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Abstract

Reconstruction of networks from high-throughput expression data is an important tool to
identify new regulatory relations. Given that nonlinear and complex relations exist between
biological units, methods that can utilize nonlinear dependencies may yield insights that are
not provided by methods using linear associations alone. We have previously developed a
distance to measure predictive nonlinear relations, the Distance based on Conditional
Ordered List (DCOL), which is sensitive and computationally efficient on large matrices. In
this study, we explore the utility of DCOL in the reconstruction of networks, by combining it
with local false discovery rate (Ifdr)—based inference. We demonstrate in simulations that
the new method named ninet is effective in recovering hidden nonlinear modules. We also
demonstrate its utility using a single cell RNA seq dataset. The method is available as an R
package at https://cran.r-project.org/web/packages/ninet.

Introduction

High-throughput expression techniques such as microarray, deep sequencing, and liquid chro-
matography-mass spectrometry (LC-MS) are able to generate measurements of tens of thou-
sands of biological units simultaneously [1, 2]. Identifying relations between the biological
units and detecting modules in the system can result in a better understanding of the underly-
ing regulatory system [3-5]. However, the large number of biological units involved, the com-
plexity of their associations, and the under-determined nature of the problem poses great
challenges toward data analysis [6].

The topic of network reconstruction from high-throughput data has received a great deal of
attention in recent years. A number of methods with different objectives have been proposed,
including network reconstruction based on marginal correlation [7, 8], Gaussian graphical
models [9, 10], Bayesian network [11, 12], mutual information-based network inference
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[13-16], etc. Some methods go beyond inference using a single approach, by taking previous
knowledge into consideration [17], or combining the predictions from multiple methods [18,
19]. Given a gene expression dataset, different algorithms put emphasis on different aspects of
data characteristics, and the prediction of different algorithms always show large discrepancies
[20].

Nonlinear and complex relations between genes has been widely documented. They may
represent nonlinear response, conditional dependency, or time-lagged dependency [21-24].
Mutual information-based network reconstruction methods can establish links between genes
based on nonlinear relations [13-16, 25]. However nonlinear relations can be diverse, and gen-
erally the statistical power of detecting such relations is lower compared to detecting linear
relations based on correlation.

We have previously developed a very sensitive method to detect predictive nonlinear rela-
tions, named the Distance Based On Conditional Ordered List (DCOL) [26]. Given the method
is rank-based, and the asymptotic normality of the test statistic under the null hypothesis, the
computation is very efficient on large matrices. Also, it is amenable to statistical inference, i.e.
rigorously defining links between genes based on p-value or false discovery rate [27]. These
properties make DCOL a very good candidate for nonlinear network reconstruction.

In this study, we develop a network reconstruction method based on DCOL. First, we com-
pute pairwise relations between genes using DCOL. We then conduct gene-wise false discovery
rate inference [27] to determine significant links for each gene. Such an approach will yield a
network with marginal nonlinear dependencies, i.e. not considering conditional dependencies.
It has been shown previously that reconstruction based on marginal linear dependencies per-
formed very well compared to other methods [20]. Given that nonlinear relations can be quite
diverse, and the statistical power of detecting different types of nonlinear relations can vary
substantially especially when considering conditional dependencies, it is our belief that con-
structing a network using marginal dependencies and allowing users to trim the links based on
biological considerations is a viable approach.

we demonstrate the performance of our method using simulations, mostly in its capability
of recovering hidden community structures, in comparison with a few other methods. We also
apply the method to a real dataset. The real data analysis shows that our method successfully
detects meaningful biological relations supported by existing knowledge, as well as detects
plausible new links. In the following discussions, we refer to our method as nlnet. Fig 1 shows
the general workflow of the method.

Methods
Distance Based on Conditional Ordered List (DCOL)

Given a data matrix G,, with p genes from n samples, the key issue is to find significant rela-

tions between genes that are either linearly or nonlinearly associated. We have previously pro-
posed the Distance Based on Conditional Ordered List (DCOL) as a non-linear distance [26].

To find the DCOL(gj| g:),Vj = 1,...,p, where g; is a row-vector in matrix G, we sort the columns
of the matrix based on the value of g; first to create an ascending order,

{G* 18, <8, <... < g, } Then we obtain the DCOL based on the sorted data,

n

DCOL(glg), = ﬁ Z

=2

g;k _gj*.k—1|7 Vi=1....p

In actual computation, for each g;, we permute the columns of matrix G based on the order
of the values of g;, and find DCOL(gj|g;) for all j’s simultaneously.
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Fig 1. The overall workflow of the method.

doi:10.1371/journal.pone.0158247.g001

Null Distribution
It has been shown that the DCOL under the null hypothesis, i.e. the two genes are independent

of each other, follows normal distribution [26]. We can obtain a gene-specific null distribution
by permutation. In order to estimate a null distribution of genes, we randomly permute the col-
umns of data matrix G for B times (B = 500 in this study). For each permutation, we calculate
the sum of absolute difference between adjacent columns in a row,

pcoL® (gj|null) = (b) gj(z)l Vi=1,...,p

We then estimate the null distribution parameters for gene i, m, = 13>/ DCOL® (g mull)
ands? = 137/ | (DCOL® (g|null) — m,)*,¥j = 1,....p.

Gene Network Reconstruction

By applying the DCOL we introduced in section 2.1, we find the gene distance matrix D,,,
where D;; = DCOL(gj|g;). For each column of the matrix, we compare the distance vector to the

null distribution to obtain the one-sided p-value, P;; = o (@) . We then feed the column
)

vector of p-values to the fdrtool package [28] to obtain local false discovery rate (1fdr) values
[29], which is the posterior probability that g; is dependent on g; Up to this step, we have a
matrix Ly, of local fdr values.

Next we threshold the local fdr values to obtain connections between genes. In order to con-
trol the overall level of edge density in the network, we apply a dynamic thresholding proce-
dure. A parameter is provided to set the target average degrees over all nodes. This target
corresponds to a target fdr value. If this target fdr is between 0.05 and 0.2, we will use the target
fdr as cutoff. Otherwise, if the target fdr is larger than 0.2, we will use 0.2; if the target fdr is
smaller than 0.05, we will use 0.05 as cutoff.

Community Detection in Network

As the biological system is modular [30], to facilitate data interpretation, we further decompose
the gene network into communities. There are many mature community detection methods
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which are commonly applied in social computing but are also suitable for genes networks. In
this study, we apply two common community finding methods: multi-level optimization of
modularity, and label propagation [31, 32].

Simulation

We conduct a simulation study to examine the capability of the proposed method to recover
nonlinear gene modules. The reason for focusing on module recovery, rather than link recov-
ery, is because in the nonlinear situation, methods have different statistical power on different
types of nonlinear functions, and it is unreliable to define conditional dependency given the
existence of measurement noise. As modules are more robust against the gain/loss of a small
proportion of links, we believe the recovery of gene modules is a more meaningful goal.

We conduct the simulation by setting parameters in two main scenarios. We set the average
number of genes in a module to 100, and set the number of hidden modules to 10 or 20. An
additional 10% pure noise genes are also added. In each scenario, the number of genes are cal-
culated based on modules number and size, namely 1100 genes for scenario 1 and 2200 genes
for scenario 2. Noise is added to the generated gene expression vectors by adjusting the noise
level from 0.2 to 0.8 (noise standard deviation divided by true signal standard deviation). We
use three different mechanisms for generating modules, (1) 0-dependent approach, (2)
1-dependent approach, (2) 2-dependent approach. To establish nonlinear relations, we use
four link functions including (1) linear function, (2) sine function, (3) box wave function, (4)
absolute value function.

For 0-dependent approach, for each module, we generate the expression level of a hidden
controlling node x by sampling the standard normal distribution. Then for each gene in the
module, a link function f{) would be randomly chosen from the function group, and the
gene expression level is generated as y = f(x) + £, where £ is random noise. For 1-dependent
approach, for each module, the first gene is generated by sampling the standard normal distri-
bution. From the second gene on, one existing gene is randomly selected, and a link function is
randomly selected. The expressions of the new gene is generated as y"*) = f(y****D) 4 £ The
2-dependent approach is similar to the 1-dependent approach, except each new gene depends
on two existing genes, y"®") = fy{sclectedl)y 4 g(y(selected2)y | o

Results and Discussions
Simulation Result

We compared our algorithm with three methods that deal with nonlinear associations. One is
the mutual information-based network inference methodology ARACNE, and its R package
name is parmigene [14]. Two other methods are nonlinear clustering methods: General Depen-
dency Hierarchical Clustering (GDHC) [26] and the K-profile method [33].

The Adjusted Rand Index (ARI) [34] is used to evaluate the results. Higher ARI values
means better agreement between detected and hidden true modules. The simulation results are
shown in Fig 2. There are two rows in the figure. The first row represents algorithm perfor-
mance under the 10 hidden gene module circumstance, and the second row represents 20 hid-
den module circumstances.

For the 0-dependent scenarios, apparently the result of nlnet combined with the multi-level
algorithm outperformed all other methods across all noise levels. The result by ARACNE is the
worst one, in which the optimal ARI is below 0.5 and in most of cases, it stays at the bottom of
the plots. So it is safe to say that the ARACNE algorithm is not adapted well to our benchmark.

For the 1-dependent scenarios, nlnet performs the best when noise level is low. The result of
K-profile becomes better when the noise level grows higher, while GDHC and ARACNE lag
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Fig 2. Simulation results on nonlinear community detection.

doi:10.1371/journal.pone.0158247.9002

behind. This trend persists into the 2-dependent scenarios. We notice that the 2-dependent
scenarios, the dependencies between gene pairs are weaker but more pervasive. When noise
level is high, it is likely that network-based methods lose too many true connections, causing
the modules to break up.

The second row of Fig 2 (20 true modules) shows a similar trend as the first row (10 true
modules). Compared with nlnet paired with multi-level or label-propagation method, the
K-Profile algorithm only shows a better result in cases where the noise is high, or the depen-
dencies are weaker but more pervasive. Overall, the nlnet-based module recovery outperforms
the existing methods in lower noise situations, and when the dependency structure is simpler.

Real Data Result

We apply the method on the single-cell RNA seq data on sensory organs of the neonatal inner
ear in mice (GSE71982) [35]. In the inner ear, sound and acceleration stimuli are transduced
by cochlear and utricular sensory epithelia. We compare the cochlear and utricular single cell
RNA seq data through our method of non-linear network reconstruction and community
detection. Firstly, we filter the sequencing data by requiring non-zero values of each selected
gene to be greater than 2/3 of the samples in either of the tissue types. Secondly we log-trans-
form the data by taking log(x+1) of all values. Finally, we apply our algorithm to construct net-
works for utricular and cochlear sensory epithelia separately. For community detection, the
minimum module size of is set to 100.

Fig 3 shows the overall network. The cochlear network has 2412 connected genes and 33846
connections. The utricular network has 2906 connected genes and a total of 45068 connections.
With an average degree of 15.5 compared to 14 in the cochlear network, the utricular network
is more densely connected. We color the highly connected genes in the utricular network (>50
connections) red in the cochlear network (Fig 3a), and vice versa (Fig 3b). We see that many
highly connected genes in one cell type are no longer highly connected in the other type of cell.

Functional analysis on highly connected genes (>50 connections in cochlear cells alone, or
>50 connections in utricular cells alone) shows an over-representation of regulatory and sen-
sory developmental function (Table 1).
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Fig 3. Detected networks in cochlear and utricular cells. (a) The cochlear network; nodes with 50 or more
connections in the utricular network are colored red. (b) The utricular network; nodes with 50 or more
connections in the cochlear network are colored red.

doi:10.1371/journal.pone.0158247.g003

In our result, there are two communities (523 and 1726 genes respectively) in cochlear cells.
The second community shows a clear functional link to inner ear and sensory development
(Table 2). There are 5 communities (535, 205,159,1235, and 553 genes respectively) in utricular
cells. However there is no clear link to inner ear development at the community level. Given
the communities are too large to yield simple biological interpretations, we focus on some
genes that have been widely studied in ear development.

Genes such as Tgfb2, Stat3, Notch2, and Fgf10 (Fig 4), were widely studied in the develop-
ment of the ear. These genes are found in communities of both cochlear and utricular system.
But their connection patterns are different between the two cell types.

We can find there are more genes connected with Notch2 and Tgfb2 in utricle than cochlea.
The Notch signaling pathway is thought to regulate development of inner ear. Overall, Notch2
has 28 connections in the cochlear cells, and 159 connections in the utricular cells. Functional
analysis using GOstats [36] shows that Notch2-connected genes over-represent biological

Table 1. Top 5 GO biological pathways over-represented by highly connected genes in cochlear or
utricular cells.

GOBPID Pvalue Term

Cochlear

G0:0032259 0.000334 methylation

G0:0001886 0.00224 endothelial cell morphogenesis
GO:0010039 0.00224 response to iron ion
G0:0007600 0.00247 sensory perception
G0:0006400 0.00439 tRNA modification

Utricular

G0:0009888 9.89e-06 tissue development
G0:0007605 1.24e-05 sensory perception of sound
G0:0007275 2.88e-05 multicellular organismal development
G0:0003007 3.01e-05 heart morphogenesis
G0:0048839 3.26e-05 inner ear development

doi:10.1371/journal.pone.0158247.1001
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Table 2. Top 5 GO biological pathways over-represented by community 2 of cochlear cells.

GOBPID Pvalue Term

G0:0098609 0.000211 cell-cell adhesion

G0:0048839 0.000266 inner ear development

G0:0007423 0.000289 sensory organ development

G0:0098602 0.000702 single organism cell adhesion
G0:0006928 0.000915 movement of cell or subcellular component

doi:10.1371/journal.pone.0158247.t002

processes related to the genesis of cellular structure in cochlear cells, and sensory development
in utricular cells (Table 3). Aberrant number and arrangement of hair cells and supporting
cells of the ear are caused by mutations in the Notch signaling pathway. Moayedi et al found
the Sfswap"® mutation can result in defects in the mouse ear, and the defects were consistent
with disrupted Notch signaling [37]. In this study, Sfswap mutants exhibit defects in hair cells
and supporting cells in the cochlea, but exhibited much more severe vestibular organ defects.
In our results, we can only find the connection between Sfswap and notch pathway in the utric-
ular cells, which is part of the vestibular organ.

Slowik et al found the ligand of Notch pathway, Jagl, can attend mammalian hair cell regen-
eration through Tgf family [38]. Jagl is connected with Tgfb2 in cochlear cells, but not in utric-
ular cells, although Tgfb2 is connected with more genes in utricular cells, which over-represent
neurological system process. Stat3 has more direct link genes in cochlea than utricle. Qin et al
found the cross talk of KIf4 and Stat3 can regulates axon regeneration, which was also associ-
ated with ear nervous sensor development [39, 40]. In the estimated networks, KIf4 is con-
nected with Stat3 only cochlear cells.

Fgf10 plays a major role in ear morphogenesis. Urness et al found a dosage-sensitive
requirement for Fgf10 in vestibular development [41], and that the mutant cochlear epithelium
of the Fgf10—/— embryos lacks Reissner’s membrane and a large portion of the outer sulcus,
consistent with earlier findings on a null mutation in Fgfr2b, one of Fgf10’s main receptors
[42]. In our result, Fgf10 is connected with Jagl in both cochlear and utricular system. Jagl, a
notch ligand, is also required for sensory progenitor development in the mammalian inner ear
[43]. Together, our result suggests the notch pathway has interacted with other signaling path-
ways such as the Tgf [38] and Fgf [43] pathways to create sensory organs of ear.

There are some other genes that only have connections in one of the cell types. As an exam-
ple, Igflr is a classic transmembrane tyrosine kinase receptor and is believed to mediate all cel-
lular responses to the Igf ligands. During the development of cochlea, Igf signaling and PI3K/
AKT signaling can regulate cochlear length and hair cell number. Igf signaling also regulates
Atoh expression by PI3K/Akt signaling. PI3K/Akt signaling is considered to be the down-
stream of Igf signaling [44, 45]. Igflr is found in a community of cochlear network, with con-
nection to another important gene Choll1lal in cochlea development [46], but not in the
utricular system (Fig 4). Adam10 is also related with the development of cochlear. Yan et al
found regional expression of the Adam10 in developing chicken cochlea [47]. Lin et al also
showed that Adam10 is expressed and regulated in the early developing cochlea [48]. Some
more genes such as Rbpj, that take part in the functional and morphological development of
cochlear organ [49], also only found in the community of cochlear network.

Opverall, our results show some agreements and distinctions between the cellular networks
of cochlear and utricular cells, much of which agree with existing knowledge, with some new
links that are plausible but requires experimental studies to validate. This indicates the nlnet
method can produce biologically meaningful results.
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Table 3. Top 5 GO biological pathways for Notch2-connected genes in cochlear or utricular cells.

GOBPID Pvalue Term

Cochlear

G0:0031333 0.000105 negative regulation of protein complex assembly
G0:0090066 0.000208 regulation of anatomical structure size
G0:0001886 0.000251 endothelial cell morphogenesis
G0:0030198 0.000434 extracellular matrix organization
G0:0042989 0.000499 sequestering of actin monomers
Utricular

GO:0007605 2.35E-07 sensory perception of sound
G0:0043583 4.31E-06 ear development

GO:0007600 3.14E-05 sensory perception

G0:0042490 6.58E-05 mechanoreceptor differentiation
G0:0042472 7.38E-05 inner ear morphogenesis

doi:10.1371/journal.pone.0158247.1003

The computation of the nlnet method is relatively efficient. As shown in Table 4, among all
the methods used in simulation, nlnet is the second fastest. It uses ~20 seconds for a data
matrix of dimension 1100 x 100, on a laptop computer with a 2.5 GHz intel i7 processor.
When the data dimension is larger in real data analysis, nlnet is the fastest among all methods
tested, finishing in ~5 minutes for a data matrix of dimension 3724 x 164.

Conclusions

In this manuscript, we presented a network reconstruction method based on nonlinear associa-
tions. Linear associations are also utilized as a special case of the general association. The
method is based on the distance measure DCOL, which enjoys high sensitivity and efficient
computation. The method is effective in reconstruction of the network based on marginal non-
linear associations. The nonlinear network reconstruction method can also capture linear

Table 4. Computing time.

Algorithms CPU time (seconds)*
Simulations* (1100 genes, 100 samples)
ARACNE+ multi level 33.5
K-profiles 1.96
GDHC + dynamicTreeCut 74.0
ninet + multi level 20.0
ninet + label propagation 19.9
Real data® (3724 genes, 164 samples)
ARACNE+ multi level 631.2
K-profiles 467.9
GDHC + dynamicTreeCut 1784.5
ninet + multi level 301.9
ninet + label propagation 314.0

* Computer system used: memory: 16GB 1600 MHz DDR3, CPU 2.5 GHz Intel Core i7, operating system:
OS X El Capitan 10.11.4.

# RAM usage <400M by all methods.

$ RAM usage <500M by all methods.

doi:10.1371/journal.pone.0158247.t004
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relations. However when sample size is not large, its statistical power to detect linear relations
is lower than methods developed specifically for linear relations. Thus it may lose some weak
linear relations, while gaining nonlinear relations. At the same time, currently there is no
straight-forward definition of conditional independence based on DCOL. Thus such a nonlin-
ear methods could be seen as a compliment to linear network reconstruction methods. It can
potentially be combined with linear methods to make the results more comprehensive.

Acknowledgments
The authors thank Dr. Hao Wu, Dr. Steve Qin, and Dr. Jian Kang for helpful discussions.

Author Contributions

Conceived and designed the experiments: TY. Performed the experiments: HL. Analyzed the
data: PL HL MZ XW JL TY. Contributed reagents/materials/analysis tools: JL. Wrote the
paper: HL PLTY.

References

1. Patti GJ, Yanes O, Siuzdak G. Innovation: Metabolomics: the apogee of the omics trilogy. Nature
reviews Molecular cell biology. 2012; 13(4):263-9. doi: 10.1038/nrm3314 PMID: 22436749; PubMed
Central PMCID: PMC3682684.

2. RungJ, Brazma A. Reuse of public genome-wide gene expression data. Nature reviews Genetics.
2013; 14(2):89-99. doi: 10.1038/nrg3394 PMID: 23269463.

3. YuT,BaiY.Network-based modular latent structure analysis. BMC bioinformatics. 2014; 15 Suppl 13:
S6. doi: 10.1186/1471-2105-15-S13-S6 PMID: 25435002; PubMed Central PMCID: PMC4248660.

4. Cho DY, Kim YA, Przytycka TM. Chapter 5: Network biology approach to complex diseases. PLoS
Comput Biol. 2012; 8(12):1002820. doi: 10.1371/journal.pcbi.1002820 PMID: 23300411; PubMed
Central PMCID: PMCPMC3531284.

5. Thompson D, Regev A, Roy S. Comparative analysis of gene regulatory networks: from network recon-
struction to evolution. Annu Rev Cell Dev Biol. 2015; 31:399-428. doi: 10.1146/annurev-cellbio-
100913-012908 PMID: 26355593.

6. Siegenthaler C, Gunawan R. Assessment of network inference methods: how to cope with an underde-
termined problem. PloS one. 2014; 9(3):€90481. doi: 10.1371/journal.pone.0090481 PMID: 24603847;
PubMed Central PMCID: PMCPMC3946176.

7. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC bioin-
formatics. 2008; 9:559. doi: 10.1186/1471-2105-9-559 PMID: 19114008; PubMed Central PMCID:
PMCPMC2631488.

8. Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl
Genet Mol Biol. 2005; 4:Article17. doi: 10.2202/1544-6115.1128 PMID: 16646834.

9. SchaferJ, Strimmer K. An empirical Bayes approach to inferring large-scale gene association net-
works. Bioinformatics. 2005; 21(6):754—64. doi: 10.1093/bioinformatics/bti062 PMID: 15479708.

10. PengJ, Wang P, Zhou N, Zhu J. Partial Correlation Estimation by Joint Sparse Regression Models. J
Am Stat Assoc. 2009; 104(486):735—-46. doi: 10.1198/jasa.2009.0126 PMID: 19881892; PubMed Cen-
tral PMCID: PMCPMC2770199.

11.  Chen X, Chen M, Ning K. BNArray: an R package for constructing gene regulatory networks from micro-
array data by using Bayesian network. Bioinformatics. 2006; 22(23):2952—4. doi: 10.1093/
bioinformatics/btl491 PMID: 17005537.

12. Vignes M, Vandel J, Allouche D, Ramadan-Alban N, Cierco-Ayrolles C, Schiex T, et al. Gene regulatory
network reconstruction using Bayesian networks, the Dantzig Selector, the Lasso and their meta-analy-
sis. PloS one. 2011; 6(12):e29165. doi: 10.1371/journal.pone.0029165 PMID: 22216195; PubMed
Central PMCID: PMCPMC3246469.

13. Villaverde AF, Ross J, Moran F, Banga JR. MIDER: network inference with mutual information distance
and entropy reduction. PloS one. 2014; 9(5):€96732. doi: 10.1371/journal.pone.0096732 PMID:
24806471; PubMed Central PMCID: PMC4013075.

14. Margolin AA, Nemenman |, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, et al. ARACNE: an
algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC

PLOS ONE | DOI:10.1371/journal.pone.0158247 July 5,2016 10/12


http://dx.doi.org/10.1038/nrm3314
http://www.ncbi.nlm.nih.gov/pubmed/22436749
http://dx.doi.org/10.1038/nrg3394
http://www.ncbi.nlm.nih.gov/pubmed/23269463
http://dx.doi.org/10.1186/1471-2105-15-S13-S6
http://www.ncbi.nlm.nih.gov/pubmed/25435002
http://dx.doi.org/10.1371/journal.pcbi.1002820
http://www.ncbi.nlm.nih.gov/pubmed/23300411
http://dx.doi.org/10.1146/annurev-cellbio-100913-012908
http://dx.doi.org/10.1146/annurev-cellbio-100913-012908
http://www.ncbi.nlm.nih.gov/pubmed/26355593
http://dx.doi.org/10.1371/journal.pone.0090481
http://www.ncbi.nlm.nih.gov/pubmed/24603847
http://dx.doi.org/10.1186/1471-2105-9-559
http://www.ncbi.nlm.nih.gov/pubmed/19114008
http://dx.doi.org/10.2202/1544-6115.1128
http://www.ncbi.nlm.nih.gov/pubmed/16646834
http://dx.doi.org/10.1093/bioinformatics/bti062
http://www.ncbi.nlm.nih.gov/pubmed/15479708
http://dx.doi.org/10.1198/jasa.2009.0126
http://www.ncbi.nlm.nih.gov/pubmed/19881892
http://dx.doi.org/10.1093/bioinformatics/btl491
http://dx.doi.org/10.1093/bioinformatics/btl491
http://www.ncbi.nlm.nih.gov/pubmed/17005537
http://dx.doi.org/10.1371/journal.pone.0029165
http://www.ncbi.nlm.nih.gov/pubmed/22216195
http://dx.doi.org/10.1371/journal.pone.0096732
http://www.ncbi.nlm.nih.gov/pubmed/24806471

@’PLOS ‘ ONE

Nonlinear Network Reconstruction Using DCOL

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

bioinformatics. 2006; 7 Suppl! 1:S7. doi: 10.1186/1471-2105-7-S1-S7 PMID: 16723010; PubMed Cen-
tral PMCID: PMCPMC1810318.

Liang KC, Wang X. Gene regulatory network reconstruction using conditional mutual information. EUR-
ASIP J Bioinform Syst Biol. 2008:253894. doi: 10.1155/2008/253894 PMID: 18584050; PubMed Cen-
tral PMCID: PMCPMC3171392.

Wang J, Chen B, Wang Y, Wang N, Garbey M, Tran-Son-Tay R, et al. Reconstructing regulatory net-
works from the dynamic plasticity of gene expression by mutual information. Nucleic Acids Res. 2013;
41(8):e97. doi: 10.1093/nar/gkt147 PMID: 23470995; PubMed Central PMCID: PMCPMC3632132.

Li 'Y, Jackson SA. Gene Network Reconstruction by Integration of Prior Biological Knowledge. G3.
2015; 5(6):1075-9. doi: 10.1534/9g3.115.018127 PMID: 25823587; PubMed Central PMCID:
PMC4478538.

Ceci M, Pio G, Kuzmanovski V, Dzeroski S. Semi-Supervised Multi-View Learning for Gene Network
Reconstruction. PloS one. 2015; 10(12):e0144031. doi: 10.1371/journal.pone.0144031 PMID:
26641091; PubMed Central PMCID: PMC4671612.

Hase T, Ghosh S, Yamanaka R, Kitano H. Harnessing diversity towards the reconstructing of large
scale gene regulatory networks. PLoS Comput Biol. 2013; 9(11):e1003361. doi: 10.1371/journal.pcbi.
1003361 PMID: 24278007; PubMed Central PMCID: PMCPMC3836705.

Allen JD, Xie Y, Chen M, Girard L, Xiao G. Comparing statistical methods for constructing large scale
gene networks. PloS one. 2012; 7(1):e29348. doi: 10.1371/journal.pone.0029348 PMID: 22272232;
PubMed Central PMCID: PMCPMC3260142.

Sahoo D, Dill DL, Gentles AJ, Tibshirani R, Plevritis SK. Boolean implication networks derived from
large scale, whole genome microarray datasets. Genome Biol. 2008; 9(10):R157. doi: 10.1186/gb-
2008-9-10-r157 PMID: 18973690; PubMed Central PMCID: PMCPMC2760884.

Li KC. Genome-wide coexpression dynamics: theory and application. Proc Natl Acad Sci U S A. 2002;
99(26):16875-80. doi: 10.1073/pnas.252466999 PMID: 12486219; PubMed Central PMCID:
PMC139237.

Boscolo R, Liao JC, Roychowdhury VP. An information theoretic exploratory method for learning pat-
terns of conditional gene coexpression from microarray data. IEEE/ACM transactions on computational
biology and bioinformatics / IEEE, ACM. 2008; 5(1):15-24. doi: 10.1109/TCBB.2007.1056 PMID:
18245872.

Chen J, Xie J, Li H. A penalized likelihood approach for bivariate conditional normal models for dynamic
co-expression analysis. Biometrics. 2011; 67(1):299-308. doi: 10.1111/1.1541-0420.2010.01413.x
PMID: 20374241; PubMed Central PMCID: PMC2902622.

Zhao J, Zhou Y, Zhang X, Chen L. Part mutual information for quantifying direct associations in net-
works. Proc Natl Acad Sci U S A. 2016. doi: 10.1073/pnas.1522586113 PMID: 27092000.

Yu T, Peng H. Hierarchical clustering of high-throughput expression data based on general depen-
dences. IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM. 2013; 10
(4):1080-5. doi: 10.1109/TCBB.2013.99 PMID: 24334400; PubMed Central PMCID: PMC3905248.

Efron B, Tibshirani R. Empirical Bayes methods and false discovery rates for microarrays. Genet Epide-
miol. 2002; 23(1):70-86. 1IS1:000176697800006. PMID: 12112249

Strimmer K. fdrtool: a versatile R package for estimating local and tail area-based false discovery rates.
Bioinformatics. 2008; 24(12):1461-2. doi: 10.1093/bioinformatics/btn209 PMID: 18441000.

Aubert J, Bar-Hen A, Daudin JJ, Robin S. Determination of the differentially expressed genes in micro-
array experiments using local FDR. BMC bioinformatics. 2004; 5:125. doi: 10.1186/1471-2105-5-125
PMID: 15350197; PubMed Central PMCID: PMC520755.

Wagner GP, Pavlicev M, Cheverud JM. The road to modularity. Nat Rev Genet. 2007; 8(12):921-31.
Epub 2007/11/17. nrg2267 [pii] doi: 10.1038/nrg2267 PMID: 18007649.

Raghavan UN, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-
scale networks. Physical review E, Statistical, nonlinear, and soft matter physics. 2007; 76(3 Pt
2):036106. doi: 10.1103/PhysRevE.76.036106 PMID: 17930305.

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks.
Journal of Statistical Mechanics: Theory and Experiment. 2008; 2008(10):P10008 (12 pp.). doi: 10.
1088/1742-5468/2008/10/P10008

Wang K, Zhao Q, Lu J, Yu T. K-Profiles: A Nonlinear Clustering Method for Pattern Detection in High
Dimensional Data. BioMed research international. 2015; 2015:918954. doi: 10.1155/2015/918954
PMID: 26339652; PubMed Central PMCID: PMC4538770.

Hubert L, Arabie P. Comparing partitions. Journal of Classification. 2(1):193-218. doi: 10.1007/
bf01908075

PLOS ONE | DOI:10.1371/journal.pone.0158247 July 5,2016 11/12


http://dx.doi.org/10.1186/1471-2105-7-S1-S7
http://www.ncbi.nlm.nih.gov/pubmed/16723010
http://dx.doi.org/10.1155/2008/253894
http://www.ncbi.nlm.nih.gov/pubmed/18584050
http://dx.doi.org/10.1093/nar/gkt147
http://www.ncbi.nlm.nih.gov/pubmed/23470995
http://dx.doi.org/10.1534/g3.115.018127
http://www.ncbi.nlm.nih.gov/pubmed/25823587
http://dx.doi.org/10.1371/journal.pone.0144031
http://www.ncbi.nlm.nih.gov/pubmed/26641091
http://dx.doi.org/10.1371/journal.pcbi.1003361
http://dx.doi.org/10.1371/journal.pcbi.1003361
http://www.ncbi.nlm.nih.gov/pubmed/24278007
http://dx.doi.org/10.1371/journal.pone.0029348
http://www.ncbi.nlm.nih.gov/pubmed/22272232
http://dx.doi.org/10.1186/gb-2008-9-10-r157
http://dx.doi.org/10.1186/gb-2008-9-10-r157
http://www.ncbi.nlm.nih.gov/pubmed/18973690
http://dx.doi.org/10.1073/pnas.252466999
http://www.ncbi.nlm.nih.gov/pubmed/12486219
http://dx.doi.org/10.1109/TCBB.2007.1056
http://www.ncbi.nlm.nih.gov/pubmed/18245872
http://dx.doi.org/10.1111/j.1541-0420.2010.01413.x
http://www.ncbi.nlm.nih.gov/pubmed/20374241
http://dx.doi.org/10.1073/pnas.1522586113
http://www.ncbi.nlm.nih.gov/pubmed/27092000
http://dx.doi.org/10.1109/TCBB.2013.99
http://www.ncbi.nlm.nih.gov/pubmed/24334400
http://www.ncbi.nlm.nih.gov/pubmed/12112249
http://dx.doi.org/10.1093/bioinformatics/btn209
http://www.ncbi.nlm.nih.gov/pubmed/18441000
http://dx.doi.org/10.1186/1471-2105-5-125
http://www.ncbi.nlm.nih.gov/pubmed/15350197
http://dx.doi.org/10.1038/nrg2267
http://www.ncbi.nlm.nih.gov/pubmed/18007649
http://dx.doi.org/10.1103/PhysRevE.76.036106
http://www.ncbi.nlm.nih.gov/pubmed/17930305
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1155/2015/918954
http://www.ncbi.nlm.nih.gov/pubmed/26339652
http://dx.doi.org/10.1007/bf01908075
http://dx.doi.org/10.1007/bf01908075

@’PLOS ‘ ONE

Nonlinear Network Reconstruction Using DCOL

35.

36.

37.

38.

39.

40.

4.

42,

43.

44.

45.

46.

47.

48.

49.

Burns JC, Kelly MC, Hoa M, Morell RJ, Kelley MW. Single-cell RNA-Seq resolves cellular complexity in
sensory organs from the neonatal inner ear. Nature communications. 2015; 6:8557. doi: 10.1038/
ncomms9557 PMID: 26469390; PubMed Central PMCID: PMCPMC4634134.

Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;
23(2):257-8. doi: 10.1093/bioinformatics/btl567 PMID: 17098774.

Moayedi Y, Basch ML, Pacheco NL, Gao SS, Wang R, Harrison W, et al. The candidate splicing factor
Sfswap regulates growth and patterning of inner ear sensory organs. PLoS genetics. 2014; 10(1):
€1004055. doi: 10.1371/journal.pgen.1004055 PMID: 24391519; PubMed Central PMCID:
PMC3879212.

Slowik AD, Bermingham-McDonogh O. Notch signaling in mammalian hair cell regeneration. Trends in
developmental biology. 2013; 7:73—-89. PMID: 25328289; PubMed Central PMCID: PMC4199338.

Qin S, Zou Y, Zhang CL. Cross-talk between KLF4 and STAT3 regulates axon regeneration. Nature
communications. 2013; 4:2633. doi: 10.1038/ncomms3633 PMID: 24129709; PubMed Central PMCID:
PMC3867821.

Qin S, Zhang CL. Role of Kruppel-like factor 4 in neurogenesis and radial neuronal migration in the
developing cerebral cortex. Molecular and cellular biology. 2012; 32(21):4297-305. doi: 10.1128/MCB.
00838-12 PMID: 22907754; PubMed Central PMCID: PMC3486145.

Urness LD, Wang X, Shibata S, Ohyama T, Mansour SL. Fgf10 is required for specification of non-sen-
sory regions of the cochlear epithelium. Developmental biology. 2015; 400(1):59-71. doi: 10.1016/j.
ydbio.2015.01.015 PMID: 25624266; PubMed Central PMCID: PMC4361244.

Pauley S, Wright TJ, Pirvola U, Ornitz D, Beisel K, Fritzsch B. Expression and function of FGF10 in
mammalian inner ear development. Developmental dynamics: an official publication of the American
Association of Anatomists. 2003; 227(2):203-15. doi: 10.1002/dvdy.10297 PMID: 12761848; PubMed
Central PMCID: PMC3904739.

Kiernan AE, Xu J, Gridley T. The Notch ligand JAG1 is required for sensory progenitor development in
the mammalian inner ear. PLoS genetics. 2006; 2(1):e4. doi: 10.1371/journal.pgen.0020004 PMID:
16410827; PubMed Central PMCID: PMC1326221.

Okano T, Xuan S, Kelley MW. Insulin-like growth factor signaling regulates the timing of sensory cell dif-
ferentiation in the mouse cochlea. The Journal of neuroscience: the official journal of the Society for
Neuroscience. 2011; 31(49):18104—18. doi: 10.1523/JNEUROSCI.3619-11.2011 PMID: 22159122.

Aburto MR, Magarinos M, Leon Y, Varela-Nieto |, Sanchez-Calderon H. AKT signaling mediates IGF-I
survival actions on otic neural progenitors. PloS one. 2012; 7(1):e30790. doi: 10.1371/journal.pone.
0030790 PMID: 22292041; PubMed Central PMCID: PMC3264639.

Shpargel KB, Makishima T, Griffith AJ. Col11a1 and Col11a2 mRNA expression in the developing
mouse cochlea: implications for the correlation of hearing loss phenotype with mutant type Xl collagen
genotype. Acta Otolaryngol. 2004; 124(3):242—-8. PMID: 15141750.

Yan X, Lin J, Wang H, Markus A, Wree A, Rolfs A, et al. Regional expression of the ADAMs in develop-
ing chicken cochlea. Developmental dynamics: an official publication of the American Association of
Anatomists. 2010; 239(8):2256—65. doi: 10.1002/dvdy.22360 PMID: 20658692.

Lin J, Yan X, Wang C, Talabattula VA, Guo Z, Rolfs A, et al. Expression patterns of the ADAMs in early
developing chicken cochlea. Development, growth & differentiation. 2013; 55(3):368—76. doi: 10.1111/
dgd.12051 PMID: 23496030.

Yamamoto N, Chang W, Kelley MW. Rbpj regulates development of prosensory cells in the mammalian
inner ear. Developmental biology. 2011; 353(2):367-79. doi: 10.1016/j.ydbio.2011.03.016 PMID:
21420948.

PLOS ONE | DOI:10.1371/journal.pone.0158247 July 5,2016 12/12


http://dx.doi.org/10.1038/ncomms9557
http://dx.doi.org/10.1038/ncomms9557
http://www.ncbi.nlm.nih.gov/pubmed/26469390
http://dx.doi.org/10.1093/bioinformatics/btl567
http://www.ncbi.nlm.nih.gov/pubmed/17098774
http://dx.doi.org/10.1371/journal.pgen.1004055
http://www.ncbi.nlm.nih.gov/pubmed/24391519
http://www.ncbi.nlm.nih.gov/pubmed/25328289
http://dx.doi.org/10.1038/ncomms3633
http://www.ncbi.nlm.nih.gov/pubmed/24129709
http://dx.doi.org/10.1128/MCB.00838-12
http://dx.doi.org/10.1128/MCB.00838-12
http://www.ncbi.nlm.nih.gov/pubmed/22907754
http://dx.doi.org/10.1016/j.ydbio.2015.01.015
http://dx.doi.org/10.1016/j.ydbio.2015.01.015
http://www.ncbi.nlm.nih.gov/pubmed/25624266
http://dx.doi.org/10.1002/dvdy.10297
http://www.ncbi.nlm.nih.gov/pubmed/12761848
http://dx.doi.org/10.1371/journal.pgen.0020004
http://www.ncbi.nlm.nih.gov/pubmed/16410827
http://dx.doi.org/10.1523/JNEUROSCI.3619-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/22159122
http://dx.doi.org/10.1371/journal.pone.0030790
http://dx.doi.org/10.1371/journal.pone.0030790
http://www.ncbi.nlm.nih.gov/pubmed/22292041
http://www.ncbi.nlm.nih.gov/pubmed/15141750
http://dx.doi.org/10.1002/dvdy.22360
http://www.ncbi.nlm.nih.gov/pubmed/20658692
http://dx.doi.org/10.1111/dgd.12051
http://dx.doi.org/10.1111/dgd.12051
http://www.ncbi.nlm.nih.gov/pubmed/23496030
http://dx.doi.org/10.1016/j.ydbio.2011.03.016
http://www.ncbi.nlm.nih.gov/pubmed/21420948

