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Abstract
On urban arterials, travel time estimation is challenging especially from various data

sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time

is a troublesome issue while considering the data issue of uncertain, imprecise and even

conflicting. In this paper, we propose an improved data fusing methodology for link travel

time estimation. Link travel times are simultaneously pre-estimated using loop detector data

and probe vehicle data, based on which Bayesian fusion is then applied to fuse the esti-

mated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian

fusion by incorporating two strategies: 1) substitution strategy which replaces the lower

accurate travel time estimation from one sensor with the current fused travel time; and 2)

specially-designed conditions for convergence which restrict the estimated travel time in a

reasonable range. The estimation results show that, the proposed method outperforms

probe vehicle data based method, loop detector based method and single Bayesian fusion,

and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian

estimation performs better for lighter traffic flows when the variability of travel time is practi-

cally higher than other periods.

Introduction
Travel time, which is well understood by both traffic engineers and the public, is one of the
most important measures for accessing the operating efficiency of a traffic system. Travel time
estimation in urban arterials is a challenging subject because urban traffic flow is affected by
lots of uncertain factors (driving behaviours, weather conditions, incidents, etc.) and inter-
rupted periodically by traffic signals [1–4].

Traditionally, Loop detector data (e.g. volume, speed or occupancy) are widely used to esti-
mate urban link travel times [5–9]. As a mature traffic data collection method, loop detectors
continuously provide relatively accurate and reliable traffic information on fixed points of

PLOSONE | DOI:10.1371/journal.pone.0158123 June 30, 2016 1 / 12

a11111

OPEN ACCESS

Citation: Liu K, Cui M-Y, Cao P, Wang J-B (2016)
Iterative Bayesian Estimation of Travel Times on
Urban Arterials: Fusing Loop Detector and Probe
Vehicle Data. PLoS ONE 11(6): e0158123.
doi:10.1371/journal.pone.0158123

Editor: Tieqiao Tang, Beihang University, CHINA

Received: April 9, 2016

Accepted: June 12, 2016

Published: June 30, 2016

Copyright: © 2016 Liu et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by the National
Natural Science Foundation of China (51008050,
51378091), http://www.nsfc.gov.cn/; the Scientific
Research Foundation for the Returned Overseas
Chinese Scholars, State Education Ministry; and the
Fundamental Research Funds for the Central
Universities (DUT12ZD203, DUT15QY14). The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0158123&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nsfc.gov.cn/


roads. Recent years estimating travel time from probe vehicle data has attracted increasing
attentions of researchers [9–12]. A major reason is that single vehicle travel time can be directly
calculated from probe data with higher polling frequency. However, subject to the low penetra-
tion ratio, low polling frequency and limited types of probe vehicles, it is still difficult to accu-
rately estimate arterial travel time from the single type of probe vehicle data [13, 14]. Based on
these facts, data fusion becomes a more realistic direction for estimating accurate and reliable
travel time on urban arterials [15–18].

The traffic condition estimated from individual sensors may be incomplete, inconsistent or/
and imprecise. Additional data sources may provide complementary information on traffic,
and fusion of different information is potential to produce a better understanding of the actual
traffic condition, by decreasing the uncertainty related to the single source [18].

The objective of this research is to provide a practical fusing method with higher reliability
for traffic condition estimation. This paper attempts to address some practical issues in data
fusion: 1) information from both loop data and probe data may be uncertain, imprecise and
even conflicting, 2) neither loop detector data nor probe data is stable in performance, and 3)
information about which data performs better is unavailable.

The remaining of this paper is organized as follows. Chapter 2 reviews the widely used
fusion methods and sums up some unresolved issues. Chapter 3 details the proposed method-
ology, followed by the performance evaluation with data derived from VISSIM simulation in
Chapter 4. In the final section, some conclusions and future research are discussed.

Literature Review
Travel time estimation is a popular topic and has been studied for many years. In this section,
we make an in-depth review on researches mostly related to this paper. A systematic review
can be referred in [19].

The objective of data fusion in the field of advanced transportation information system
(ATIS) is to develop better performed estimation on a system from kinds of independent data
sources. In order to provide more reliable traffic information efficiently, fusing the stationary
sensor data and mobile probe data is perceived as a well-adapted choice for satisfying the oper-
ational needs of traffic operators and traffic information centres [20].

The accuracy of fused link travel time had been proved to be superior to single loop detector
data and probe vehicle data, Choi and Chung introduced an algorithm in detail on the proba-
bility inference for fusing loop detector data and probe vehicle data [21], their milestone work
put forward a lot of successful researches with various focus on methodology, objectives and
applications.

An optimal fusion method would be able to make full use of the useful information from
these two types of data sources [20]. It is well known that there is a strong complementarity
between these two types of data. On the one hand, continuous loop detector data can make up
for the lack of probe data in time intervals when probe vehicles are not observed. On the other
hand, wide coverage probe data can provide traffic information for areas where loop detectors
are not installed.

Data fusion approaches in link travel time estimation are proposed for various types of data
where different uncertainty may be observed. Some fusion techniques for handing biases of
various kinds are developed, through simulation [9] or experimental research [15, 20–23].

Among all the fusion techniques, three mainly groups are widely used, namely statistical
models (such like weighted mean, Bayes fusion, and so on), the analytical model (such like evi-
dence theory), and data-driven model (such like learning machine, Fuzzy logic, artificial neural
networks). However, there is no evidence that if the data source is incomplete, inconsistent or/
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and imprecise, none of above methods could deal with the travel time estimation of arterial
links with signal intersections very well. For example, when using the method of weighted
mean, actually various data active differently during different situations due to unstable errors
and uncertainties, the weights, reflection of reliability of data source, could not be pre-deter-
mined. Thus, Choi and Chung stated that the fusion algorithm should be tested and calibrated
for different traffic conditions [21].

Moreover, traditionally data fusion methods deal with the objective of yielding a single
probability distribution of link travel times, from which more reliable inference can be made,
while the travel time distribution of links in urban network with intersections is actually multi-
modal distribution, rather than any kind of unimodal distribution, due to the signal control at
intersections and diversities in following speeds among groups with different driving habits.
Furthermore, the common statistical period for link travel time estimate, such as 5 minutes in
most cases, cannot always cover several whole signal cycles, and therefore leads to great obser-
vation bias, which contributes significantly to the estimation errors if considering the time
sequence and do harm to the later step of data fusion [24].

Zheng and Van Zuylen stated that in different traffic condition the arrival patterns lead to
absolute different influence on delays distribution at signal intersections [25], because the
uncertainty induced by both traffic conditions and traffic control at intersections become more
complicated. Based on the kinematic wave theory and variational theory, Mehran et al. pro-
posed a method to obtain more accurate link travel times by reconstructing vehicle trajectories
combining traffic data from fixed and probe detectors according to traffic flow principles [26].
However, relative higher polling frequency of probe data is required to reproduce the time-
space trajectory, which is not always available in practice [13]. The mechanism of dealing with
uncertainty in link travel time estimation is not well addressed in previous studies. There is a
gap between understanding the travel time uncertainty and the estimation method which need
to be self-adaption from various data.

Methodology

Travel time estimation from loop detector data
Single or dual loop detectors continuously detect the passing of vehicles through a short seg-
ment of a road. Loop detector data include volume, speed and occupancy. Many models have
been presented to estimate travel times based on loop detector data. Although some integrated
Bayesian models [27, 28] may improve estimation, these statistical models cannot always
dynamically measure the variability of delay at signalized intersections [25]. In the latest High-
way Capacity Manual [8], a practical methodology is presented to estimate travel times on
urban streets. We briefly summarise this method as follows and employ it in this study.

We denote the travel time derived from loop detector data by tloop. The travel time on a
urban road link consists of two components:

tloop ¼ tf þ dc ð1Þ

where tf is the average free-flow travel time, dc is the control delay associated with vehicles
slowing in advance of an intersection.

Assuming that sf, average instantaneous speed, was the average running speed for the link,
then tf could be expressed as:

tf ¼ L=sf ð2Þ

where L is the length of the link.
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Assuming no lanes has an initial queue on the analysis road, then the control delay is com-
puted as [8]:

dc ¼ d1 þ d2 ð3Þ

d1 ¼
0:5Cð1� g

C
Þ2

1� ½minð1;XÞg=C� ð4Þ

d2 ¼ 900tðX � 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX � 1Þ2 þ 8gaX

ct

r
ð5Þ

with X = q/c
where
d1 = uniform control delay,
d2 = incremental delay,
C = cycle length (s),
g = effective green time (s),
X = volume-to-capacity ratio,
τ = analysis time period (s),
c = capacity (veh/h),
q = demand flow rate,
γ = incremental delay factor, and
α = upstream filtering adjustment factor.

Travel time estimation from probe vehicle data
Probe vehicle, also known as floating car, is a vehicle equipped a recording device receiving sig-
nals from GPS or antenna (GPS-based or cellular phone-based) and can provide series of
points with information time stamp, speed and location etc. along the vehicle trajectories [11,
29]. In general, estimating link travel time from probe vehicle data involves at least two steps:
1) decomposing travel times measured by probe vehicle into individual links; 2) estimating link
travel time from the decomposed link travel times of probe vehicles [9, 30, 31]. However, the
accuracy of decomposed link travel times is unstable because of randomly stop-and-go behav-
iors of vehicles and GPS data deviation in urban roads [13]. Sanwal and Walrand proposed an
improved travel time estimate by applying an adaptive exponential smoothing (AES) method
[23].

We denote the estimated link travel time from probe vehicle data in the kth time interval by
tprobe(k). Assume that n(k) probe vehicles are observed in the same time interval, and the
decomposed link travel time of the mth probe vehicle is tm, then tprobe(k) can be calculated as a
weighted average:

tprobeðkÞ ¼ tprobeðk� 1Þ þ aðkÞ 1

nðkÞ
PnðkÞ

m¼1t
m

� �
� tprobeðk� 1Þ

� �
ð6Þ

where α(k) represents the dependence of link travel time on time, α(k) is determined by mini-
mizing the mean squared estimation error ek.
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Assume the estimation error ek is normally distributed with mean of 0, α(k) can be derived
as

aðkÞ ¼ nðkÞ
1þ nðkÞ �

���� Ek

Ak

���� ð7Þ

where Ek is the smoothing error, and Ak is the absolute smoothing error.
Ek and Ak follow the equations:

Ek ¼ r � ek þ ð1� rÞ � Ek�1 ð8Þ

Ak ¼ r � jekj þ ð1� rÞ � Ak�1 ð9Þ
where r is the weight coefficient.

r ¼ nðkÞ
nðkÞ þ 1

ð10Þ

ek ¼
1

nðkÞ
PnðkÞ

m¼1t
m

� �
� tprobeðk� 1Þ ð11Þ

In AES method, the continuity of traffic flow is considered in term of the dependence of link
travel time on time. It should be note that, for time interval when no probe vehicle is observed,

i.e. n(k) = 0, the estimated travel time t̂ðkÞ equals to the estimate on previous time interval

t̂ðk� 1Þ. This feature of AES method can guarantee the continuity of estimates among adja-
cent time intervals.

Bayesian fusion
The Bayesian fusion applies the theory of probabilities with the Bayesian framework. Within
this approach, the source/sensor evidence is represented probabilistically and Bayes’ rule is
used to perform fusion process [32], which could improve the estimation when data are uncer-
tain, imprecise and conflicting [33]. In our problem, two sensors are loop detector and probe
vehicle, respectively. With the measured data set {tloop, tprobe}, the probability of fused link
travel time μ conditioned on the measured data set can be given as:

Pðmjtloop; tprobeÞ ¼
Pðm; tloop; tprobeÞ
Pðtloop; tprobeÞ

ð12Þ

Assume that μ, tloop and tprobe follow normal distributions Nðm0; s
2
0Þ, Nðm; s2

loopÞ and
Nðm; s2

probeÞ, respectively. And then P(μ|tloop, tprobe) can be given as:

Pðmjtloop; tprobeÞ ¼ bexp � 1

2

tloop � m

sloop

 !2

þ tprobe � m

sprobe

 !2

þ m� m0

s0

� 	2
" #( )

� 1

2psloopsprobe

ð13Þ

As we can see, the exponential part of P(μ|tloop, tprobe) is a quadratic function of μ, thus μ|
tloop, tprobe also follows a normal distribution represented by NðmN ; s

2
NÞ. And then P(μ|tloop,
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tprobe) can also be given as:

Pðmjtloop; tprobeÞ ¼
1ffiffiffiffiffiffi
2p

p
sN

exp � 1

2

m� mN

sN

� 	2
( )

ð14Þ

A comparison of the parameters of formulas (13), (14) shows that:

mN ¼
tloop
s2
loop

þ tprobe
s2
probe

þ m0
s2
0

1
s2
loop

þ 1
s2
probe

þ 1
s2
0

ð15Þ

Finally, the Bayesian estimation of μ is calculated as:

m̂ ¼ R OmPðmjtloop; tprobeÞdm ¼ mN ð16Þ

Thus μN can be considered as the Bayesian estimation of μ. And we use μN to represent m̂ in
subsequent contents.

Iterative estimation
In practice data sources might provide uncertain or imprecise information. For instance, some-
times there are few probe vehicles observed on a link of interest during certain time interval. In
this case, travel time estimated from probe vehicle data is probably biased, and fusing this
information would possibly not only fail to improve the estimate, but reduce the estimation
accuracy. Therefore, we develop an iterative estimation scheme to improve Bayesian fusion.
The basic idea is that, the Bayesian fusion is implemented iteratively, and at each iteration the
fused link travel time is substituted for the worse estimation until conditions for convergence
are satisfied. The proposed scheme is called iterative Bayesian estimation, depicted in Fig 1.

The iterative Bayesian estimation consists of three main parts: Bayesian fusion, substitution
and convergence test. The former one is the core, and it can also be regarded as normal Bayes-
ian estimation when iteration is 0, while the latter two are crucial for the estimation accuracy.

Substitution. The substitution strategy aims to improve the Bayesian fusion through
replace the lowest accurate travel time measured by one sensor with the current fused travel
time. However, it is difficult to access the real accuracy of measured travel time, since the real
travel time is unknown. For this reason, we develop an alternative method of accuracy mea-
surement from two aspects. First, travel times estimated from historical probe vehicle data
using Eq (6) are treated as the reference. In particular, probe vehicle data are accumulated in
the same time interval of a day from the last two months, with separated workday and week-
end. This treatment is based on the fact that there is high similarity for traffic patterns in the
same time of similar days for a period of time. Second, the estimation time interval is divided
into several identical time windows, and then the calculation of travel time evolves with time
windows. For instance, if the estimation time interval is 15 mins and time window is 5 mins,
and then the calculation of reference and measured travel time would be conducted every 5
mins for the estimation time interval from 0 to 15 mins (see Fig 2).

Suppose tij is the measured travel time from the ith sensor in the jth time window, and ~t j is

the reference travel time from historical probe vehicle data in the jth time window, k is the
number of sensors,m is the number of time windows in one estimation time interval, then we
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use Euclidean distance to access the accuracy of measured travel time:

Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

j ðtij � ~t jÞ2
q

for i equals 1 to k ð17Þ

Therefore, the measured travel time with the maximum Euclidean distance to the reference
travel time is of the lowest accuracy, and will be substituted for the current fused travel time in
Bayesian fusion at next iteration.

Convergence test. Conditions for convergence not only determine the termination of itera-
tive program, but also are significant for the accuracy of the final estimation results. In order to
get reasonable estimates, we define a condition for convergence based on travel time distribution
from historical probe vehicle data. Generally, there are two typical kinds of link travel time distri-
bution for urban arterials: unimodal (see Fig 3(A)) and bimodal (see Fig 3(B)). Data of Fig 3 are
accumulated in 5-mimute interval from probe vehicle data in 30 days. In Fig 3(A), the unique
peak occurs when link travel time is around 120 seconds. Whereas, in Fig 3(B), one peak occurs
around 92 seconds and the other peak occurs around 117 seconds. These figures represent con-
stant patterns of travel time distribution in two different links in an urban network. Thus, the
estimated travel time would also follow the historical traffic pattern as long as no incident occurs.

Fig 1. Flow chart of the iterative Bayesian estimation.

doi:10.1371/journal.pone.0158123.g001
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Therefore, the reasonable ranges of travel time can be determined by setting confidence level be
95%, based on the fitted curve from historical probe data (red curve in Fig 3).

If the fused travel time fall into the defined range, exit the iteration, and the fused travel
time is the estimated travel time. If not, make substitution and enter the next iteration. How-
ever, this way would probably encounter a problem of endless loop. This problem occurs when
the fused travel time is of very low accuracy because of few probe vehicles observed. For this
reason, we add a second condition for convergence: relative error between fused times at two
sequent iterations. If it is less than 0.1, the travel time with the highest probability in historical
distribution as in Fig 3 is used as the final estimation result, and then the program terminates.
The reason of this treatment is that, when the fused travel time is out of the reasonable range,
historical information would be more credible than the fused travel time.

Case Study
We develop a test network in VISSIM to access the performances of the iteration Bayesian Esti-
mation. The test network consists of 18 links and 8 intersections as in Fig 4. To simulate the
real urban arterials, we choose 10 links in middle of this network as study links. The length of
study links range from 600 m to 1000 m. Traffic flow on all links is controlled by traffic signals
with cycle time of 120s, and signal timings are shown in Fig 4, where the intersection 1, 2, 7
and 8 use signal timing 1 and the intersection 3, 4, 5 and 6 use signal timing 2. The penetration
rate of probe vehicles is assumed to be 5%, and a probe vehicle records its position every 30s.
According to our preliminary experiments, installing loop detectors in the middle of links

Fig 2. An example of estimation time interval and time window.

doi:10.1371/journal.pone.0158123.g002

Fig 3. Empirical distributions of link travel time. a. An unimodal travel time distribution; b. An bimodal travel time
distribution.

doi:10.1371/journal.pone.0158123.g003
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would provide better information for travel time estimation [34]. Therefore, every loop detec-
tor is set in the middle of each link. The total simulation time is 3 hours and 10 minutes from
6:50–10:00 am. The study time of 7:00–10:00 am is separated into three intervals depending on
the input flow rates from entrance arterial and branch separately: before peak hour with
800pcu/h and 500pcu/h; peak hour with 1500pcu/h and 800pcu/h; after peak hour with
1000pcu/h and 600pcu/h.

Link travel time is estimated for each link in each time interval of 5 minutes, and the confi-
dence level is set 95%. In order to access the estimation accuracy, we calculate the mean abso-
lute percentage error (MAPE) for each link as:

MAPE ¼ 1

N

PN
i¼1

jT̂ i � Tij
Ti

ð18Þ

where T̂ i, Ti are the estimated and true travel time for the ith time interval, respectively, and N
is the number of estimation time interval.

Lower value of MAPE means higher estimation accuracy. Link travel times are estimated
using four methods presented in the section of methodology: probe vehicle based, loop detector
based, Bayesian fusion, and iterative Bayesian fusion. The MAPEs of the estimated link travel
times are calculated and demonstrated in Fig 5.

Fig 4. Study network.

doi:10.1371/journal.pone.0158123.g004

Fig 5. Comparison of various travel time estimationmethods.

doi:10.1371/journal.pone.0158123.g005
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As we can see, the MAPEs of iteration Bayesian estimation for all links are the smallest
among all four methods. This indicates that iteration Bayesian estimation outperforms the
other three methods. We can also see, Bayesian fusion doesn’t always perform better than
probe vehicle based method and loop detector based method, indeed it makes a certain amount
of compromise between the latter two. This conforms that Bayesian fusion is capable to use the
complementarity characteristic of two source data, but is unable to treat source data with vari-
ous accuracies differently. This shortage of Bayesian fusion is covered by the proposed iteration
scheme. Another observation is that the MAPEs of probe vehicle based method are larger than
that of loop detector based method for most links, which means that 5% of probe vehicles
might include much more uncertain information than loop detectors. Last but not least are the
improvement of iteration Bayesian estimation comparing to the other three methods. The
average MAPEs of various methods are: 15.5% for probe vehicle based; 10.8% for loop detector
based; 10.5% for Bayesian fusion; and 4.8% for iteration Bayesian estimation. This means that
iteration Bayesian estimation improves the travel time estimation accuracy by 10.7% compared
with probe vehicle based method; 6.0% compared with loop detector based method; 5.7% com-
pared with Bayesian fusion.

In order to analyse the effect of confidence level (CF) on the estimation accuracy, we imple-
ment iteration Bayesian estimation by setting three confidence levels: 95%, 90% and 85%, and
calculate the MAPEs for each link (Table 1). It is observed that CF indeed have impacts on the
estimation accuracy, with the MAPEs for each link increase with lower CF. However, it doesn’t
mean that the higher CF the result is better, since higher CF means larger reasonable range for
the fused travel time and consequently worse fused travel time will be accepted as the estimate
travel time.

We also calculate the average MAPE of all links for various time periods with different traf-
fic conditions (Table 2). As we can see, the MAPE value is the smallest for traffic condition
before peak hour and the largest for that during peak hour. That is to say, iterative Bayesian
estimation performs better for lighter traffic flows when the variability of travel time is practi-
cally higher than other periods.

Conclusions
Fusing loop detector data and probe vehicle data to estimate link travel time is one important
issue considering the uncertain, imprecise and even conflicting in single data source. Up to
now, there is not much research having solved this issue well. The difficulty lies in that, on one
hand point-based loop detector data doesn’t directly include information of travel time, on the
other hand space-based probe vehicle data is of low penetration and polling frequency. In this
paper, an iterative Bayesian estimation method is proposed to estimate link travel time from

Table 1. Values of MAPE for various confidence levels.

Link ID 1 2 3 4 5 6 7 8 9 10 Average

CF = 95% 8.9 9.6 2.8 2.7 5.9 3.6 2.4 5.3 2.2 4.7 4.8

CF = 90% 9.3 11.6 2.8 3.0 5.9 3.6 3.1 8.4 2.7 4.7 5.5

CF = 85% 10.3 12.0 3.1 4.1 5.9 3.6 3.7 10.3 4.0 4.7 6.2

doi:10.1371/journal.pone.0158123.t001

Table 2. Average MAPE of all links for various traffic flow rates.

Time period Before peak hour Peak hour After peak hour

MAPE (%) 2.9 5.9 3.6

doi:10.1371/journal.pone.0158123.t002
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both loop detector and probe vehicle data. The results show that the proposed method outper-
forms probe vehicle data based method, loop detector based method and single Bayesian
fusion, and the mean absolute percentage error is reduced to 4.8%. This improvement benefits
from the substitution strategy, the moving estimation time intervals and the design of condi-
tions for convergence in the iterative scheme, which take into account the information from
historical probe vehicle data. The proposed method can also give a reasonable estimate even if
there are few probe vehicles observed.

Although the proposed method of iterative Bayesian estimation performs well in the test
simulation network, the actual performance should be evaluated in real network where traffic
is much more complex. The travel time distribution estimated from historical probe vehicle
data is applied in the proposed method. If traffic pattern changes, the credibility of the histori-
cal travel time distribution will decrease, and consequently the estimation accuracy will reduce.
Future studies should address these issues.
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