objective scores of IQA measures on CSIQ.

VSI FSIM FSIMc GSM MAD MSSIM SR-SIM VIF IFS SFF

VSI 0.9722 0.9808 0.9719 -0.9563 0.9743 0.9706 0.8813 0.9684 0.9603
FSIM 0.9722 0.9985 0.9884 -0.9613 0.9852 0.9865 0.8879 0.9462 0.9436
FSIMc 0.9808 0.9985 0.9880 -0.9662 0.9877 0.9850 0.8868 0.9552 0.9515
GSM 0.9719 0.9884 0.9880 -0.9548 0.9857 0.9831 0.8536 0.9336 0.9271
MAD -0.9563 -0.9613 -0.9662 -0.9548 -0.9605 -0.9552 -0.8689 -0.9422 -0.9451
MSSIM 0.9743 0.9852 0.9877 0.9857 -0.9605 0.9719 0.8538 0.9358 0.9292
SR-SIM 0.9706 0.9865 0.9850 0.9831 -0.9552 0.9719 0.9010 0.9414 0.9422
SSIM 0.9382 0.9602 0.9603 0.9655 -0.9318 0.9675 0.9428 0.8278 0.8986 0.8863
VIF 0.8813 0.8879 0.8868 0.8536 -0.8689 0.8538 0.9010 0.9233 0.9276
IFS 0.9684 0.9462 0.9552 0.9336 -0.9422 0.9358 0.9414 0.9233 0.9916
SFF 0.9603 0.9436 0.9515 0.9271 -0.9451 0.9292 0.9422 0.9276 0.9916

Mean 0.7662 0.7707 0.7727 0.7642 -0.9442 0.7631 0.7669 0.7074 0.7552 0.7514
SRCC on -0.9423 -0.9242 -0.9310 -0.9108 0.9466 -0.9133 -0.9319 -0.9195 -0.9582 -0.9627
csia

doi:10.1371/journal.pone.0158333.1007

Table 8. Results of the experiment with predefined number of aggregated IQA models on CSIQ dataset.

No. of IQA models, k Equation RMSE Contribution [%)]
2 -6.0533MAD + 3.8434VIF 0.0619 39.13, 24.51
3 -1.8294MAD + 1.1814VIF 0.0592 27.63, 94.36, 5.58
+ 8.7912SFF
4 -11.8203GSM—3.3564MAD 0.0587 2.65, 32.06, 19.81, 8.71
+ 2.0515VIF + 3.5018IFS
5 -3.6729FSIMc—4.5873MAD 0.0574 3.20, 26.22, 24.17, 5.28, 2.55
+ 2.5546VIF + 4.8361IFS
+ 12.0375SFF
- LCSIM3, Eq (11) 0.0547 0.18, 2.32, 1.80, 0.01, 30.85, 79.75,
4.04,6.17,13.59, 3.36, 1.08

Contribution is calculated as percentage decrease of RMSE without a given IQA measure. Contributions of aggregated measures are separated with
comma; values for MAD, VIF, and MSSIM are written in boldface.

doi:10.1371/journal.pone.0158333.t008
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Table 9. Influence of the 8 on obtained IQA fusion measures.

B | Min Max Mean SD
LCSIM1 on TID 2013
B 0.5030 0.6849 0.5474 0.0451
B 0.5030 0.6768 0.5884 0.0087
Bs 0.5030 0.5881 0.5856 0.0145
Ba 0.5030 1.3554 0.5941 0.0810
Bs 0.5030 0.5998 0.5570 0.0412
LCSIM2 on TID 2008
B4 0.5253 0.5253 0.5253 0.0000
Bo 0.5253 10.1183 0.5815 0.6780
Bs 0.5253 0.5253 0.5253 0.0000
Ba 0.5253 0.5253 0.5253 0.0000
Bs 0.5253 0.5253 0.5253 0.0000
LCSIM3 on CSIQ
B 0.0547 0.0571 0.0554 0.0008
Bo 0.0547 0.0571 0.0556 0.0008
Bs 0.0547 0.2053 0.0625 0.0287
Ba 0.0547 0.0571 0.0557 0.0009
Bs 0.0547 0.0571 0.0552 0.0005
LCSIM4 on LIVE
B4 5.9820 6.4776 5.9976 0.0387
Bo 5.9820 6.0315 6.0024 0.0187
Bs 5.9820 6.9150 6.0253 0.0836
Ba 5.9820 6.0320 6.0136 0.0185
Bs 5.9820 6.0016 5.9837 0.0054

doi:10.1371/journal.pone.0158333.t009

MAD, VIF, and MSSIM contributed the most to LCSIM measures obtained on CSIQ data-
set. This can also be observed for the remaining LCSIM measures, where the best contributing
three IQA single models are as follows: MAD (19.76%), IFS (16.90%), and PSNR (16.71%) to
LCSIM1, VIF (15.87%), MAD (8.31%), and SSIM (4.49%) to LCSIM2, VIF (38.54%), MAD
(33.87%), and GSM (4.22%) to LCSIM4.

The B used in calculation of RMSE (and PCC) also influenced the results. In order to show

its influence, each f component, = [31, 5>, . .

.» Bs], determined in optimisation for a given

LCSIM was changed in the range 0.1 to 20 with the step 0.1, while other components remained
unchanged. Table 9 presents minimum, maximum, mean and standard deviation of RMSE val-
ues for each component calculated on benchmark datasets. It can be seen that f, has the largest
influence on LCSIM1, 3, on LCSIM?2, 35 on LCSIM3, and all components are similarly impor-

tant to LCSIMA4.

Conclusions

In this paper, a multimeasure resulted from a fusion of full-reference IQA measures is pre-
sented. The fusion was formulated as an optimisation problem that was solved using the
genetic algorithm, which was also responsible for selection of appropriate IQA measures. Eval-
uation of the proposed approach on widely used four largest image benchmarks reveals that
LCSIM family of measures performs better than compared state-of-the-art IQA models, in
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terms of prediction quality reflected by SRCC, KRCC, PCC, and RMSE. The contribution of
aggregated IQA measures was also investigated in the paper.

Further extension of the approach could involve using other IQA measures for fusion;
therefore, Matlab source code that would allow running the optimisation with any newly devel-
oped measure with known objective scores for used image benchmarks and evaluate the results,
is available to download at http://marosz.kia.prz.edu.pl/LCSIM.html. Another direction of
future research would be to develop a fusion measure oriented on a given type of distortion or
a measure which aggregates full-reference IQA measures with small memory footprint and
short computation time.
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