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Abstract

The emergence of groups and of inequality is often traced to pre-existing differences, exclu-
sionary practices, or resource accumulation processes, but can the emergence of groups
and their differential success simply be a feature of the behaviors of a priori equally-capable
actors who have mutually adapted? Using a simple model of behavioral co-adaptation
among agents whose individual actions construct a common environment, we present evi-
dence that the formation of unequal groups is endemic to co-adaptive processes that
endogenously alter the environment; agents tend to separate into two groups, one whose
members stop adapting earliest (the in-group), and another comprising agents who con-
tinue to adapt (the out-group). Over a wide range of model parameters, members of the in-
group are rewarded more on average than members of the out-group. The primary reason
is that the in-group is able to have a more profound influence on the environment and mold
it to the benefit of its members. This molding capacity proves more beneficial than the per-
sistence of adaptivity, yet, crucially, which agents are able to form a coalition to successfully
exert this control is strongly contingent on random aspects of the set of agent behaviors. In
this paper, we present the model, relevant definitions, and results. We then discuss its impli-
cations for the study of complex adaptive systems generally.

Introduction

Where it exists, inequality between groups is often traced to pre-existing differences [1], exclu-
sionary practices [2][3], or resource accumulation processes [4][5][6][7][8], but can the emer-
gence of groups and their differential success simply be a feature of the behaviors of a priori
equally-capable actors who have mutually adapted? Using a simple model of behavioral co-
adaptation among agents whose individual actions construct a common environment [9], we
present evidence that the formation of unequal groups is endemic to co-adaptive processes that
endogenously alter the environment: agents tend to separate into two groups, one whose mem-
bers stop adapting earliest, and another comprising agents who continue to adapt.

The evidence of this dynamic is intriguing because in a variety of settings, actors change
their behavior with the goal of being better adapted to their environment, but at the same time
their adaptive behaviors alter that environment. A collection of actors occupying the same
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environment is thus thrown into a complex dance of co-adaptation via the environment they
construct. Humans and many other species have the ability to modify their local environment
in ways that alter, intentionally or not, their prospects for success in that environment, a pro-
cess often referred to in evolutionary theory as niche construction [10][11]. (See [12] for a
debate on the history of this concept.) While this process can and does happen on an evolu-
tionary time scale, it can be fruitfully studied without reference to genetic evolution. Co-adap-
tation can happen on a shorter time scale because individual efforts to exhibit successful
behavior will often result in changes to the shared environment that force others to quickly
adapt. In biology, for example, niche-constructing behavior ranges widely, from the engineer-
ing activities of soil fauna [13] to intricate behaviors such as the trip wires constructed by
Corolla spiders [14][10]. A similar dynamic is present in the network of mostly autonomous
internet routers tasked with getting data from a source to its destination efficiently. The choice
of path is a function of the throughput on the possible routes, which is determined by all rout-
ers' previous choice of paths [15][16]. The overall flow of traffic emerges from the co-adaptive
behavior of individual routers to their mutual constructed traffic environment [17][18].

Humans and other species of high cognitive abilities often adapt to a physical and social
environment of their own making. While physical environments can be affected [19][20][21],
behavioral co-adaptation is often more clearly present in social environments; individuals are
able to construct shared meanings and evaluations of actions, words, and objects by adapting
their understanding and use of them to their use by others [22][23][24]. This co-adaptation of
individual interpretive actions and the social environment is key to the emergence of shared
understandings and other elements of culture [25][26][27][28][29]. Consumer behaviors can
exhibit a similar dynamic as essential information about goods and services can be transmitted
indirectly via a shared environment.

Much of the formal research on co-adaptation and coordination is focused on direct inter-
action and understates the role of endogenously structured environments, and this omission,
when unjustified, can result in misleading conclusions. An endogenously structured environ-
ment will have different general characteristics than an exogenously structured one and will
raise new and different questions. For example, when one cannot assume a fixed set of costs
and benefits for individuals*actions relative to the environment (e.g. the values in a payoff
matrix), one ought to ask if there are systematic changes to those costs and benefits [30][31]
[32] and whether distinct relationships among agents form in the face of such changes. One
might also study the capacity of the environment to carry information about the behavior of
others and whether this alters direct agent-to-agent interactions. Questions about equilibria
and systemic robustness in the face of exogenous shocks are also likely to yield different
answers because endogenous influences on the environment will lead to a different dynamics
of agent-mediated environmental response. In this paper we present evidence that endogenous
molding tends to result in functionally distinct groups with unequal success in the mutually
constructed environment.

In order to better understand the process of endogenous molding of the environment, we
focus on the abstract mechanism in isolation. Of course, real world settings such as those we
have mentioned above (genetic evolution in the case of niche construction, human design and
intervention in the case of internet traffic routing, or social networks, group-affiliations, and
interpersonal learning in the case of human society) may exhibit additional sources of, or con-
straints on, the structure of the environment. While any empirical work must to take into
account the range of mechanisms present, those efforts will be well-served by the explicit and
detailed understanding of the features of a simplified version of endogenous co-adaptation
such as that embodied in the model we study here, first proposed by Savit, Riolo and Riolo
(SRR)[9] and referred to as the stigmergy game.
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In this model, the only possible mechanism for communication and, consequently, for co-
adaptation among the agents is stigmergy, that is, signaling through the (endogenously con-
structed) environment. The naturalist Pierre-Paul Grasse coined the term stigmergy to describe
settings in which social insects “interact indirectly when one of them modifies the environment
and the other responds to the new environment at a later time”(pp. 14) [33]. Recent research
has shown the mechanism of stigmergy to be quite common [34][35] and robust [28][9], sug-
gesting it plays an important role in the emergence of tacit agreements about interdependent
behavior. The SRR model was designed to study the meta-dynamics of a wholly endogenously
structured environment without any direct agent-to-agent communication and asks whether
that process can transmit enough information for coordination to emerge among the agents.
Emergent coordination here is understood as better than zero-sum mutualisms among the set
of agents, so that on average agents benefit more than they would have without co-adaptation.
SRR showed such mutualisms are possible and common. This fact raises the important ques-
tion of whether the emergent mutualisms involve and benefit agents equally, or if instead the
dynamics of such co-adaptation produces differentiation among agents. The tremendous
diversity of behaviors present in the natural and social worlds suggests the latter and therefore
we sought to understand the ways in which the agents in the stigmergy game might become
functionally differentiated.

In this paper, we show that a consistent dynamic underlying the coordination identified in
SRR is the emergence of a subset of agents that is able to direct the structure of the shared envi-
ronment toward having characteristics desirable to it, while the individuals in the complemen-
tary group struggle to adapt and extract fewer rewards on average than those in the first group.
We call these groups the in-group and the out-group, respectively. Although there are some
counter-examples, this underlying dynamic of differential success between the groups is robust.
As we discuss below, this robust dynamic has a number of important implications for endoge-
nous co-adaptation and for complex adaptive systems in general. The rest of this paper is orga-
nized as follows: In the next section we will briefly summarize the stigmergy game and its most
general behaviors. [Readers familiar with the stigmergy game can skip this section. For a more
complete discussion, see SRR.] We then present a formal definition for the groups and show
that members of the in-group generally acquire more rewards than members of the out-group.
The paper ends with a discussion of the results and broader implications.

The Stigmergy Game
Model Specification

The stigmergy game models N agents adapting to each other indirectly by taking turns
responding to one of E possible states for a shared environment. Every turn starts with an
agent being randomly selected to observe the current state of the environment (say, e;) and
transform it to a new state (say, e,). (Random selection permits an agent to be selected multiple
times in a row or wait long periods without acting.) The acting agent receives a reward of +1,
-1 or 0 based on the state of the environment they first observed. The state transformation and
reward are determined by a “strategy,” a look-up table of E rows and 3 columns. Table 1 is an
example for E = 5. The first column lists all E possible input states of the environment, the sec-
ond determines the new environmental state given an input state, and the third determines the
reward. The second column contains randomly (identically and independently) distributed
instances of all possible environmental states. The third is also randomly distributed but with
the constraint that it sums to zero so that each strategy is reward neutral, thus controlling for
an obvious source of advantage. Using the strategy it is currently playing, an agent reads across
the row associated with the environmental state it sees on its turn to determine the appropriate
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Table 1. An example strategy for E =5.

Current State New State Reward
1 5 -1
2 2 +1
3 4 1
4 2 0
5 3 +1

doi:10.1371/journal.pone.0158144.t001

transformation and reward. For example, an agent using the strategy in Table 1 who observes
state 5 would transform the environment to state 3 and gain a payoff of +1.

An agent is randomly assigned S strategies from among all possible strategies. Because the
number of possible strategies is large for even moderate values of E, different agents have differ-
ent sets of strategies. After each of its turns, an agent selects the strategy in its set that, had it
been used for every one of the agent’s previous turns, would have the largest cumulative
rewards. (An agent updates a hypothetical cumulative reward [score] for all its strategies every
time it acts. Older rewards are not discounted because our analysis of “memory” discounting
revealed no effect except for very short memories. This is likely because the strategies” scores
quickly become separated by nontrivial amounts as the environment becomes more orderly).
Ties between the agent’s strategies are broken randomly. Strategies are reward neutral in a uni-
form distribution of environmental states and randomly assigned in order to best isolate the
emergent features attributable to the dynamics of co-adaptation.

In this model, an agent molds the environment by changing its state according to the rules
described in the agent’s current strategy. If an agent ceases to change strategies it is nonetheless
actively producing the states of the environment that agents see and therefore has an ongoing
role in the molding the shared environment. In fact, because it has stopped switching strategies,
it is more consistently molding the environment since, for example it is invariably producing
state e, when it sees state e;. Furthermore, that an agent might settle on a particular strategy
means that the distribution of environmental states the agent sees is better matched to that
strategy than any other it has and, therefore, that the environment has been successfully molded
by the collection of all agents to that agent and its behavior. This dynamic of self-reinforcing
adaptation is at the core of the model and is what we mean by endogenous molding. The pro-
cess is sufficiently complex that it is not obvious how to formally characterize the dynamics
and equilibria as one might do in game theory. The challenges to molding the environment are
enough that it is not clear a group of agents can even coordinate to produce a mutually benefi-
cial environment. SSR showed that it is possible, however, and we now review the metrics and
findings that relate to our present inquiry.

Summary of Metrics and General Behavior

The general behavior of this model is described in detail in SRR. Here we excerpt the descrip-
tion of three metrics—average reward, environmental order, and switching rate—and present
a notional figure indicating the general qualitative behavior of the system as a function of N
and E.

Average agent wealth. We track agents’ “wealth” (i.e. sum of rewards) over a time window
to find a per turn average reward. The average agent wealth reported here is the group average
of this individual reward rate over the same window. This rate is between [1, -1] with an
expected value of zero when states are equally probable. Specifically, the rate of wealth
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accumulation by agent i over a window of T time steps can be written as

1 to+T

W(i) ==Y (i), (1)

=t

The times agent i acts are denoted by 7 and the prime on the sum indicates that it includes

only those time steps. T is the total number of times agent i acts in the interval [to, to,]. When
the i agent uses its j" strategy at time T, 1j(r)(i; e(1)) is the entry in the reward column of the bk
strategy associated with the input state the agent sees at time T, e(t). W(i) can be understood as
a measure of an agent's success adapting to the behavior of others. An average over the popula-
tion, or a subset of it, begins to characterize both individual success and how well agents are
co-adapting.

As a baseline measure of coordination, we also consider wealth accumulation averaged over
all N agents, W.

W= % iw(i) (2)

Using this measure, SRR shows that co-adaptation results in significantly more agent wealth
than in the non-adaptive case, i.e. when S = 1.

Environmental order. Another measure of successful co-adaptation is environmental
order, a measure of the degree to which the environment is structured. Environmental order, 0,
is defined as

L pe)in(ple))

0=1+ )

(3)

The numerator in the second term is the entropy of environmental states, where p(e) is the
probability that the environment is in state e, averaged over some time window. When the
environment is maximally disordered so that p(e) = 1/E for all ¢, 8 = 0. As the p(e)'s move away
from 1/E, the environmental order increases. If the environment is maximally ordered so that p
(e*) = 1 for some e* and p(e) = 0 for all e e*, then 8 = 1. Order in the environment, as mea-
sured by 6, is often an indicator of productive mutualisms among (some of) the agents because
the potential mutualisms are only realized and become stable when they collectively reduce
uncertainty about future states of the environment by producing more of some of the states
than others. In that way, environmental order can be thought of as a measure of the agents' suc-
cess constructing a mutually understood and beneficial complex of behaviors in a malleable
environment.

Switching rate. To track the process of co-adaption, we also consider the probability that
an agent switches strategies in a given time step. Since the agents act in random order, this
probability represents a uniformly sampled average over all agents of the probability that an
agent switches strategies within a given time window.

Model Behavior

Fig 1 is a notional diagram indicating the general behavior of the model as a function of N and
E for S = 64. The underlying data are from 32 runs of Nx10° steps. The measuring interval for
all three metrics was the final N x 10* time-steps of the run. In this figure, NxE plane is divided
into three regions. In region I, the system generates high average agent wealth, a relatively high
environmental order measure, and a moderate switching rate. In region II, agent wealth and
environmental order is positive but noticeably lower than in region I. There is also a lower
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No. of
Env.

Low order & low wealth

High order & high wealth —

III

High switching, low order & low wealth

No. of Agents

Fig 1. Notional Diagram. This diagram depicts three distinct regions in NxE parameter space of the model. Region |
exhibits a moderate switching rate, high degrees of order, 8, and average agent wealths, W (i). Region Il has a lower
switching rate but also a lower order and average wealth than region |. Region Il has a high switching rate and order and
average wealth near zero.

doi:10.1371/journal.pone.0158144.g001

average switching rate. The transition between the regions is easily noticeable, but not abrupt.
Finally, in region III there is near-zero agent wealth, a nearly unstructured environment, and a
very high average switching rate. As described in SRR, in general, agents are able to coordinate
their strategy choices well in region I, to some extent in region II, and not at all in region III.
Poor coordination in region III is a consequence of the small number of possible reward col-
umns in the strategies, which leads to close scores among agents’ strategies and switching
among them. This is discussed in more detail in SRR.

This figure summarizes important aggregate features of the problem of co-adaptation, but
those features could be produced by either homogenous or heterogeneous behaviors among
the agents. In the next section we show that agents tend to segregate into two distinct groups in
regions I and II. Members of one group find mutually advantageous strategies early on and
cease adapting. This group molds the environment to its strategic imperatives, which results
in considerably higher average wealth for those agents than for the members of the second

group.
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The Dynamics of Group Formation

SRR showed it is possible for stigmergic co-adaption to lead to mutually beneficial patterns of
behavior but did not study the origins and characteristics of the emergent mutualisms. In our
further analysis, we found the origins of groups and differential success lie in when agents stop
switching among strategies.

Visual inspection of the data showed an intriguing pattern in which several agents stop
switching strategies around the same time, while the rest stop much later, if at all. We test
whether the adaptive mutualisms corresponded to this separation between these two groups by
first formalizing the separation.

In-group and out-group distinction. The in-group and out-group distinction is a natural
starting point for understanding patterns of co-adaption because each additional settled (i.e. no
longer switching) agent likely decreases the entropy of the system, thereby making the next
state of the environment more predictable on average. One might expect the decreased envi-
ronmental entropy (increased environmental order) to induce others to stop switching also,
but in fact the opposite can be true, as other agents find their current strategies to be less well
adapted to the new frequencies of environmental states and switch to a different strategy. This
suggests a natural distinction between a set of agents who can readily accommodate (and
enhance) the developing order in the environment, and those who cannot.

Definition of groups. In most runs, it is obvious which agents comprise the in-group and
the out-group since there is a clear, unmistakable subset of agents who stop switching strategies
earlier in the game. To formalize this visual intuition and accommodate occasional ambiguity,
we present here a definition for robust group assignments. It places agents along the dimension
of time according to when they last switched strategies and seeks to minimize the average dis-
tance in this dimension between agents within each group. For each possible assignment of N
agents to two groups, we calculate a “distance” score as described below. The assignment with
the lowest score is used to define the groups.

We denote the time agent i last switched as d; and define D to be an NxN matrix where D;; is

Dij = (di - dj)Z' (4)

We then define I to be a row vector denoting one of the 2™ possible assignments of agents to
the in-group; the j™ element, xj, of I'is 1 if the j™ agent is in the in-group and 0 otherwise. Vec-
tor O is the complement of vector I and assigns agents to the out-group such that the /" ele-
ment is 1 if the /" agent is in the out-group and zero otherwise.

I={x,...,x,}:x € {0,1} (5)

O=1={|, ~ 1],....|I, - 1]} (6)

Let n; be the number of agents in the in-group and 7, be the number of agents in the out-
group for a particular assignment of agents to I and O. Then, the number of distinct pairs of
agents in the respective groups, S;and Sp, are

(™ 7n,(n,71)
SI<2>T (7)
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The distance score is the sum of the average intra-group distances for a given assignment of
agents to the two groups

1 1
S nH=—+4+ —, 9
core(I) 5T s (9)
where 1 ={1,.. ., 1} is used to find the sum of N elements in the Nx1 vector with which it is

multiplied. Each of the two terms on the right hand side of Eq 9 is an average squared-distance
among all pairs of agents in the same group and the best group assignment is the one with the
minimum score from among all possible assignments.

In principle, this definition supports a solution in which all agents are in the same group,
except in the trivial case of N = 2. In all of our runs, however, the definition generates both an
in-group and out-group. This definition yields a clear winner, as the score of the winning
assignment is an average of 6.825 standard deviations below the average of the next ten lowest
scores (see S1 Appendix for a note about this calculation). This emphasizes the fact that this
definition corresponds to an important feature of the co-adaptive process. We also considered
three other assignment definitions to test the robustness of the group distinction. In the main,
these alternative methods give similar results to the method we have chosen, but occasionally
fail in cases in which the group assignments are intuitively obvious. Those alternative defini-
tions are discussed in the S2 Appendix.

Wealth comparison between groups. A simple comparison of average agent wealth
within each group may fail to capture significant differences in relative performance, as overall
average wealth changes as a function of N and E. Because of this, we define a measure of con-
text-dependent wealth. Small real differences in wealth may represent large relative differences
in performance when the overall wealth is small so our metric normalizes between-group
wealth differences to overall wealth accumulation for the whole group. First, we define a non-
linear measure of the rate of average wealth accumulation within a group, &:

-5 (1-3) (10)

where W is the average wealth of the agents in a group. Note that W and § are related mono-
tonicallyand —1 < W < 1and -3/4 < &< 1/4.

When W, and W, are the average wealth of the in-group and out-group respectively, then
the difference of &; and &o, the values of € for the in-group and out-group, is
(W, W)[1 — o]

Al=¢ —¢,= 2

(11)

The first term in the numerator is the just difference between the in-group and out-group
average wealths. The second term weights that difference according to how far away the aver-
age wealth for all agents is from 1. Dividing by two normalizes Ag so that it is bounded between
-land 1.Itis 1if W, = land W, = —1,and -1 if W, = —1 and W, = 1. Of course, AE = 0 if
W, = W,. AE scales scores such that a fixed difference in the group wealths, W, — W, results
in a smaller value if the total average group wealth, W, + W, is larger. That is, A properly
captures the idea that small differences in group wealth are more significant if the total average
wealth is smaller. (In the occasional case where W, + W, is negative, differences in group
wealth are accentuated, expressing the idea that not losing as much as others in a hostile envi-
ronment is a significant accomplishment.)
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To compute an average A, we performed 80 runs for each combination of N and E in the
range [2,16] with S = 16. S, the number of strategies, does not materially affect the results once it is
large enough (S> = 10) and therefore we use S = 16 here instead of S = 64 as was the case in SRR.
Each run was N x 10’ steps long, a length determined through trial and error to be well past any
transient dynamics. For each run W, and W , were calculated using the metric for average wealth
defined above (Eq 5) for the final N x 10* steps of the run. This value captures the rate of wealth
accrual after group membership for the agents has become stable. Using the winning group assign-
ment as specified above, we calculate the A for each run in our parameter space. Fig 2 shows the
average A of 80 runs for each N and E combination. Fig 3 shows the standard deviation.

It is clear in Fig 2 that the in-group has a consistent advantage in the rate at which its mem-
bers accumulate wealth. The values of AE might seem modest, but the absolute numbers can be
misleading. For example, if the average wealth of the out-group members per turn is .1 and the
in-group average is a full 50% more at .15, the resulting A is .0219. If the in-group is receiving
.55 per turn and the out-group receives .50, A is .0119 (but wealth accumulation at this high
rate is infrequent except for very low values of N).

Fig 2 exhibits a pattern similar to the notional diagram in Fig 1; region I in the latter is
where the average reward is highest and, in Fig 2, corresponds to the largest advantage for the
in-group. Region II has lower, but still positive average reward and the in-group has a more
modest advantage here. Finally, region III produces little, if any, rewards. This is consistent
with the lack of a substantial in-group advantage for low E apparent in Fig 2. Interestingly,
because the within-run standard deviation of wealth in the original analysis (see Fig 2A in
SRR) follows roughly the same pattern as the in-group advantage, it suggests that the in-group
advantage is a significant driver of the variation between agents in a run.

To test the statistical significance of the differences shown in Fig 2, we conduct a one-sample
sign-test, a non-parametric test used to test the null hypothesis that the median of a distribu-
tion is equal to a given value. This test was ideal because the distribution of A§ scores is non-
normal and asymmetric. Our null hypothesis was that the sample median of AE, denoted asn

Average AE Scores (80 runs)

16 016 - 013 017 015 012 008 005 008 .006 003 006 007 004 .004

15 (02 ‘. 017 016 015 007 006 009 005 007 005 004 004 004 .003 0.05
14 (019 . 019 018 009 009 01 012 007 006 008 007 004 005 .005 0.045
13 018 E 02 ‘.012 012 012 009 01 005 006 007 004 006 .004 0.04
12 --- 016 016 012 011 011 01 007 009 007 004 008 .003 0.035
11 012 . 015 018 013 01 009 012 008 005 007 007 006 .003 0.03
10 .- 017 016 016 014 014 011 012 008 009 009 008 006 .006 0.025

Number of Environments

9 019 . 018 02 017 011 01l 011 012 01 008 009 007 004 007
0.02
8 008 -- 014 019 017 015 012 009 01 011 Ol 009 009 01
— 0.015
7 ol m1‘ o ‘ms 018 016 017 014 Ol 014 01 008 Ol 008 Ol
I 0.01
6 014 .. 019 017 016 012 011 014 009 OI 008 009 008 009
0.005
5 017 016 014 013 013 009 01l 009 008 008 008 006 006 007 .006
4 004 007 O1 007 006 007 012 007 009 007 007 007 008 006 009 0
3 002 003 003 003 001 001 002 001 O 003 003 002 001 003 .003 -0.005
2

002 001 O 0 001 001 0 0 0 0 0 002 0 0 0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Agents
Fig 2. Wealth Differences: Average of Ag for 80 runs for all combinations of N in [2,16] and E in [2,16].
doi:10.1371/journal.pone.0158144.g002
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(AE) was less than or equal to zero (Ho: n(A§) < 0). For the vast majority of combinations of N
and E we can reject this null with a significance level of 0.999. Fig 3 above shows the standard
deviations of the scores and Fig 4 shows the results of the one-sample sign-test. The S3 Appen-
dix discusses these figures in more detail.

The robustness of our result that average wealth accumulation is strongly correlated with
group assignment indicates that this binary group assignment algorithm captures some robust
feature of the underlying dynamics of system with endogenous co-adaptation. However, one
could argue that there maybe meaningful finer distinctions among the agents. For example,
why not 3 or more groups, each of which is correlated with a different average wealth accumu-
lation? For that matter, why not N groups, which is the same as putting each agent into his own
group? (A monotonic relation between an agent’s wealth and the time it stopped switching its
strategy would argue in favor of this last assignment, but we have found no evidence of this
simple monotonicity.) Indeed, these may be useful starting points for analysis, but in this paper
we restrict our discussion to the simple binary group assignment, a level of coarseness that has
compellingly identified an important feature of the game.

Our analysis has identified one particular and important pattern present in the emergent
order of the game, but there are many more avenues one could explore; do the relative sizes of
the groups vary systematically? Do long-lived environmental distributions have any particular
kind of characteristics? Are there systematic differences in the distribution of states produced by
the two groups? Rather than turn to these other interesting questions like these, we now discuss
in more detail the origins and robustness of the groups and the in-group’s earning advantages.

Discussion and Conclusion

In this paper we have shown that agents in the stigmergy game naturally fall into two groups
for a wide range of model parameters: the first, the in-group, consists of agents who settle on a
strategy relatively early in the game; the second, the out-group, consists of all other agents who
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Fig 3. SD of Wealth Differences. For all combinations of N in [2,16] and E in [2,16], the standard deviation of
the 80 Ag scores.

doi:10.1371/journal.pone.0158144.g003
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Fig 4. One-Sample Sign-test Results. For all combinations of N in [2,16] and E in [2,16], the significance
with which we can reject the hypothesis that the median value of A¢ is equal to zero.

doi:10.1371/journal.pone.0158144.g004

continue to switch their strategies well into the course of the run. Importantly, the functional
relevance of these groups is seen in the fact that members of the in-group consistently earn
higher rewards than do the members of the out-group and this is the chief feature that distin-
guishes the groups. This result has a number of implications and raises several interesting
questions.

First, it is striking that those agents who do better are the ones who have ceased to change
their strategies. This is a consequence of the endogenous way the environment is structured
and the stigmergic signaling among the agents. When an agent consistently plays one strategy,
it creates a predictable environmental signal and will therefore have stronger influence on the
structure of the environment than otherwise. Thus, from the point of view of emergent coordi-
nation, an agent with consistent responses to environmental signals will be more easily “read”
by other agents and it will thus be easier to develop cooperative behaviors that benefit these
behaviorally stable agents. This result is not necessarily what one would have expected. After
all, even late in the game, continuing to adapt should allow agents to better respond to the dis-
tribution of environmental states. But this intuition that the more adaptive agents should be
the better performers might only make sense in the context of an environment that is not pri-
marily generated endogenously. If changes to the environment are primarily produced exoge-
nously, then, indeed, the most agile agents generally should be the ones best able to adapt to
the changing environment. That intuition, however, is not borne out when agents are able to
form tacit groups whose behaviors materially affect the structure of the environment itself.

The result that members of the in-group do better than members of the out-group also
raises the question of whether there is something intrinsic in the strategies of in-group
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members that results in better performance, or if that better performance is arbitrary or other-
wise depends on the complex dynamics of endogenous co-adaptation. We address this ques-
tion in S4 and S5 Appendices by analyzing the respective roles of agents’ strategies and the
order in which agents act in producing the outcomes we observe. We find that the outcomes
are not exclusively a consequence of the agents’ strategies—what we call an “endowment
effect”—because the game is path dependent in so far as changing the order in which agents act
leads to different outcomes. To show this we perform several runs with the same sets of strate-
gies for the individual agents but different sequences of agent moves. We find different out-
comes among runs in terms of average wealth, environmental entropy, agent group
assignments, and wealth difference between the in-group and the out-group of the run,
although within each run the qualitative structure of game remains; namely, the in-group gen-
erally does better than the out-group regardless of the composition of the group. (See the S4
Appendix for the details of the analysis.) This evidence does not preclude features of the strate-
gies playing a role in outcomes, but it does show that the dynamics of interaction are path
dependent and play a central role in the final outcome of the game. Thus, the above finding
that those agents who settle on a strategy earlier receive benefits at a higher rate than others is
primarily a claim about the dynamics of coordination and niche construction and not about
the nature of the agents themselves. That said, there is a correlation between the nature of an
agent's strategies and the likelihood that that agent will be a member of the in-group. Some
agents are much more likely to belong to one or the other group than one would expect if the
group assignments were random. This finding is discussed in the S5 Appendix. Taken together,
these two results highlight the fascinatingly complex nature of the dynamics of the stigmergy
game.

There may also be implications of our work for the ecological stability of a system. Systems
with endogenous co-adaptation may have very different responses to exogenous shocks than
those in which the structure of the environment is largely immune to the actions of the agents.
In the case in which agents’ actions do not materially affect the environment, the response to
an exogenous change in the environment will not involve any feedback to the environment
itself. However, in situations in which agents’ actions materially affect the environment (and to
which the stigmergy game is applicable) there is an additional dynamic that may try to”heal”
the environment. One might suppose that this additional “healing” dynamic would help agents
to respond better to an exogenous shock to the environment, therefore rendering the overall
system behavior more robust. But that is far from clear. Understanding robustness and ecologi-
cal stability in light of such endogeneity is an important goal given how many adaptive systems
include it.

Finally, while there are relatively few systems for which stigmergy is the exclusive mecha-
nism of communication, it is clearly an important mode of communication among co-adapting
agents in a large variety of systems. This has implications for much of the research on complex
adaptive systems, and for work on inter-agent communication, particularly in the context of
networks. While recent work on networks has provided many important insights, for many
systems, an exclusively network-based analysis of inter-agent communication and interaction
may not be the most appropriate and convenient one, since it draws attention away from the
more diffuse and less specific information that enables stigmergic co-adaptation.

In the context of a game in which the environment is endogenously produced and there is
only stigmergic communication among the co-adaptive agents, we have shown that there is an
intrinsic dynamic that generates two groups, and that the in-group does better at amassing
resources than does the out-group. This differentiation is not directly attributable to differences
between agents' strategies and is largely the result of fortuitous happenstance (although we did
find evidence that some agents do tend to end up in one of the groups more often than random
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assignment would predict). These intriguing insights only underline the need for a fuller
understanding of how endogenous co-adaptation proceeds. Insofar as endogenous molding of
the environment and stigmergic feedback is common in complex adaptive systems, this is an
important dynamic that requires more extensive study.
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