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Abstract
The rolled leaf trait, long considered to be a key component of plant architecture, represents

an important target trait for improving plant architecture at the population level. We therefore

performed linkage mapping using a set of 262 highly variable RILs from two rice cultivars

(Minghui 63 and 02428) with minor differences in leaf rolling index (LRI) in conjunction with

GWASmapping of a random subset of the 1127 germplasms from the 3K Rice Genomes

Project (3K Rice). A total of seven main-effect loci were found to underlie the transgressive

segregation of progenies from parents with minor differences in LRI. Five of these loci were

previously identified and two (qRl7b and qRl9b) are newly reported with additional evidence

from GWASmapping for qRl7b. A total of 18 QTLs were identified by GWAS, including four

newly identified QTLs. Six QTLs were confirmed by linkage mapping with the above RIL

population, and 83.3% were found to be consistent with previously reported loci based on

comparative mapping. We also performed allele mining with representative SNPs and iden-

tified the elite germplasms for the improvement of rolled leaf trait. Most favorable alleles at

the detected loci were contributed by various 3K Rice germplasms. By a re-scanning of the

candidate region with more saturated SNP markers, we dissected the region harboring

gRl4-2 into three subregions, in which the average effect on LRI was 3.5% with a range

from 2.4 to 4.1% in the third subregion, suggesting the presence of a new locus or loci within

this region. The representative SNPs for favorable alleles in the reliable QTLs which were

consistently identified in both bi-parental mapping and GWAS, such as qRl4, qRl5, qRl6,
qRl7a, and qRl7b will be useful for future molecular breeding programs for ideal plant type

in rice.
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Introduction
The rolled (V-shaped or curled) leaf trait has long been considered by experienced breeders to
be a key trait for ideal plant type not only for indica hybrid rice breeding [1] but also for inbred
japonica cultivar development in Northern China [2]. Extremely rolled leaves often lead to
reduced rates of photosynthesis and apoplastic transport ability [3] and even reduced light use
efficiency [4]. At the individual level, rolled leaves are not always directly associated with yield
component traits in certain crosses, such as MH63 × 02428 [5], let alone the unfavorable traits
including dwarf and/or narrow leaves and/or smaller panicles often occur in conjunction with
rolled leaves in most artificial mutants, except for a few natural mutants such as rl(t) [6]. None-
theless, moderately rolled leaves can improve photosynthetic efficiency in certain cultivars
[7,8] and thus contribute to economic and grain quality traits [6,9]. In addition, the rolled leaf
trait is thought to contribute to lodging resistance and ventilation, which are strongly associ-
ated with disease resistance, especially to fungal diseases, at the population level [10]. More-
over, cultivars with moderately rolled leaves are suitable for cultivation at relatively high
density [11].

To date, no fewer than 70 genes/QTLs for the rolled leaf trait have been mapped or cloned
throughout the genome. Most studies of the rolled leaf trait have involved the use of parents
with significant phenotypic differences. Unlike the extremely rolled leaf phenotype, moderately
rolled leaves or leaves with various degrees of rolling, especially inside-rolled (adaxial rolled)
leaves, would be a useful trait to target in breeding. Uncovering hidden diversity in the proge-
nies of parents with minor phenotypic differences in target traits is also important for dissect-
ing complex traits including resistance to various biotic and abiotic stresses [12, 13]. Whether
the mechanisms underlying hidden diversity also function for relatively simple traits such as
rolled leaves remains unclear.

Currently, mining favorable alleles is an important component of plant breeding [14]. How-
ever, traditional QTL detection by linkage mapping is usually performed using populations
with limited parental variation [15]. Performing GWAS offers opportunities to overcome this
shortcoming. If GWAS is performed jointly with linkage mapping, the relatively high false
positive rate of GWAS is largely constrained, and the efficiency of QTL mapping is much
improved, as demonstrated in maize [16]. This technique has been successfully employed in
rice to help dissect complex biotic stress traits, such as rice black-streaked dwarf disease resis-
tance, as well as relatively simple genetic traits including rice leaf stripe disease resistance [17].
The simultaneous exploration of natural variations would be highly useful for rice breeding.

Here, we utilized a traditional recombinant inbred line (RIL) population derived from two
parents with minor differences in leaf rolling index (LRI) for linkage mapping, along with a
germplasm panel from the 3K Rice [18], for joint mapping of loci affecting the rolled leaf trait
and for mining favorable alleles. The results of this study will greatly facilitate molecular breed-
ing of rice cultivars with ideal plant type in the future.

Materials and Methods

Plant materials
Minghui 63 (MH63), the male parent of the widely cultivated hybrid indica rice variety Sha-
nyou63, which is distributed over a wide area spanning more than 21 longitudes and 20 lati-
tudes in China [19], was crossed with 02428. This typical japonica line, with a neutral allele
at the major locus S5, controlling hybrid sterility in most inter-subspecies crosses, as well as
tolerance to low CO2 stress, was isolated from mutant progenies from a cross between two
landraces, Pang-Xie-Gu and Ji-Bang-Dao [20]. The F1 hybrids of MH63 × 02428 were then
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consecutively selfed until the F8 generation to produce a set of 262 recombinant inbred lines
(RILs) [21].

A germplasm panel of 1,129 accessions (S1 Table) randomly chosen from the 3K Rice
Genomes Project [18] was adopted in this study to mine favorable alleles and to confirm the
results of QTL mapping.

Planting and phenotyping
All of the above plant materials were transplanted in the field at a spacing of 13.2 cm between
individuals and 25 cm between rows, with a final planting density of approximately 18,000
individuals per 667 m2, at the Experimental Station of the Institute of Crop Sciences, Chinese
Academy of Agricultural Sciences (ICS, CAAS) at Beijing (40.2°N, 116.2°E) and Sanya (18.3°N,
109.3°E) of Hainan province, as well as the Experimental Station of the Institute of Agricultural
Genomics, Chinese Academy of Agricultural Sciences at Shenzhen (22.6°N, E114.5°E) of
Guangdong province. The RILs, the two parents, and the germplasm panel were planted in a
random complete block design with two replications.

Phenotyping of rolled leaf traits was performed as previously described [22]. The top two
leaves of three main tillers per individual plant were measured for leaf width (LW) and distance
between leaf boarders (LN) at the widest part of each leaf. At least five individuals per line were
measured for the RILs, the two parents, and the germplasms panel. The LRI was calculated
using the following formula: LRI (%) = (LW-LN)/LW × 100.

Genotyping and mapping
Genomic DNA fromMH63, 02428, and the RILs in the F8 generation was isolated using a
DNeasy mini Kit (Qiagen), and the genotypes of the RILs were determined based on SNPs gen-
erated from whole genome sequencing with an Illumina Genome Analyzer IIx as described
previously [23].

Minghui 63 (MH63) and 02428 were submitted to whole genome re-sequencing, and a total
of 5,336,108,154 and 5,562,905,674 bp sequences were obtained, respectively. Alignment analy-
sis was carried out using the MSU6.1 assembly of the Nipponbare sequence as the reference
genome. A total of 5,062,106,567 bp and 5,278,080,725 bp of consistent sequences were
obtained for MH63 and 02428, covering 96.57% and 94.03% of the whole genome, respectively.
Single nucleotide polymorphisms (SNPs) were then identified based on these two consistent
sequences to obtain an SNP dataset. A total of 48,498, 42,124, and 36,410 SNP loci were found
between MH63 and 02428 with supporting evidence from more than three, four, and five
reads, respectively. Since a new version of Nipponbare assembly has been available after the
accomplishment of this step, we later re-mapped all the reads to the Os-Nipponbare-Refer-
ence-IRGSP-1.0 [24]. All the following works were carried out based on this new version of ref-
erence genome.

A total of 384 SNPs that are evenly distributed along the genome were used to design an
Illumina SNP chip [25] for genotyping of all 262 RILs using their parents and the F1 popula-
tions as controls to build up a frame map. The frame map was constructed with IciMapping,
version 3.3 [26]. Further mapping was carried via RAD sequencing [27] of each RIL as well as
the two parents. Ultimately, a total of 58,936 qualified SNP consisting of 4,568 chromosome
bins were identified and integrated into the frame map, with an average distance of 77 kb
between adjacent markers.

The germplasm panel was re-sequenced with an average depth of more than 10X [18]. The
reads were mapped to the reference genome of Nipponbare, and 14M high-quality SNPs were
identified [18]. Based on these 14Mmarkers, 2.9M SNPs related to potential protein-coding
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areas were carefully selected for further development of the 50k microarray chips. In order to
build an SNP set for primary association studies in which the locations of the SNPs were inde-
pendent of the SNPs chosen for microarray chip design, 27,921 SNPs were selected from the
2.9M SNPs by choosing one SNP per 100 counts.

Data analysis
The ICIM mapping module from the V.3.3 package of QTL IciMapping [26] was used to detect
the main-effect QTLs underlying the rolled leaf trait in the RILs. The default setting of LOD 2.5
was adopted as the threshold for identifying a putative locus.

Comparative mapping was carried out against a reference sequence map, GRAMENE anno-
tation sequence map 2009 [28], to compare the QTLs detected in this study with previously
reported QTLs or genes known to be associated with the rolled leaf trait in rice.

The basic scenario of compressed mixed linear model [29] implemented in the Genomic
Association and Prediction Integrated Tool (GAPIT) Version 2 [30] was adopted for associa-
tion analysis between QTL-flanking markers and LRI for the germplasm panel. To minimize
the possible effects of population structure, the parameter of Model.selection in GAPIT was set
as TRUE. Under this condition, a forward model selection by the Bayesian information crite-
rion (BIC) was conducted to determine the optimal parameters of principal components for
the LRI data. A relatively stringent threshold was adopted to identify significant correlation
between the SNP and LRI with a -LOG10(P) value of 5.0. To minimize to the possibility of type
II errors in QTL detection [31], a relatively low threshold of -LOG10(P) = 2.5 was also adopted
with supporting evidence from linkage mapping or comparative mapping.

The allelic effects were estimated by setting the Major.allele.zero = TRUE in GAPIT Version
2 to identify the donors of favorable alleles and their effects on LRI.

Results

Distribution of LRI in the MH63 × 02428 RIL population and the
germplasm panel
As shown in Fig 1A, the RIL population exhibited a similar pattern of distribution of LRI traits
throughout the three environments i.e., Beijing (BJ), Shenzhen (SZ), and Hainan (HN). LRI
appeared to be relatively stable in all three environments. On the other hand, even though the
LRI trait did not significantly differ between the two parents (both were less than 10%), highly
transgressive variations were still available in the progenies (ranging from 0–90%). However,
in the germplasm panel, the variation was slightly smaller, with the LRI ranging from 0–70%,
as shown in Fig 1B.

Linkage mapping of main-effect QTLs controlling the rolled leaf trait
A total of seven main-effect QTLs (qRl4, qRl5, qRl6, qRl7a, qRl7b, qRl9a, and qRl9b) affecting
LRI were detected on chromosomes 4, 5, 6, 7, and 9 by linkage mapping in the MH63 × 02428
RIL population across the three environments (Table 1, Fig 2). Among these, four QTLs (qRl4,
qRl5, qRl6, and qRl9b) were stably expressed across all three environments, qRl7a and qRl7b
were significant in only two environments (HN & SZ or SZ & BJ), and qRl9a was specifically
expressed at Sanya of Hainan. Although the locus effects varied in different environments, the
direction of gene effects on the LRI remained consistent. Among these loci, the alleles at qRl4,
qRl5, qRl7b, and qRl9a from the japonica parent, 02428, increased the LRI, while the 02428
alleles at the three other loci (qRl6, qRl7a, and qRl9b) reduced the LRI in all three environments.
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These reverse effects of alleles from two parents at different loci may ultimately be responsible
for the nearly flat leaves of MH63 and 02428.

The known loci/genes for the rolled leaf trait are as follows (some genes for abaxial rolling
are underlined): qRL-1[32], url1(t)[33], rl-4(rl-2)[34], SCL1[35], nal10[36], REL1[37], rl8(t)
[38], qRL-2-1b[32], CFL1[39], DNAL1[40], rl(t)[41], OsAGO1a(LOC_Os02g45070)[42], Roc5
[43], Nrl3(t)[44], s1-145 [45], nal7(Os03g0162000)[46], NRL2(t) [47], RL3(t)[44], OsAGO7[48],
rl-3(rl-5)[34], ACL1[49], SRL2[50], rl11(t)[51], nl(t)[52], qRL4-2[22],QFl4 andQFl5[53], qRL5-
9 and qRL5-10[22], rl8 [54], RL13[55], qRL-6[32], sd-sl[56], rl11(t)[51], SRL1[57], YABBY1[8],
rfs[34], qRL-7[32], Nul1[58],QFl7[53], sll2[59], qRL-8-1, qRL-8-2 and qRL-9[32], OsMYB103L

Fig 1. Distribution of leaf rolling index (LRI, %) in the MH63 × 02428 RIL population in three environments (A, BJ = Beijing, SZ = Shenzhen,
and HN = Hainan) and a random subset of the 1127 germplasm panel at SZ (B). The average values throughout three environments of the two
parents (02428 and MH63) for the RILs are indicated by two black arrows.

doi:10.1371/journal.pone.0158246.g001

Table 1. QTLs controlling leaf-rolling index (LRI) detected by linkage mapping in an RIL population at three planting sites (BJ = Beijing,
HN = Hainan, and SZ = Shenzhen).

QTL Chr Pos (cM) Flanking marker HN SZ BJ Reference 3)

LOD A (%) 1) PVE (%) 2) LOD A (%) PVE (%) LOD A (%) PVE (%)

qRl4 4 103 M110-Bin_1720 3.8 3.6 4.7 4.9 2.4 4.8 4.1 3.5 6.2 rl11(t) [51], SRL2 [50]

qRl5 5 98 M129-Bin_1976 9.2 6 12.9 9.5 3.6 10.4 3.9 3.7 6.6 qRL5-10 [22], rl8(t) [38]

qRl6 6 78 M153-Bin_2361 4.1 -3.5 6.4 5 -2.4 4.6 3.2 -3.3 3.8 qRL-6 [32]

qRl7a 7 46 Bin_2619-M163 5 -4.3 6.7 3.9 -2.2 4.1 qRL-7 [32]

qRl7b 7 112 M177-Bin_2847 3 3 4.5 3.7 3.6 4.5

qRl9a 9 28 Bin_3289-M198 3.7 3.6 4.5 rl13(t) [55]

qRl9b 9 79 M205-Bin_3476 6.3 -4.7 8.4 3.3 -2 3.3 3.6 -3.6 6.2

1) The additive effect results from the effect of substitution of MH63 alleles with 02428 alleles.
2) Phenotypic variance explained.
3) Numbers in brackets are reference numbers, as listed in the reference section.

doi:10.1371/journal.pone.0158246.t001
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[60], rl13(t)[55], Rl16(t)[61], RL10(t)[62], SLL1[63], RL9(rl9(t),GARP)[64], OSZHD1 [65], LRL1
[66],QFl9[53], OSJNBa0003P07[67], RL12(t)[68], rl15(t)[69], qRL-10[32], DTL1[70], RL14[71],
SRS5[72], NRL1(OSJNBa0027H05)[73], rl-1(rl-3)[34], nal3(t)[74], and nrl1[46].

GWASmapping of QTLs affecting the rolled leaf trait
A total of 18 significant loci were detected by GWAS using a combination of the relatively
stringent threshold of -LOG10(P) = 5.0 and the relatively low threshold of -LOG10(P) = 2.5,
with supporting evidence from either our linkage mapping with RILs or previous reports
(Table 2, Fig 2). These QTLs are distributed throughout the genome, except for chromosome 3,
10, and 11. Of these QTLs, 14 (77.8%) are closely related to loci that were previously identified
by comparative mapping or to QTLs identified by our linkage mapping of the MH63 × 02428
RIL population, whereas the other four (gRl1-2, gRl5-1, gRl5-2, and gRl12-1) are newly identi-
fied QTLs that are associated with LRI.

Allele mining for the rolled leaf trait
Wemined favorable alleles and estimated their effects on LRI using a random subset of the
1127 3K panel. We ultimately detected a total of 33 favorable alleles for the 14 loci, which were

Fig 2. Distribution and comparison of QTLs for leaf-rolling index (LRI, %) identified by linkagemapping and GWAS (Manhattan plot) with
those detected in previous studies. The reported loci/genes are indicated by white triangles and/or plain italic font, and QTLs detected by linkage
mapping in our RIL population of MR63/02428 are indicated by black triangles and bold italic font. Several loci/genes with no significant support in the
germplasm panel are shown in blue font. Five positions with possible new loci detected only by GWAS in the germplasm panel are indicated by black
arrows and are numbered 1–5.

doi:10.1371/journal.pone.0158246.g002
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consistently detected in GWAS and linkage mapping or comparative mapping (Table 3).
Among these, 16 (48.5%) alleles were found in the five regions (gRl4-2, gRl5-4, gRl6-1, gRl7-2,
and gRl7-3) associated with loci identified by linkage mapping of the RIL population, and 24
(72.7%) of the 33 alleles were donated by the favorable germplasms from the 3K Rice Genomes
Project panel (Table 3). The average effect of the favorable alleles on LRI was 1.9%, ranging
from 1.1% to 3.1%. Approximately 30.3% of the favorable alleles can improve the LRI by no
less than 2%, with the maximum effects from the A alleles at the representative SNP at the posi-
tion of 14,150,759 in the region of gRl2-2.

Subregional analysis of gRl4-2
The region of gRl4-2 possessed the highest peak among all the rolled leaf loci detected by
GWASin this study. The gRl4-2 was also consistently detected in the RILs derived from
MH63 × 02428 across three environments. Whether this clustering was caused by tightly linked
loci or a single locus remains unclear. To get more details in the candidate region. we extracted
89,349 SNP markers surrounding the above peaks with an average distance of 18.1 ± 55.2 bp
between adjacent markers to perform a fine re-scanning of this region and to re-estimate all of
the -LOG10(P) values and additive effects.

It’s notable that within this region of no more than 2 Mb (30,977,335–32,592,463 bp) at the
end of the long arm of chromosome 4, at least three clusters of peaks were found (Fig 3). The
first subregion (gRl4-2_1) covers nucleotides in a range from 30,980,707 to 30,994,770 bp
(marked by an SNP peak of -LOG10(P) = 5.2), which is consistent with our linkage mapping-
derived locus qLR4, with an average value of 2.9% (ranging from 1.3–7.6%) favorable effects on
LRI. The second subregion (gRl4-2_2) is marked by an SNP peak of -LOG10(P) = 5.2 and com-
prises nucleotides in the range of 31,068,550–32,086,234 bp. The favorable allele effects aver-
aged 1.6% (ranging from 1.1–2.2%) for LRI. The region gRl4-2_2 harbors two previously
reported genes, nl(t)[52] and SRL2[50]. The third subregion (gRl4-2_3) is located at the physi-
cal range of 32,156,194–32,452,869 bp, with an SNP peak of -LOG10(P) = 13.7. The favorable

Table 2. QTLs affecting leaf-rolling index (LRI) detected by GWAS in a panel of 1,129 germplasms.

QTL Range (bp) -LOG10(P) QTL from linkage mapping QTL from references

gRl1-1 4,832,637–4,832,637 5.3 qRL-1 [32], url1(t) [33], rl-4(rl-2) [34], SCL1 [35]

gRl1-2 25,404,548–25,404,548 5.7

gRl2-1 7,519,002–9,022,802 3.9 qRL-2-1b [40]

gRl2-2 14,150,759–20,850,818 6.8 CFL1 [41]

gRl4-1 19,823,372–20,860,914 3.8 ACL1 [49]

gRl4-2 31,977,228–32,592,463 9.1 qRl4 rl11(t) [51], SRL2 [50], qRL4-2 [22], nl(t) [52]

gRl5-1 3,117,099–3,117,099 5

gRl5-2 11,228,990–11,228,990 6.6

gRl5-3 17,598,480–19,569,643 6.9 qRL5-9 [22]

gRl5-4 20,444,240–21,926,430 3.1 qRl5 qRL5-10 [22], rl8(t) [38]

gRl6-1 20,532,308–22,944,285 5.1 qRl6 qRL-6 [32]

gRl7-1 1,762,263–3,230,532 5.9 YABBY1 [8]

gRl7-2 14,684,286–16,298,897 4.2 qRl7a qRL-7 [32]

gRl7-3 27,671,916–27,671,916 2.6 qRl7b

gRl8-1 4,426,494–4,426,494 6.9 qRL-8-1 [32]

gRl8-2 26,810,755–27,101,483 5.3 qRL-8-2 [32]

gRl9-1 7,959,893–10,895,719 3.3 qRl9a rl13(t) [55]

gRl12-1 363,480–363,480 5.2

doi:10.1371/journal.pone.0158246.t002
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Table 3. Representative SNPs for favorable alleles and their effects on leaf rolling index (LRI, %) simultaneously detected by GWAS and linkage
mapping in this study or previous studies.

QTL QTL from linkage
mapping

Physical position
(bp)

Favorable SNP
allele

Effect
(%)

Top five accessions with favorable alleles 1)

gRl1-
1

4,832,637 T 2.1 IRIS_313–9759 (65.2), IRIS_313–8023 (60.3), IRIS_313–8027 (57.3),
IRIS_313–8149 (55.4), IRIS_313–8129 (49.9)

gRl2-
1

7,519,002 G 1.7 IRIS_313–9759 (65.2), IRIS_313–8023 (60.3), IRIS_313–8027 (57.3),
IRIS_313–8075 (55.6), IRIS_313–8149 (55.4)

9,022,802 T 1.6 IRIS_313–9759 (65.2), IRIS_313–8023 (60.3), IRIS_313–8027 (57.3),
IRIS_313–8075 (55.6), IRIS_313–8149 (55.4)

gRl2-
2

14,150,759 A 3.1 IRIS_313–9759 (65.2), IRIS_313–8023 (60.3), IRIS_313–8027 (57.3),
IRIS_313–8075 (55.6), IRIS_313–8149 (55.4)

20,850,818 A 1.5 Nipponbare

gRl4-
1

19,823,372 T 1.6 IRIS_313–9759 (65.2), IRIS_313–8023 (60.3), IRIS_313–8027 (57.3),
IRIS_313–8075 (55.6), IRIS_313–8149 (55.4)

20,743,867 A 1.9 IRIS_313–9759 (65.2), IRIS_313–8023 (60.3), IRIS_313–8027 (57.3),
IRIS_313–8149 (55.4), IRIS_313–8129 (49.9)

20,786,774 T 1.4 IRIS_313–9759 (65.2), IRIS_313–8023 (60.3), IRIS_313–8027 (57.3),
IRIS_313–8149 (55.4), IRIS_313–8129 (49.9)

20,821,210 C 1.3 IRIS_313–9759 (65.2), IRIS_313–8023 (60.3), IRIS_313–8027 (57.3),
IRIS_313–8149 (55.4), IRIS_313–8129 (49.9)

20,860,914 A 1.3 IRIS_313–9759 (65.2), IRIS_313–8023 (60.3), IRIS_313–8027 (57.3),
IRIS_313–8149 (55.4), IRIS_313–8129 (49.9)

gRl4-
2

qRl4 31,977,228 A 2.4 Nipponbare

32,086,234 A 1.1 IRIS_313-8135(47.0), B153 (28.1), CX15 (46.5), CX28 (35.0), CX314
(42.0)

32,134,331 A 1.8 IRIS_313–8023 (60.3), IRIS_313–8027 (57.3), IRIS_313–8075 (55.6),
IRIS_313–8149 (55.4), IRIS_313–8111 (48.7)

32,227,059 G 2.4 IRIS_313–9759 (65.2), IRIS_313–8023 (60.3), IRIS_313–8027 (57.3),
IRIS_313–8075 (55.6), IRIS_313–8149 (55.4)

32,236,238 A 1.7 IRIS_313–9759 (65.2), IRIS_313–8023 (60.3), IRIS_313–8027 (57.3),
IRIS_313–8075 (55.6), IRIS_313–8149 (55.4)

32,271,965 C 2.7 IRIS_313–9759 (65.2), IRIS_313–8023 (60.3), IRIS_313–8027 (57.3),
IRIS_313–8075 (55.6), IRIS_313–8149 (55.4)

32,592,463 C 2.5 IRIS_313–9759 (65.2), IRIS_313–8023 (60.3), IRIS_313–8027 (57.3),
IRIS_313–8075 (55.6), IRIS_313–8149 (55.4)

gRl5-
3

17,598,480 T 2.4 IRIS_313–9759 (65.2), IRIS_313–8023 (60.3), IRIS_313–8027 (57.3),
IRIS_313–8075 (55.6), IRIS_313–8149 (55.4)

gRl5-
4

19,471,779 T 2.1 Nipponbare

qRl5 19,569,643 C 2.1 Nipponbare

gRl6-
1

qRl6 20,532,308 G 2.2 IRIS_313–8023 (60.3), IRIS_313–8027 (57.3), IRIS_313–8149 (55.4),
IRIS_313–8129 (49.9), IRIS_313–8185 (49.8)

22,661,800 G 1.8 IRIS_313–9759 (65.2), IRIS_313–8023 (60.3), IRIS_313–8075 (55.6),
IRIS_313–8149 (55.4), IRIS_313–8129 (49.9)

22,854,876 T 1.4 IRIS_313–9759 (65.2), IRIS_313–8149 (55.4), IRIS_313–8129 (49.9),
IRIS_313–8075 (55.6), IRIS_313–8023 (60.3)

22,944,285 T 2.6 IRIS_313–10084 (36.9), CX15 (46.5), CX288 (26.5), CX314 (42.0),
CX361 (14.6)

gRl7-
1

1,762,263 C 2.3 IRIS_313–9759 (65.2), IRIS_313–8023 (60.3), IRIS_313–8027 (57.3),
IRIS_313–8075 (55.6), IRIS_313–8149 (55.4)

3,230,532 T 1.9 Nipponbare

gRl7-
2

qRl7a 14,684,286 C 1.7 Nipponbare

(Continued)

Joint Mapping and Allele Mining of the Rolled Leaf Trait

PLOS ONE | DOI:10.1371/journal.pone.0158246 July 21, 2016 8 / 15



allele effects averaged 3.5%, ranging from 2.4–4.1% for LRI, suggesting that a new locus or loci
could be localized within this region.

Discussion

QTLs underlying segregation of the rolled leaf trait in the RIL population
In this study, we carried out both linkage mapping and GWAS analysis in order to perform
accurate locus searching and to mine multiple favorable alleles for the rolled leaf trait, one of

Table 3. (Continued)

QTL QTL from linkage
mapping

Physical position
(bp)

Favorable SNP
allele

Effect
(%)

Top five accessions with favorable alleles 1)

16,298,897 A 1.4 IRIS_313–8023 (60.3), IRIS_313–8075 (55.6), IRIS_313–8185 (49.8),
IRIS_313–8111 (48.7), B055 (48.0)

gRl7-
3

qRl7b 27,671,916 T 1.4 Nipponbare

gRl8-
1

4,426,494 C 2.9 IRIS_313–9759 (65.2), IRIS_313–8075 (55.6), IRIS_313–8149 (55.4),
IRIS_313–8185 (49.8), IRIS_313–10083 (37.2)

gRl8-
2

21,374,656 G 2.3 Nipponbare

gRl9-
1

7,959,893 C 1.9 Nipponbare

10,895,719 G 1.3 IRIS_313–9759 (65.2), IRIS_313–8075 (55.6), IRIS_313–8149 (55.4),
IRIS_313–8129 (49.9), IRIS_313–8111 (48.7)

1) The accession ID can be found in the database (http://www.rmbreeding.cn/snp3k) for further details. Numbers in brackets are LRI values (%).

doi:10.1371/journal.pone.0158246.t003

Fig 3. Subregional analysis of the region harboring gRl4-2 by increasingmarker density. The known loci, including the QTLs detected by
linkage mapping in the MH63 × 02428 RIL population, the loci from the literature, and (likely) new clusters within subregions gRl4-2_1, gRl4-2_2, and
gRl4-2_3 are indicated by horizontal black, white, and striped bars, respectively. The vertical bars in red and green indicate the—LOG10(P) and 100×
favorable allele effect (FAE) values of the peak markers, respectively.

doi:10.1371/journal.pone.0158246.g003
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the key components of plant architecture. The rolled leaf trait showed transgressive segregation
in RILs derived from two parents with insignificant differences in this trait (LRI of no more
than 10%, Fig 1). As shown in Table 1, favorable alleles at the detected QTLs are evenly dis-
persed in the two parents. Therefore, transgressive segregation of the rolled leaf trait in the RIL
population can be partially explained by the reverse patterns of the allelic effects at the seven
loci. Our results further support the observation that even though the germplasms themselves
do not show prominent traits, they do harbor some excellent alleles, as previously observed for
grain yield [75], salt tolerance [76], cold tolerance [13], and drought tolerance [12].

Of the seven loci identified for the rolled leaf trait, five were previously reported, and accord-
ing to the comparative mapping, four of the above loci (qRl4, qRl5, qRl6, and qRl7a) are close to
the previously reported loci rl1(t) [51], qRL5-10 [22], qRL-6 [32], and qRL-7 [32], respectively.
Two QTLs (qRl7b and qRl9b) are newly reported; the former was confirmed by GWAS analysis.

Previous studies have revealed multiple locus clusters, including regions on chromosome 4,
9, and 12 (Fig 2). Here, we found clustering of allele peaks based on the GWAS results, espe-
cially in gRl4-2 at the end of chromosome 4, where at least three clusters of allele peaks were
detected in the random subset of the 3K Rice germplasms panel (Fig 3).

Comparison of rolled leaf QTLs detected by GWAS with those revealed
in earlier studies
Approximately six (33.3%) of the 18 GWAS loci were confirmed by our linkage mapping with
an RIL population, five of which were previously reported (Table 2). An additional eight loci
were supported by comparative mapping with the results from earlier reports. Taking together,
these 14 (77.8%) GWAS loci are fairly reliable and appropriate for use in allele mining for
breeding purposes. We identified at least 33 key SNP genotypes for favorable alleles at these
loci, with an average of 2.4 SNP genotypes at each locus (Table 3).

Specifically, gRl1-1 on chromosome 1 is located in the same region as the previously
reported rolled leaf loci qRL-1, url1(t), rl-4(rl-2), and SCL1 [32–35]. Two loci (gRl2-1 and gRl2-
2) on chromosome 2 were mapped together with qRL-2-1b [32] and CFL1 [39], respectively.
We identified two loci (gRl4-1 and gRl4-2) on chromosome 4: the former is located in the same
region as ACL1, for abaxial rolled leaves [49], and the latter is located in a region harboring
SRL2[50], rl11(t) [51], nl(t)[52], and qRL4-2 [22]. The latter locus also harbors QTL qRl4, as
detected in our linkage map (Table 1). Two loci (gRl5-3, and gRl5-4) mapped together with
qRL5-9 [22], qRL5-10 [22], and rl8 [54], respectively, and gRl5-4 was also detected on our link-
age map (Table 1). Only one locus (gRl6-1) on chromosome 6, which was mapped together
with qRl6 detected by linkage mapping, was mapped in the same region with qRL-6 from a pre-
vious report [32]. There are two significant loci on chromosome 7 and 8, respectively. Among
these, gRl7-1 and gRl7-2 were mapped together with the loci YABBY1 [8] and qRL-7 [32] from
previous reports, and gRl8-1 and gRl8-2 were mapped to the same regions as previously
reported loci qRL-8-1 and qRL-8-2 [32], respectively. Only one locus (gRl9) on chromosomes 9
was mapped together with rl13(t) from a previous study [55]. All of these candidate loci affect-
ing the rolled leaf trait detected in different experiments are reliable and suitable for use in
molecular breeding for plant type. Four loci (gRl1-2, gRl5-1, gRl5-2, and gRl12-1) were identi-
fied for the first time in this study and likely represent new QTLs for the rolled leaf trait.

To further explore the SNP markers with extremely higher density (average 18.1 ± 55.2 bp
between adjacent markers), we split gRl4-2 on chromosome 4 into at least three subregions. The
second region, which is located in the region 31,068,550–32,086,234, was previously reported as
nl(t) and SRL2 [50,52]. The natural variations affect the LRI at a level of 1.7–2.2%, without sig-
nificant correlation to leaf width, as detected in our diverse germplasm panel, although mutant
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alleles, especially nl(t) at this locus, cause narrow leaves in addition to rolled leaves. The third
region, located at 32,156,194–32,452,869, is thought to harbor new QTLs underlying the rolled
leaf trait, with gene effects as high as 3.5% of the average gene effects for LRI.

By analyzing a highly diverse germplasm panel, we detected many new alleles, such as multi-
ple alleles at the ACL1 locus [49], in which the ACL1mutant has abaxial leaf rolling, while at
least five favorable alleles from our 3K Rice germplasms improve the LRI by an average of 1.5%.

Implications for rice breeding for ideal plant type
The rolled leaf trait is a morphological character for which tremendous genetic variation exists
among different rice genotypes, as shown in the current study. Suitably rolled leaves may allow
rice plants to have greater effective leaf area per unit land without causing shading, thus likely
resulting in extremely high yields due to higher rates of photosynthesis, as demonstrated in
super hybrid rice [1]. Cultivars with moderately rolled leaves are suitable for relatively high
density cultivation [11] and thought to be with better lodging and disease resistances at the
population level [10]. Moreover, genotypes with partially rolled leaves may have better water
use efficiency because rolled leaves are expected to have reduced leaf area [77]. Although both
MH63 and 02428 have nearly flat leaves, the derived RILs showed various degrees of leaf rolling
due to recombination of non-allelic parental alleles. Indeed, the most favorable LRI for indica
cultivars is approximately 12% [78]. Therefore, it is possible to improve the leaf type of existing
elite varieties by identifying “hidden” favorable alleles segregating in existing breeding popula-
tions and germplasms and introgressing and pyramiding them into elite backgrounds by MAS.
The favorable alleles from IRIS_313–8023, IRIS_313–8027, IRIS_313–8149, IRIS_313–8129,
and IRIS_313–8185, and perhaps even Nipponbare, at five QTLs (qRl4, qRl5, qRl6, qRl7a, and
qRl7b) for the rolled leaf trait consistently identified in the RILs and in the re-sequenced germ-
plasms (Table 3) in this study and in previous studies could be used to deploy allele combina-
tions for ideal plant type in rice by MAS.

Conclusion
We identified seven main-effect QTLs underlying the transgressive segregation of the rolled
leaf trait in rice in progenies from parents with minor differences in this trait. Five of these
QTLs were previously reported, two (qRl7b and qRl9b) are newly identified, and one, qRl7b,
was confirmed by GWAS analysis. Eighteen loci were found by GWAS: four are newly identi-
fied and the 14 other loci are consistent with QTLs from linkage mapping or comparative
mapping. We carried out favorable allele mining for these 14 loci and identified possible elite
donors for future plant type breeding programs. By performing subregional analysis, we identi-
fied a subregion (gRl4-2_3) with a possible new locus/loci and favorable alleles with an average
effect of 3.5% for LRI, ranging from 2.4 to 4.1%. The favorable alleles at five QTLs (qRl4, qRl5,
qRl6, qRl7a, and qRl7b) for the rolled leaf trait that were consistently identified in different
populations could be used for breeding rice with ideal plant type by MAS.
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