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Abstract

In order to better understand inflammation associated with influenza virus infection, we
measured cell trafficking, via flow cytometry, to various tissues in the ferret model following
infection with an A(H3N2) human seasonal influenza virus (A/Perth/16/2009). Changes in
immune cells were observed in the blood, bronchoalveolar lavage fluid, and spleen, as well
as lymph nodes associated with the site of infection or distant from the respiratory system.
Nevertheless clinical symptoms were mild, with circulating leukocytes exhibiting rapid,
dynamic, and profound changes in response to infection. Each of the biological compart-
ments examined responded differently to influenza infection. Two days after infection, when
infected ferrets showed peak fever, a marked, transient lymphopenia and granulocytosis
were apparent in all infected animals. Both draining and distal lymph nodes demonstrated
significant accumulation of T cells, B cells, and granulocytes at days 2 and 5 post-infection.
CD8+ T cells significantly increased in spleen at days 2 and 5 post-infection; CD4+ T cells,
B cells and granulocytes significantly increased at day 5. We interpret our findings as show-
ing that lymphocytes exit the peripheral blood and differentially home to lymph nodes and
tissues based on cell type and proximity to the site of infection. Monitoring leukocyte homing
and trafficking will aid in providing a more detailed view of the inflammatory impact of influ-
enza virus infection.

Introduction

Influenza A viruses are common human respiratory pathogens causing significant morbidity
and mortality worldwide [1-3]. Seasonal human influenza viruses, including A(H3N2) and
2009 pandemic A(HIN1)pdm09, usually target the upper respiratory tract. In most cases, these
upper respiratory tract infections are cleared and the individual develops immunity to the spe-
cific strain of virus, although antigenic variants may escape this immunity through antigenic
drift to infect the same person in subsequent years. The disease is occasionally severe, either
when influenza infection predisposes patients to secondary infection with bacteria which rarely
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cause serious infections alone, or when the influenza virus spreads to the lower respiratory
tract and virus alone leads to localized or systemic inflammation and severe disease [4-6].

Inflammation and leukocyte trafficking go hand in hand [7]. Indeed, much of the recent
anti-inflammatory drug development has focused on trafficking molecules and control of leu-
kocyte trafficking as a means of dampening inflammation [7, 8]. Inflammation associated with
influenza infection has been extensively studied in mice [9-11]. In humans, however, it is less
well understood. Small animal models for influenza infection include mice, guinea pigs, and
ferrets. In contrast to mice and guinea pigs, human and avian influenza viruses replicate effi-
ciently in the respiratory tract of ferrets without prior adaptation, and in general the course of
infection in ferrets is very similar to that in humans. The ferret is therefore considered the most
suitable small animal model for influenza virus infection and vaccine protection studies [12-
14]. One major disadvantage of the ferret model of influenza virus infection and immunity,
however, is the paucity of ferret-specific reagents available for analysis of the response. In par-
ticular, identification of leukocyte subsets has been difficult, making it challenging to analyze
the inflammatory response to infection. Migration of immune cells between compartments in
response to inflammatory mediators is critical for establishing effective T and B cell mediated
immune responses, and creating adaptive immune memory as protection against further infec-
tion [15-17]. We recently adapted and extended previous findings in order to track ferret
peripheral blood leukocyte (PBL) subsets on a daily basis following seasonal influenza virus
infection [18]. We found that, even though clinical symptoms were mild as previously reported
[19-21], leukocyte subsets in peripheral blood showed rapid, dynamic, and profound changes
in response to infection, with a marked transient lymphopenia and moderate granulocytosis
early in the infection followed by a gradual recovery to normal leukocyte values over about 7
days [18]. The mechanisms causing changes in peripheral leukocyte numbers were not clear.
Since we only examined peripheral blood, migration into the respiratory tract [21] or lymphoid
tissues seemed likely to account for at least part of the loss of lymphocytes. To gain a better
understanding of inflammation associated with influenza infection and protection afforded by
cell-mediated immunity, we conducted an analysis of leukocyte subsets in tissues, as well as
peripheral blood, following influenza infection using the ferret model.

Methods and Materials
Ethics Statement

This study was carried out in strict accordance with the Animal Welfare Act regulations of the
United States Department of Agriculture and Public Health Service Policy on Humane Care
and Use of Laboratory Animals administered by the National Institutes of Health. All animal
research was conducted under a Centers for Disease Control and Prevention’s Institutional
Animal Care and Use Committee approved protocol. Animal welfare was monitored on a daily
basis, and all animal handling was performed under light anesthesia (as described below); all
efforts were made to minimize suffering. Humane endpoints for this study included the presen-
tation of body weight loss exceeding 20% (relative to weight at challenge), indications of neuro-
logical symptoms, or a clinical score of 3 in any category based on the system designed by
Reuman et al [22]. However, none of the animals in this study met those criteria.

Virus

Virus stocks for influenza A(H3N2), A/Perth/16/09 (Perth/16), were propagated in the allan-
toic cavity of 10 day-old fertile white embryonated chicken eggs (Hy-line, Mansfield, GA) at
34°C for 48h. Virus containing allantoic fluid was harvested, aliquoted and frozen at —80°C
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until usage in experiments. Stocks were titrated in a standard plaque assay and expressed as
plaque forming units (pfu) [23] using Madin-Darby Canine Kidney (MDCK) cells.

Ferrets, samples, and viral challenge

Male Fitch ferrets, approximately 6 months of age (Triple F Farms, Sayre, PA), serologically
negative by hemagglutination inhibition (HI) assay for currently circulating human influenza
H1, H3 and type B viruses, were used in this study. Prior to initiation of the studies, all ferrets
were evaluated by a licensed veterinarian and determined to be in good health and free from
malformations and signs of clinical disease. During the 14 day quarantine period, animals were
randomized by weight into groups. Body temperatures were measured using an implantable
subcutaneous temperature transponder (BioMedic Data Systems, Inc., Seaford, DE). Baseline
weights and temperatures were obtained for three consecutive days prior to challenge and on
day 0 (the day of challenge).

The experimental design is outlined in Fig 1. Groups of 8 ferrets were infected intranasally
with 1 x 10° pfu of Perth/16 diluted in 0.5 ml of sterile phosphate-buffered saline (PBS), or
groups of 4 to 6 ferrets were mock infected with 0.5 ml of a similar dilution of sterile egg allan-
toic fluid. The experiment was repeated three times with a total of 24 virus infected and 14
mock infected ferrets; 1 infected ferret was discovered to have advanced lymphoma upon nec-
ropsy and all data from that ferret was removed from analysis.

Following viral challenge, ferrets were monitored for changes in body weight and tempera-
ture as well as clinical signs of illness (sneezing, lethargy, nasal discharge, diarrhea and neuro-
logical dysfunction) on a daily basis until the end of the study. Blood samples were collected
daily as previously described [18]. Briefly, animals were anesthetized with ketamine/xylazine,
and blood samples of 200-250 pl were taken from the cranial vena cava [24] from day 0 to the
end of the experiment. For virus titration, nasal washes were collected daily, as described previ-
ously [14].

All ferrets were euthanized either on day 2 (4 Perth/16 infected ferrets) or day 5 post-chal-
lenge (4 Perth/16 infected and all mock infected ferrets). These days were chosen since PBL
changes were at their maximum levels on day 2, followed by a second smaller peak on day 5
[18]. Selected tissues were collected for screening of immune cell migration in response to
influenza infection. In addition, viral titers were determined in tissues from euthanized ferrets.
Nasal turbinates, bronchoalveolar lavage fluids (BALF) and trachea (upper and lower regions)
were collected at days 2 and 5 post-challenge (Fig 1). Nasal turbinates and trachea were har-
vested, weighed, and homogenized in 1ml of cold PBS. The material was clarified by centrifuga-
tion (700xg for 10 min, at 4°C) and the supernatant used for virus quantification. Virus titers
were determined by a plaque assay in MDCK cells and expressed as log10 pfu in 1 ml of nasal
wash or BALF; or 1 g of tissue sample.

Purification of cells from whole blood, BALF, Lymph Nodes and Spleen

Peripheral blood leukocytes (PBLs) were purified as previously described [18] by hypotonic
lysis of red blood cells using erythrocyte lysing solution (0.15 M NH,CI, 10 mM KHCO3, and
1mM EDTA pH 7.3).

BALF was collected after euthanasia as previously described [25, 26] with some modifica-
tions. The chest cavity was opened to expose the lungs and an incision was made to expose the
trachea. The trachea was cut approximately in the middle of its length (~ 5 cm before the bifur-
cation of the bronchi) and clamped, after which the entire respiratory tract was carefully
removed with the heart. Sterile PBS (5 ml) containing BSA was infused slowly down the trachea
into the lung. The lungs were gently massaged and inverted, and fluid was allowed to drip back
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Fig 1. Experimental protocol. Male Fitch ferrets (Mustela putorius furo), approximately 6 months of age were used
in this study. Groups of 8 ferrets were infected intranasally with 1 x 108 pfu of A/Perth/16/09, or groups of 4 to 6
ferrets were mock infected. Baseline weights and temperatures were obtained for the three consecutive days prior
to challenge and on day O (the day of challenge). Following challenge, ferrets were monitored for change in body
weight and temperature as well as clinical signs of illness on a daily basis for 5 days. Blood samples were collected
for Flow Cytometry (days 0-5) and serum collected (days 0, 2 and 5) to asses antibody responses (HI assays). All
ferrets were euthanized on day 2 (4 Perth/16-infected ferrets) or day 5 post-challenge (4 Perth/16-infected and all
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mock-infected ferrets). Viral titers were determined from nasal washes (days 0-5) nasal turbinates (days 2 and 5),
BALF (days 2 and 5) and trachea (upper and lower regions; days 2 and 5). Leukocyte purification was performed
from peripheral blood (days 0-5), from lymph nodes (days 2 and 5) and from BALF (days 2 and 5).

doi:10.1371/journal.pone.0157903.g001

through the trachea and collected. Approximately 3 ml of the fluid was recovered and stored
on ice. The cells from lavage fluid were collected following centrifugation (315xg for 10 min, at
4°C). The absolute number of leukocytes from BALF were estimated by dividing the number of
cells collected from the BALF by the volume of liquid recovered, and multiplying by the volume
of liquid delivered (5 ml).

Medial retropharyngeal lymph nodes (MRLN), mediastinal lymph nodes (MdLN), mesen-
teric lymph nodes (MsLN), and spleens were removed from each ferret immediately after
euthanasia. Single-cell suspensions from lymph nodes were made by gently rubbing partially
minced tissues through sterile stainless steel mesh (size 40 micron, Sigma Chemical Co., St
Louis MO) using a 10 ml syringe plunger. Single-cell suspensions from spleens were made by
gently grinding them between two frosted glass slides. Splenocyte cell pellets were suspended in
erythrocyte lysing solution (0.15 M NH,Cl, 10 mM KHCO3, and ImM EDTA pH 7.3) for 6
min at room temperature and then pelleted again by centrifugation. All cell suspensions were
collected, filtered through 70 pm cell strainers (BD Bioscience, San Jose, CA), and pelleted by
centrifugation (315xg for 10 min at 4°C). Cell pellets were washed twice, counted, and sus-
pended in flow buffer for flow cytometry staining.

Flow Cytometry

Flow cytometry assays were performed as previously described [18]. Briefly, cells were blocked
with Fc blocking antibody (Clone 2.4G2, Cat Nu 553142, BD Biosciences, San Jose, CA) and
stained with monoclonal antibodies recognizing ferret CD4 (clone 02 -PE, Sino Biological Inc.,
Beijing, China), or cross-reacting with ferret CD8 (clone OKT8 —eFluor 450, eBioscience, San
Diego, CA), CD11b (clone M1/70 -FITC, eBioscience), anti-MHC class II (clone CAT82A -
unconjugated, Kingfisher Biotech, St. Paul, MN), CD3 (clone PC3/188A -FITC and AlexaFluor
647, Santa Cruz Biotechnology, Santa Cruz, CA), and CD79a (clone HM47 —PerCP-Cy5.5,
eBioscience). The anti-MHC class II antibody was biotinylated (cat# 130-093-385, Miltenyi
Biotec, San Diego, CA) prior to use and detected with streptavidin-eFluor 450 (eBioscience).
Unstained cells and isotype controls (eBioscience, San Diego, CA) were included for all anti-
bodies. Data were acquired using a FACSCanto II flow cytometer (BD Bioscience, San Jose,
CA), and analyzed using Flow]Jo software (Tree Star, Ashland, OR).

Serology

To assess antibody responses, serum was collected prior to infection, on the day of viral chal-
lenge, and 2 and 5 days post-challenge. Sera were stored at -20°C until use. HI assays were per-
formed as previously described [27]. HI titers against influenza A/California/07/2009 (A
(HIN1)pdm09), A/Perth/16/2009, and B/Brisbane/60/2008 viruses were assessed and
expressed as the reciprocal of the highest dilution of the samples inhibiting hemagglutination.

Statistical analysis

The experiments were repeated three times, including a total of 23 influenza infected and 14
mock infected ferrets. Sampling performed on days 2 and 5 were analyzed using Dunnett’s
multiple mean comparison with all comparisons performed against mock infected animals
(Prism; GraphPad Software, Inc., La Jolla, CA). Time-course analyses were calculated using a
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linear mixed model with repeated measures using SAS software (SAS Institute Inc., Cary, NC).
Post-challenge data were analyzed both as separate experiments and as merged data, with very
similar results; figures shown here are from merged data.

Results
Clinical signs after viral challenge

All ferrets were seronegative for influenza viruses before infection, and animals remained sero-
negative by HI to the challenge virus, as well as to currently circulating B, H1 and H3 strains,
throughout the 5-day study (data not shown).

Ferrets mock-infected with diluted, sterile allantoic fluid did not show clinical signs, while
those infected with Perth/16 all showed mild clinical signs of influenza infection (Fig 2A and
2B). Perth/16-infected ferrets exhibited a spike in body temperature two days post-challenge,
followed by a reduction in temperature on days 3-5 post-challenge, showing significantly
lower body temperature than non-infected ferrets (Fig 2A). Perth/16-infected ferrets lost
between 2.5% and 10.3% of body weight (mean maximum weight loss, 6%) (Fig 2B). As previ-
ously shown [18], non-infected animals maintained their body weight and temperature (Fig
2A and 2B) despite daily sedation and blood collection.

Virus replication in the upper respiratory tract was determined by titrating nasal washes.
Peak viral shedding was observed on day 1 or 2 post-challenge (Fig 2C), and ferrets continued
to shed virus throughout the 5-day experiment, although titers were much lower by five days
post-infection (Fig 2C). In addition, we measured viral titers in tissues from the upper respira-
tory tract (nasal turbinates and upper part of trachea) and from the lower respiratory tract
(BALF and lower part of trachea). Two days post-challenge, 11 of 12 ferrets (91.7%) had detect-
able virus in BALF, but no virus was detected in BALF by day 5 after challenge (Fig 2D). As
described previously [21, 28], seasonal A(H3N2) replicated very effectively in nasal turbinates
of ferrets, although by five days post-challenge viral titers in turbinates were substantially
reduced (p < 0.001; Fig 2D). No virus was detected in the trachea at any time (Fig 2D).

Changes in leukocyte subsets after challenge

For evaluation of cellularity we calculated the total cell numbers in spleen, MRLN, BALF (Fig
3A), and peripheral blood (Fig 3B). Since the MALN and MsLN are widely dispersed and not
well demarcated, it was impossible to collect total lymphoid material from these regions and
total numbers could not be estimated. The total number of cells significantly increased
(P<0.01) in spleen on day 5 post-challenge (Fig 3A). Total cell counts in BALF remained
approximately constant over the post-challenge period for all three groups of ferrets, although
Perth/16 infected animals euthanized on day 2 post-challenge showed a slight but non-signifi-
cant decrease in total cell counts (Fig 3A). For the MRLN, total cell numbers increased signifi-
cantly both on day 2 (P<0.01) and day 5 (P<0.001) post-challenge (Fig 3A). PBL counts
increased slightly, but non-significantly, on days 2 and 5 post-challenge (Fig 3B).

In peripheral blood, leukocyte dynamics followed the same pattern as previously described
[18]. Two days after infection, when infected ferrets showed peak fever, the percentage of both
CD4+ (Fig 4A) and CD8+ (Fig 4B) T cells decreased dramatically in peripheral blood, to about
19% and 18% of pre-challenge levels respectively, with some animals showing a disappearance
of as much as 95% of CD8+ T cells on day 2. By day 3, both CD4+ and CD8+ cells returned to
nearly baseline (day 0) levels, with a second drop on days 4 and 5 (Fig 4A and 4B). Values for
total CD3+ cells are shown in the supplementary data (SI and S2 Figs). The percentage of B
cells (CD79a+) also showed a marked drop 2 days after infection (Fig 4C), to 50-60% of base-
line levels, but returned to approximately normal levels after day 2. The percentage of
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Fig 2. Clinical responses to infection. To measure morbidity the temperature (A) and body weight (B) readings of infected and control
ferrets were recorded daily (days -3 to 5). Data shown are normalized to the individual animals’ weight or temperature on the day of
challenge (day 0), and group averages are reported. “Mock” ferrets were infected intranasally with sterile egg allantoic fluid; “Perth/16”
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turbinates (NT), upper trachea (UTr), and lower trachea (LTr). A p value of 0.05 was used as the cutoff for statistical significance

(*p <0.05; ** p < 0.01; T p <0.001). Error bars represent SEM.

doi:10.1371/journal.pone.0157903.g002

granulocytes (CD11b+; presumably predominately neutrophils) in peripheral blood increased
post-infection, with a peak on day 2 post-infection (Fig 4D), and also essentially returned to
normal levels after day 2. As previously shown [18], peripheral blood changes reflected both
percentages and absolute number of cells (Fig 4E and 4H, S1C and S1D Fig).

In BALF, CD4+ T cell and B cell (CD79+) (Fig 5A and 5B) percentages and total number of
cells were similar in mock-infected animals and infected animals on day 2 and day 5 post-infec-
tion. As a percentage of BALF cells, CD8+ cells increased on day 5 post-challenge (P<0.01)
(Fig 5A) and granulocytes increased on day 2 post-challenge (p<0.01). However, these changes
were not significantly different as absolute numbers (Fig 5B). A subset of CD11b+ cells express-
ing high levels of MHCII was observed in BALF. As a percent of total cells, this population was
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reduced in Perth/16 infected animals on days 2 (p<0.001) and 5 (p<0.05) post-challenge (S2A
Fig), but the change as absolute number of cells did not reach significance (S2B Fig).

In contrast to BALF, the percentage of T cells in spleen and MRLN did change significantly
following infection. The relative numbers of CD4+ cells decreased in spleen on day 2 post-chal-
lenge (p<0.05), while CD8+ cells and granulocytes increased (Fig 5C) on days 2 and 5 post-
challenge. However, since splenic cellularity increased after infection (Fig 3A), the absolute
number of CD4+ cells, as well as CD8+ cells and granulocytes, showed significant increases
(Fig 5D) after infection. Similarly, while the relative numbers of B cells decreased (Fig 5C) in
spleens 5 days post-challenge (p<0.01), the total number of B cells significantly increased (Fig
5D) on day 5 post-challenge (p<0.01).

We examined lymph nodes that were associated with the region of infection (MRLN and
MALN) or distant from the respiratory system (MsLN). When assessed as percentages, CD4+
T cells appeared to decrease in MRLN after infection, and B cells remained relatively constant
(Fig 6A). However, as with splenocytes, the increasing cellularity of the MRLN (Fig 3A) was
masking significant changes in absolute numbers of cells, since the total numbers CD4+ and
CD8+ T cells, B cells, and granulocytes all increased in lymph nodes following infection
(Fig 6B).

Although determining total cell numbers for the MALN and MsLN was not possible due to
their lack of clear demarcation, the pattern of relative cell numbers in these lymphoid tissues
was roughly similar to that in MRLN. Both showed a similar relative reduction in CD4+ cells
and an increase in granulocytes, however, MALN alone demonstrated a relative increase in B
cells (Fig 6C and 6D).
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doi:10.1371/journal.pone.0157903.g004

Discussion

Human infection with influenza viruses leads to a wide range of disease severity, from subclini-
cal to lethal disease [29]. In some cases, disease is associated with secondary bacterial infections
[30-32], but in other cases influenza virus alone leads to localized or systemic inflammation
and severe disease [29, 33]. Infection with highly pathogenic influenza such as H5N1 and
H7N9 induces extensive infiltration of macrophages and neutrophils, upregulation of pro-
inflammatory cytokines such as TNF-q, IL-1f, IL-6, IL-8 and IP-10, and cell death resulting in
severe pulmonary inflammation [34-37]. Indeed, in animal models, influenza disease can be
markedly reduced using anti-inflammatory therapeutics [9, 10, 38], suggesting that the inflam-

mation itself is responsible for many of the symptoms of disease.

Mice are a convenient animal model [39]; they are easily housed and handled, and a large
repertoire of mouse-specific reagents and transgenic and knock-out strains are available for
analyzing host responses to infection or immunization. However, mice are not natural hosts
for influenza virus, and human influenza viruses usually require adaptation to efficiently repli-
cate and cause disease in mice [39-42]. The mouse model and mouse-adapted influenza strains
may not accurately recapitulate natural infection of humans. Ferrets are considered the most
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Fig 5. BALF and Spleen leukocyte subsets following infection. For screening of immune cell migration in response to influenza
infection, BALF and Spleen were collected. Purified cell subsets from BALF (A-B) and Spleen (C-D) were stained and analyzed by flow
cytometry. Percentages (A, C) and absolute number (B, D) of Ty (CD3+ and CD4+), Tc lymphocytes (CD3+ and CD8+), B cells
(CD79a+) and CD11b-positive cells were measured. For mock infected animals (M), BALF and spleen were screened at day 5 post-
challenge and for Perth/16 infected animals, at days 2 and 5 post-challenge. A p value of 0.05 was used as the cutoff for statistical
significance (* p < 0.05; ** p < 0.01; 1 p < 0.001). Error bars represent SEM.

doi:10.1371/journal.pone.0157903.9005

appropriate model animal for the study of human influenza disease and immunity. They can
be infected directly with human virus isolates and generally show similar clinical signs and dis-
ease severity to humans infected with similar viruses [12, 13].

We have previously used ferret-specific and cross-reactive antibodies to identify major leu-
kocyte subsets, including CD4 and CD8 T cells, B cells, granulocytes, and cells of the monocyte
lineage [18]. We found that following infection with seasonal strains of influenza (human A
(HIN1)pdm09 and A(H3N2) strains), leukocytes in the peripheral blood showed dramatic
changes in number even when the clinical signs associated with infection were minor. Lympho-
cytes, especially CD8+ T cells, were markedly though transiently depleted from the peripheral
blood two days post-infection and gradually recovered over a period of about a week, while
granulocytes showed a significant increase in peripheral blood counts on day two post-infec-
tion and also returned to normal over 5-7 days.
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Fig 6. Lymph node leukocyte subsets following infection. For screening of immune cell migration in response to influenza infection,
MRLN, MdLN and MsLN were collected. Purified cell subsets from MRLN (A-B), MdLN (C) and MsLN (D) were stained and analyzed by
flow cytometry. In MRLN, percentage (A) and absolute number (B) of Ty (CD3+ and CD4+), Tc lymphocytes (CD3+ and CD8+), B cells
(CD79a+) and CD11b-positive cells were measured. In MALN and MsLN, only percentages (C-D) of Ty (CD3+ and CD4+), Tc
lymphocytes (CD3+ and CD8+), B cells (CD79a+) and CD11b-positive cells were measured. For mock infected animals (M), LNs were
screened at day 5 post-challenge and for Perth/16 infected animals at days 2 and 5 post-challenge. A p value of 0.05 was used as the
cutoff for statistical significance (* p < 0.05; ** p < 0.01; 1 p < 0.001). Error bars represent SEM.

doi:10.1371/journal.pone.0157903.g006

The changes in peripheral blood leukocyte numbers and ratios presumably reflect inflam-
mation associated with influenza infection as well as the processes which keep inflammation in
check. In particular, the depletion of lymphocytes in the first 3 days post-infection could reflect
some combination of cell death due to apoptosis of lymphocytes sensitized by cytokines [43-
45]; migration into the site of infection (i.e. the respiratory tract) [21]; or accumulation in sec-
ondary lymphoid organs [46-48]. In the present study, in order to better understand inflam-
mation associated with influenza virus infection, we measured cell trafficking to various tissues
following influenza virus infection of ferrets. We measured cell counts in the blood, BALF, and
spleen, as well as in lymph nodes that were associated with the region of infection (MRLN and
MALN) or distant from the respiratory system (MsLN).
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Seasonal influenza viruses, such as the one used in this study, induce mild clinical symptoms
and have strong tropism for the upper respiratory tract, trachea, and bronchi [33, 49]. In
uncomplicated seasonal influenza infections, early inflammatory responses are believed to help
stimulate adaptive immunity in the form of B cells and T cells [50] which help eliminate virus,
while a counter-acting anti-inflammatory response keeps inflammation in check. This orches-
trated response typically results in viral clearance within a few days. In our study, dynamic
changes in leukocytes in the lungs were obvious, although these data were quite variable (prob-
ably because of dynamic changes associated with an ongoing immune response at the site of
infection as well as challenges associated with recovery of lavage fluid from lungs) and only a
few changes were statistically significant (Fig 5). The draining lymph nodes, on the other hand,
demonstrated highly orchestrated, less variable responses (Fig 6). All cell types assessed in this
study accumulated significantly in MRLN by the 2™ day post infection, further expanding by
day 5 (Fig 6). Due to the diffuse nature of the MdLN, absolute numbers could not be calculated.
However, as assessed by cell type percentages, MRLN and MdLN were very similar (Fig 6), sug-
gesting that MRLN may be an effective surrogate for MALN when assessing responses in the
draining lymph nodes, with the added benefit of assessment of changes in absolute number of
each cell type. Only B cells (CD79+) appear to vary between the two lymph nodes. It is possible
that B cells preferentially accumulate in MdLN for the local production of antibody, due to
their proximity to the lungs.

Granulocytes, composed primarily of neutrophils, are one of the first responders in an
immune response. While once considered to function primarily as pro-inflammatory, phago-
cytic cells whose primary role was to limit infection until engagement of adaptive immunity,
the role of neutrophils in protection from infection has more recently been found to be much
more complex and diverse. While neutrophils have been shown to promote inflammation [51]
and recruit pro-inflammatory macrophages [52], they also have been shown to play a role in
resolution of inflammation toward the end of the inflammatory response [53]. Neutrophils fur-
thermore have been shown to act as antigen presenting cells carrying engulfed antigen to the
draining lymph nodes and supporting the CD8+ T cell response in the infected lung, possibly
through antigen presentation at the site of infection [54, 55].

This population showed a dramatic increase on the second day post-infection (Fig 4) with
the proportion of these cells significantly increased in the lungs (Fig 5), the site of infection.
These cells also dispersed into the lymph nodes (Figs 5 and 6) showing dramatic accumulation
not only in the draining lymph nodes (MRLN and MdLN) and spleen, but also in the more dis-
tant MsLN. Granulocytes were shown to further accumulate through at least day 5 post-infec-
tion in tissues for which we were able to assess absolute numbers; we were unable to determine
absolute numbers of granulocytes in the more diffuse tissues, and changes were likely obscured
due to the increased overall cellularity in these lymph nodes at day 5 of the ensuing immune
response.

A population of CD11b+ cells expressing high levels of MHCII were observed in the lungs
which decreased in response to influenza infection (S2A Fig). This population may represent
lung antigen presenting cells, but confirmation and further characterization awaits more defin-
itive cellular markers for ferret antigen-presenting cells.

T cell numbers dropped dramatically in the peripheral blood 2 days post-infection (Fig 4),
accumulating in lymph nodes (Fig 6). CD8+ T cells also demonstrated significant accumula-
tion in the spleen 2 days post-infection, in contrast to CD4+ T cells which were little changed
(Fig 5). By day 5 post-infection, T cells further were more abundant in lymphoid organs, and
CD8+ T cells became a much larger proportion of BALF cells at this point (Figs 5 and 6). The
accumulation of lymphocytes in lymphoid tissues (especially lymph nodes) on day 2 probably
represents mainly redistribution from the peripheral blood, since at this time point

PLOS ONE | DOI:10.1371/journal.pone.0157903 June 17,2016 12/17



@’PLOS ‘ ONE

Ferret Immune Cells Trafficking in Response to Influenza Virus Infection

lymphocytes were severely depleted from the blood; by day 5, the large accumulation of lym-
phocytes in lymph nodes, with only moderate reduction in the blood, suggests that most of the
cells in the lymph nodes were the result of expansion in situ.

CD8+ T cells function primarily through lysis of infected cells. These cells are activated in
the lymph nodes, then traffic to the site of infection were they kill infected cells, thus hampering
virus expansion. Although this process is necessary for the elimination of infection, the resulting
tissue damage promotes inflammation. Furthermore, several of the granzymes, lytic mediators
released by CD8+ T cells, have recently been associated with promotion of inflammation and
induction of pro-inflammatory cytokines [56]. CD4+ T cells function primarily through pro-
duction of cytokines to support and direct the ensuing immune response, although a subset of
CD4+ T cells have been shown to have cytotoxic activity [57]. Both CD8+ and CD4+ T cells
have been implicated in immunopathogenesis [58], but also function to keep inflammation in
check to control immunopathology. In particular, both T cell subsets have been shown to be
major producers of IL-10, a potent anti-inflammatory cytokine, during influenza virus infection
[11, 59]. The relatively mild signs shown by ferrets infected with Perth/16 suggests that, in spite
of the rapid accumulation and expansion of inflammatory cell types in and around the lungs,
anti-inflammatory processes effectively kept inflammation in check while still allowing effective
control of influenza infection.

These results clearly show dynamic migration and homing of lymphocytes in ferrets
infected with seasonal human A influenza virus. Each of the four biological compartments
examined responded differently to influenza infection. Understanding the dynamic patterns of
immune cells trafficking within each compartment, how they are linked and how they are tem-
porally and geographically specific, is critical to a systems biology understanding of the host
immune response to influenza. Monitoring leukocyte homing and trafficking will aid in the
determination of a role for cell-mediated immunity in protection from influenza as well as pro-
viding a more detailed view of the inflammatory impact of influenza virus infection.

Supporting Information

S1 Fig. Peripheral blood T cells following infection. Ferrets were bled on days 0-5 relative to
the day of viral challenge, and cells were stained and analyzed by flow cytometry as described in
the text. Percentage (A) and absolute number of T cells (CD3+) (B) were measured. For each
animal the frequencies were normalized to the ferret’s values on day 0; the Y axis represents per-
cent of values on day 0. Group averages are reported here. “Mock” ferrets were infected intrana-
sally with sterile egg allantoic fluid; “Perth/16” ferrets infected intranasally with 1 x 10° pfu of
A/Perth/16/09. For mock animals (M), absolute number of same cell subsets were measured at
day 5 post-challenge and for the infected animals at days 2 and 5 post-challenge. A p value of
0.05 was used as the cutoff for statistical significance (* p < 0.05; ** p < 0.01; 1 p < 0.001).
Error bars represent SEM.

(TIF)

S2 Fig. BALF, Spleen and LN T cells and CD11b+MHCII+ cells following infection. For
screening of immune cell migration in response to influenza infection, BALF, spleen, MRLN,
MALN and MsLN were collected. Purified cell subsets from BALF (A-B), spleen (C-D), MRLN
(E-F), MdLN (G) and MsLN (H) were stained and analyzed by flow cytometry. In BALF,
spleen and MRLN, percentage (A, C, E) and absolute number (B, D, F) of cells were measured.
In MdLN and MsLN, only percentages (G, H) were measured. For the mock infected animals
(M), tissues were screened at day 5 post-challenge and for the Perth/16 infected animals, at
days 2 and 5 post-challenge. A p value of 0.05 was used as the cutoff for statistical significance
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(* p<£0.05** p <0.01; T p <0.001). Error bars represent SEM.
(TIF)
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