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Abstract
Few effective therapeutic options are available for treating severe infections caused by

extensively drug-resistant Acinetobacter baumannii (XDR-AB). Using a murine thigh-infec-

tion model, we examined the in vivo efficacy of colistin in combination with meropenem, tige-

cycline, fosfomycin, fusidic acid, rifampin, or sulbactam against 12 XDR-AB strains.

Colistin, tigecycline, rifampin, and sulbactam monotherapy significantly decreased bacterial

counts in murine thigh infections compared with those observed in control mice receiving no

treatment. Colistin was the most effective agent tested, displaying bactericidal activity

against 91.7% of strains at 48 h post-treatment. With strains showing a relatively low mini-

mum inhibitory concentration (MIC) for meropenem (MIC� 32 mg/L), combination therapy

with colistin plus meropenem caused synergistic inhibition at both 24 h and 48 h post-treat-

ment. However, when the meropenem MIC was�64 mg/L, meropenem did not significantly

alter the efficacy of colistin. The addition of rifampin and fusidic acid significantly improved

the efficacy of colistin, showing a synergistic effect in 100% and 58.3% of strains after 24 h

of treatment, respectively, while the addition of tigecycline, fosfomycin, or sulbactam did not

show obvious synergistic activity. No clear differences in activities were observed between

colistin-rifampin and colistin-fusidic acid combination therapy with most strains. Overall, our

in vivo study showed that administering colistin in combination with rifampin or fusidic acid

is more efficacious in treating XDR-AB infections than other combinations. The colistin-mer-

openem combination may be another appropriate option if the MIC is�32 mg/L. Further

clinical studies are urgently needed to confirm the relevance of these findings.
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Introduction
Acinetobacter baumannii is a non-fermentative Gram-negative coccobacillus, whose natural res-
ervoir remains to be determined [1]. It has emerged as one of the most significant nosocomial
pathogens in health-care settings. Carbapenems were one of the most active agents against A.
baumannii, but due to the overuse of these drugs, carbapenem-resistant strains have rapidly
emerged during the last decade [2]. Most carbapenem-resistant A. baumannii are not only resis-
tant to carbapenems, but are also highly resistant to nearly all commonly used antibiotic classes
in clinical use; such strains are referred to as extensively drug-resistant A. baumannii (XDR-AB)
[3]. Because of the limited number of effective therapeutic options available, severe infections
caused by XDR-AB are often associated with high treatment failures and mortality rates [4].

Colistin, an “old drug” that was abandoned in the 1960s because of it severe nephrotoxicity,
has been reintroduced in clinical settings. It exhibits rapid and concentration-dependent bacte-
ricidal activity by destroying the outer membrane of Gram-negative bacteria [5]. Results from
several in vitro susceptibility tests have demonstrated its robust bactericidal activity against
XDR-AB [6]. However, observations of rapid regrowth following colistin treatment in vitro,
heteroresistance, and low plasma concentrations have raised questions regarding the efficacy of
colistin as a monotherapy [7]. Thus, many physicians prefer to prescribe combination therapy
to treat XDR-AB infections, especially considering the synergistic effects observed between
colistin and other antibiotics, which have been proven in various in vitro studies [8].

However, synergistic activity found in in vitro tests may not correlate well with in vivo out-
comes [9]. In addition, specific combinations showing increased in vivo efficacy against
XDR-AB have not been well investigated. Therefore, to establish the potential use of combina-
tion therapy with colistin in clinical situations, we developed a murine thigh-infection model
and employed this model to examine the in vivo efficacy of colistin combined with meropenem,
tigecycline, fosfomycin, fusidic acid, rifampin, or sulbactam against XDR-AB.

Materials and Methods

Bacterial strains and molecular analysis
Twelve XDR-AB strains were collected from hospitalized patients of a tertiary hospital between
2013 and 2014 in Beijing, China. Five strains were isolated from the sputa of patients with
pneumonia, 4 strains were isolated from the blood, and the 3 remaining strains were isolated
from urine. Pseudomonas aeruginosa ATCC27853 and Escherichia coli ATCC25922 were used
as reference strains for susceptibility testing. All strains were identified using the Vitek1 2
Compact System (bioMérieux, Marcyl’Étoile, France).

Pulsed-field gel electrophoresis (PFGE) was performed on the tested strains. In brief, the
strains were digested with proteinase K (Takara Biotechnology Co. LTD., Dalian, China), and
chromosomal DNA was digested with ApaI (Takara Biotechnology Co. LTD.) as previously
described [10]. The PFGE was run in a CHEFMapperTM system (Bio-Rad Laboratories, Inc.,
Berkeley, CA, USA), and the DNA band profiles were detected after staining with ethidium
bromide and photographed with the UV gel Doc (BIO-RAD, USA). The similarity between iso-
lates was determined by the comparison of the DNA banding patterns using the BioNumerics
V 6.0 software (Bio-Rad) according to the criteria of Tenover et al. [11]. All isolates with PFGE
banding patterns with a similarity index of>75% were grouped within the same cluster. Then
the Ambler class B carbapenemase blaIMP-1, blaIMP-2, blaNDM-1, blaSIM-1, blaVIM-1 and blaVIM-2

and Ambler class D carbapenemase blaOXA-23, blaOXA-24, blaOXA-51, blaOXA-58 were further
detected by PCR as previously described [12]. The primers used in this study are shown in
Table 1.
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Antibiotics
Meropenem, fosfomycin, fusidic acid, rifampin, and sulbactam standards were obtained from
the National Institute for the Control of Pharmaceutical and Biological Products (Beijing,
China). Tigecycline and colistin was purchased from Sigma-Aldrich (St Louis, MO, USA).

Susceptibility testing
The minimum inhibitory concentration (MIC) of all antibiotics was determined using the
broth-microdilution method, according to the Clinical and Laboratory Standard Institute
(CLSI) guidelines [13,14]. Briefly, cation-adjusted Mueller-Hinton broth (Becton, Dickinson
and Co.; Franklin Lakes, NJ, USA) containing graded concentrations of antibiotics was freshly
prepared. Study isolates that grew to an optic density of 0.5 McFarland units were diluted to 5
×106 CFU/ml. Then 100 μl of antibiotic solution and 10 μl of bacteria suspension were added
simultaneously to 96-well U-bottom microplates. After mixing with a vortexer, the microplates
were incubated for 24 h at 37°C in ambient air. All susceptibility tests were performed in 3
independent experiments on different days.

Mouse thigh-infection model
This animal study was approved by the Research Animal Care and Use Committee of the Gen-
eral Hospital of Chinese People’s Armed Police Forces (No.WJ27856). Specific-pathogen-free,
female Bagg inbred albino c-strain (BALB/c) mice (Charles River, Beijing, China) weighing
25 ± 2 g were used in this study. Mice were maintained and utilized according to the Protocol for
the Protection andWelfare of Animals. The thigh-infection model was constructed as described
previously [15]. Before inoculation, mice were rendered neutropenic by intraperitoneal injection
with cyclophosphamide (Bristol-Myers Squibb, Princeton, NJ) at 150 mg/kg body weight (4 days
before infection) or 100 mg/kg (1 day before infection). To develop the thigh-infection model,
0.1 ml freshly prepared bacterial suspension at a density of 3 × 107 CFU/ml was intramuscularly
injected into the left thigh of each mouse. After inoculation, they were randomly divided into 3
groups (5 mice/group) receiving monotherapy, combination therapy, or no treatment for 24 h or
48 h observation (a total of 6 groups for each strain). The following antibiotic doses were used:
colistin at 20 mg/(kg�8 h) [16], meropenem at 200 mg/(kg�8 h) [17], tigecycline at 50 mg/(kg�24
h) [18], fosfomycin at 100 mg/(kg�4 h) [19] and fusidic acid 500 mg/(kg�8 h) [20], rifampin at 25
mg/(kg�6 h) [16], and sulbactam 120 mg/(kg�12 h) [21], as described previously. At 24 h or 48 h
post-treatment, the infected mice were humanely euthanized, and their thigh muscles were

Table 1. PCR primers and product sizes for the detection of carbapenemases among 12 XDR-AB strains

Target gene Primers Product size (bp)

blaVIM-1 5’-GGGAGCCGAGTGGTGAGT-3’; 5’-GGCACAACCACCGTATAG-3’ 519

blaVIM-2 5’-ATGTTCAAACTTTTGAGTAAG-3’; 5’-CTACTCAACGACTGAGCG-3’ 801

blaIMP-1 5’-ACCGCAGCAGAGTCTTTGCC-3’; 5’-ACAACCAGTTTTGCCTTACC-3’ 587

blaIMP-2 5’-GTTTTATGTGTATGCTTCC-3’; 5’-AGCCTGTTCCCATGTAC-3’ 678

blaSIM-1 5’-TACAAGGGATTCGGCATCG-3’; 5’- TAATGGCCTGTTCCCATGTG-3’ 571

blaNDM-1 5’-ATGGAATTGCCCAATATTATGCACCCGG-3’; 5’- TCAGCGCAGCTTGTCGGCCATG -3’ 813

blaOXA-23 5’-GATCGGATTGGAGAACCAGA-3’; 5’-ATTTCTGACCGCATTTCCAT-3’ 501

blaOXA-24 5’-GGTTAGTTGGCCCCCTTAAA-3’; 5’-AGTTGAGCGAAAAGGGGATT-3’ 246

blaOXA-51 5’-TAATGCTTTGATCGGCCTTG-3’; 5’-TGGATTGCACTTCATCTTGG-3’ 353

blaOXA-58 5’-AAGTATTGGGGCTTGTGCTG-3’; 5’-CCCCTCTGCGCTCTACATAC-3’ 599

doi:10.1371/journal.pone.0157757.t001
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aseptically excised. The thigh muscles were then homogenized and the number of CFUs was
counted after serially diluting the homogenates.

All statistical analyses were performed using IBM SPSS software (version 20.0). Data for
each group were presented as the mean value, and a t test was used for statistical analysis. A
treatment regimen was considered effective if it resulted in a statistically significant reduction
of bacterial counts (P< 0.05) when compared with no treatment or other regimens. Synergy
for a combination therapy was defined as a�2 log10 CFU/mL decrease in comparison with
the single drug, and antagonism was defined as�2 log10 CFU/mL increase. A�3 log10 CFU/
mL decrease was considered to indicate bactericidal levels of activity.

Results

Susceptibility testing and molecular analysis
As shown in Fig 1, the PFGE patterns classified the 12 isolates into 4 distinct clonal types. The
blaOXA-51 carbapenemase gene was detected in all strains, and blaOXA-23 was detected in 8
strains. Ambler class B carbapenemase genes were all negative. All strains were resistant to
meropenem and susceptible to colistin, based on breakpoints determined using the CLSI guide-
lines (Table 2). The test strains also had low MICs for tigecycline (0.5 to 2 mg/L), but relatively
high MICs for other antibiotics.

Efficacy of antibiotic monotherapies compared with no treatment
The efficacies of antibiotic monotherapies, which were reflected by decreased bacterial counts,
are shown in Table 3. Colistin, tigecycline, rifampin, and sulbactam monotherapies showed
statistically significant decreases of bacterial counts for all 12 strains at 24 h and 48 h post-
treatment. Compared with other antibiotics, colistin had the highest efficacy and showed bacte-
ricidal activity (�3 log10 CFU/mL decrease) with 91.7% (11/12) of strains after a 48-h treat-
ment. Tigecycline and rifampin monotherapy displayed bactericidal activity in 50% (6/12) and
58.3% (7/12) of strains after 48 h of treatment, respectively. Monotherapy with meropenem,
fosfomycin, and fusidic acid exhibited considerably lower activity, showing significant inhibi-
tion of 50% or less of the test strains after both 24 h and 48 h of treatment.

Fig 1. Pulsed-field gel electrophoresis analysis of genomic DNA from the 12 tested strains of Acinetobacter baumannii.

doi:10.1371/journal.pone.0157757.g001
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Efficacy of colistin combinations compared with monotherapies
The efficacies of combination therapies with colistin were compared with monotherapies (Table 4).
The addition of rifampin and fusidic acid significantly improved the efficacy of colistin, showing
synergistic effects against 100% and 58.3% of strains after 24 h of treatment, respectively. With
strains with relatively lowmeropenemMICs (AB-1 to AB-5), colistin plus meropenem administra-
tion displayed synergistic effects after both 24 h and 48 h of treatment. However, when the merope-
nemMIC was�64 mg/L (AB-6 to AB-12), meropenem addition did not significantly alter the
efficacy of colistin. Though colistin plus fosfomycin treatment was more effective (P< 0.05) than
colistin monotherapy in 83.3% (24 h) and 66.7% (48 h) of the test strains, synergistic inhibition was
only found in 1 strain (AB-4). Combined administration of tigecycline or sulbactam with colistin
did not considerably improve the efficacy of colistin. No antagonism was observed in this study.

Comparison of colistin combinations
As shown in Figs 2 and 3, colistin-fusidic acid and colistin-rifampin combinations were gener-
ally superior to other combinations. After a 48h treatment, a difference of>2 Δlog of bacterial
counts was observed between the colistin-fusidic acid combination and the colistin-tigecycline,
colistin-fosfomycin, or colistin-sulbactam combinations. When treating infections caused by
strains with meropenemMICs< 64 mg/L, the combination of colistin with meropenem was
superior to colistin with tigecycline, fosfomycin, or sulbactam, but were not inferior to colistin
with fusidic acid after 24 h and 48 h of treatment (data not shown). After a 48h treatment, a dif-
ference of>2 Δlog of bacterial counts was observed between the colistin-rifampin combination
and colistin treatment in combination with meropenem, tigecycline, fosfomycin, or sulbactam
(Fig 3). Finally, there was no clear difference between the activities of the 2 most effective com-
binations (colistin plus fusidic acid versus colistin plus rifampin), with a< 1 Δlog of bacterial
counts difference observed after both 24 h and 48 h of treatment for most strains.

Discussion
XDR-AB strains threaten the successful treatment of serious infections in critical care patients
worldwide [22]. Although several studies have evaluated the activities of diverse antimicrobial

Table 2. Susceptibilities andmolecular characteristics of 12 XDR-AB strainsa.

Clonal types Carbapenemases MIC (mg/L)

Strain NO. CST MER TIG FOS FD RIF SUL

AB-1 A blaOXA-51, blaOXA-23 0.5 32 1 >512 64 8 64

AB-2 A blaOXA-51 0.5 32 1 >512 128 16 32

AB-3 B blaOXA-51, blaOXA-23 0.5 32 1 >512 64 16 64

AB-4 B blaOXA-51 0.5 16 2 >512 32 64 128

AB-5 C blaOXA-51 1 16 1 >512 128 16 32

AB-6 A blaOXA-51 0.5 64 0.5 >512 16 32 64

AB-7 A blaOXA-51, blaOXA-23 0.5 64 1 >512 32 32 32

AB-8 A blaOXA-51, blaOXA-23 0.5 64 1 >512 64 64 32

AB-9 C blaOXA-51, blaOXA-23 0.25 128 0.5 >512 32 64 128

AB-10 D blaOXA-51, blaOXA-23 0.5 64 1 >512 32 128 16

AB-11 D blaOXA-51, blaOXA-23 0.5 64 2 >512 64 32 32

AB-12 D blaOXA-51, blaOXA-23 0.25 128 2 >512 256 64 64

a CST, colistin; MER, meropenem; TIG, tigecycline; FOS, fosfomycin; FD, fusidic acid; RIF, rifampin; SUL, sulbactam.

doi:10.1371/journal.pone.0157757.t002
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agents against XDR-AB, an optimal treatment scheme remains unclear. Some regimens involv-
ing colistin, tigecycline, and sulbactam (alone or in combination) may be efficacious in com-
batting XDR-AB infections [6], although limited in vivo data exists regarding the efficacies of
these regimens.

In this study, we found that colistin, tigecycline, rifampin, and sulbactam monotherapy sig-
nificantly decreased bacterial counts during murine thigh infections when compared with
those observed in control mice receiving no treatment. Tigecycline and rifampin monotherapy
displayed bactericidal activity in 50% (6/12) and 58.3% (7/12) of strains at 48 h post-treatment.
Colistin monotherapy appeared to be the most effective monotherapy regimen, displaying bac-
tericidal activity in 91.7% of strains after 48 h of treatment. This was in accordance with the
findings of Pachon-Ibanez et al., whose pneumonia model also showed a bacterial reduction of
approximately 3 log10 CFU/g in the colistin group relative to their control group [16]. How-
ever, results from a different study conducted by Montero et al. showed that colistin had the
weakest antibacterial effect when compared with imipenem, sulbactam, tobramycin, and

Table 3. Efficacies of antibiotic monotherapies after 24 and 48 h of treatment vs results for untreated animalsa.

Strain NO. CST VS no
treatment

MER VS no
treatment

TIG VS no
treatment

FOS VS no
treatment

FD VS no
treatment

RIF VS no
treatment

SUL VS no
treatment

Δlogbb P valuec Δlog P value Δlog P value Δlog P value Δlog P value Δlog P value Δlog P value

24 h of treatment

AB-1 -2.31 <0.001 -0.46 <0.001 -2.69 <0.001 -0.23 0.222 -0.18 0.043 -2.65 <0.001 -1.46 <0.001

AB-2 -2.22 <0.001 -0.01 0.574 -2.92 <0.001 -0.20 0.051 -0.24 0.019 -2.54 <0.001 -1.19 <0.001

AB-3 -2.14 <0.001 -0.15 0.029 -2.06 <0.001 -0.05 0.559 -0.19 0.022 -2.58 <0.001 -1.16 <0.001

AB-4 -1.68 <0.001 -0.92 <0.001 -1.54 <0.001 -0.01 0.919 -0.17 0.066 -2.55 <0.001 -0.67 <0.001

AB-5 -1.25 <0.001 -0.92 0.001 -2.88 <0.001 -0.20 0.032 -0.02 0.626 -2.68 <0.001 -1.56 <0.001

AB-6 -2.34 <0.001 0.04 0.367 -2.16 <0.001 -0.07 0.205 -0.36 0.001 -2.23 <0.001 -1.02 <0.001

AB-7 -2.63 0.002 0.09 0.259 -2.65 0.002 -0.01 0.867 -0.27 0.026 -3.18 <0.001 -1.26 0.002

AB-8 -2.46 <0.001 -0.15 0.023 -2.83 <0.001 -0.14 0.059 -0.12 0.100 -2.63 <0.001 -1.37 <0.001

AB-9 -2.59 <0.001 -0.25 0.042 -2.12 <0.001 0.08 0.068 -0.64 <0.001 -1.39 <0.001 -0.51 <0.001

AB-10 -2.48 0.021 -0.30 0.350 -2.11 0.022 -0.07 0.706 -0.34 0.226 -1.37 0.024 -2.54 0.021

AB-11 -2.06 0.019 -0.47 0.133 -1.28 0.024 -0.04 0.234 -0.44 0.754 -1.96 0.019 -1.44 0.021

AB-12 -2.27 0.008 -0.40 0.110 -0.89 0.016 0.01 0.123 -0.44 0.113 -1.45 0.009 -1.06 0.012

48 h of treatment

AB-1 -3.05 0.002 0.09 0.241 -3.40 0.002 -0.10 0.296 -0.06 0.632 -2.38 0.002 -1.30 <0.001

AB-2 -3.12 0.001 0.04 0.598 -3.15 0.001 -0.08 0.563 -0.10 0.351 -3.20 0.001 -3.30 0.001

AB-3 -3.45 <0.001 0.00 0.913 -2.23 <0.001 -0.07 0.411 -0.15 0.064 -1.40 <0.001 -1.05 0.002

AB-4 -2.23 0.002 -0.03 0.697 -1.36 0.003 -0.14 0.173 0.16 0.142 -0.45 0.012 -1.84 0.003

AB-5 -3.28 0.024 -0.16 0.360 -3.31 0.008 -0.61 0.099 -0.53 0.657 -3.43 0.008 -2.03 0.009

AB-6 -3.26 0.003 -0.13 0.359 -2.59 0.003 -1.06 0.005 -1.09 0.005 -3.36 0.003 -2.37 0.003

AB-7 -3.35 0.014 -0.17 0.716 -3.44 0.014 -0.15 0.518 -0.28 0.829 -3.42 0.014 -1.88 0.016

AB-8 -3.29 0.005 -0.22 0.962 -3.38 0.005 -0.92 0.009 -0.15 0.719 -2.48 0.005 -3.29 0.005

AB-9 -3.42 0.001 -0.20 0.425 -2.55 0.001 -0.33 0.057 -0.15 0.857 -3.29 0.001 -2.26 0.001

AB-10 -3.26 0.001 -0.23 0.322 -3.28 0.001 -0.73 0.001 -0.03 0.222 -1.05 0.002 -3.37 0.001

AB-11 -3.35 0.004 -0.20 0.594 -1.51 0.005 -0.29 0.272 -0.12 0.640 -3.44 0.004 -3.43 0.004

AB-12 -3.04 0.001 -0.34 0.478 -1.43 0.001 -0.96 0.002 -0.32 0.858 -3.41 0.001 -2.28 0.001

a CST, colistin; MER, meropenem; TIG, tigecycline; FOS, fosfomycin; FD, fusidic acid; RIF, rifampin; SUL, sulbactam.
b Δlog means the log10 recovered CFU of antibiotic monotherapy minus the log10 recovered CFU of no treatment.
c A P value of < 0.05 indicates significance and is shown in bold.

doi:10.1371/journal.pone.0157757.t003
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rifampin in a pneumonia model [23]. This discrepancy may be mainly explained by their low
colistin doses used with an area under the curve (AUC) of 11.96 mg�h/L (Montero et al.), in
contrast with the doses used in our study (the same as in the study by Pachon-Ibanez et al.),
which resulted in an AUC of up to 26.42 mg�h/L, being similar to that in humans (23.43 mg�h/
L). Moreover, the MICs of strains for imipenem, sulbactam, and rifampin in the study of Mon-
tero et al. were relatively lower than those of strains tested in our study.

Previous in vitro studies showed that the synergy rate of colistin combined with carbape-
nems against A. baumannii reached>80% [24]. However, the results of in vivo studies with the
colistin-carbapenem combination were not synergistic as expected. A previous study by Song
et al. showed that colistin in combination with imipenem did not significantly reduce bacterial
loads in lungs after infection with an OXA-51-producing strain (MIC for imipenem: 64 mg/L)
[25]. In our study, combination treatment with colistin and meropenem only showed synergis-
tic effects in 41.7% of the test strains after 48 h of treatment (Table 4). We also noted that with
strains having low meropenem MICs (� 32 mg/L), colistin-meropenem combination therapy
displayed synergistic effects and was superior to colistin plus tigecycline, fosfomycin, or sulbac-
tam. However, with strains having higher MICs (� 64 mg/L), no synergistic effects were found
in this combination therapy. These results indicated that the colistin-carbapenem combination

Table 4. Comparison of the efficacies of colistin combinations vsmonotherapies after 24 and 48 h of treatmenta.

Strain NO. CST+MER VS
CST

CST+TIG VS
CST

CST+TIG VS
TIG

CST+FOS VS
CST

CST+FD VS
CST

CST+RIF VS
CST

CST+RIF VS
RIF

CST+SUL VS
CST

CST+SUL VS
SUL

Δlogb P valuec Δlog P value Δlog P value Δlog P value Δlog P value Δlog P value Δlog P value Δlog P value Δlog P value

24h of treatment

AB-1 -2.05 0.006 -0.94 0.009 -0.56 0.253 -1.14 0.007 -2.78 0.006 -2.95 0.006 -2.61 0.009 -0.08 0.955 -0.94 0.013

AB-2 -2.11 0.005 -0.91 0.008 -0.07 0.589 -1.16 0.006 -2.14 0.005 -2.96 0.005 -2.64 0.015 -0.08 0.861 -1.12 0.007

AB-3 -3.02 <0.001 0.08 0.162 0.00 0.448 -1.25 <0.001 -2.93 <0.001 -3.02 <0.001 -2.59 0.004 -0.32 0.002 -1.31 0.006

AB-4 -2.88 0.007 -1.26 0.009 -1.39 0.008 -2.06 0.033 -2.70 0.007 -3.34 0.007 -2.46 0.005 -0.43 0.018 -1.43 0.009

AB-5 -3.09 0.010 -1.47 0.011 0.16 0.335 -1.18 0.012 -2.70 0.010 -4.18 0.010 -2.74 0.004 -1.19 0.012 -0.87 0.003

AB-6 -0.91 0.008 0.16 0.169 -0.02 0.844 0.20 0.066 -1.84 0.006 -2.29 0.006 -2.40 0.004 0.03 0.951 -1.29 <0.001

AB-7 -0.46 0.012 -0.44 0.014 0.04 0.973 -0.65 0.007 -2.40 0.003 -2.41 0.003 -2.86 0.021 0.04 0.706 -1.32 0.004

AB-8 0.02 0.969 -0.54 0.053 -0.17 0.153 -0.95 0.032 -1.88 0.025 -2.71 0.024 -2.54 0.010 -0.18 0.225 -1.27 0.005

AB-9 -0.20 0.211 -0.42 0.105 -0.02 0.625 -0.73 0.063 -1.56 0.041 -3.11 0.039 -4.32 0.086 0.45 0.047 -1.63 0.004

AB-10 -0.17 0.096 -0.43 0.028 -0.80 0.071 -0.70 0.013 -1.75 0.007 -2.55 0.007 -3.47 0.012 0.36 0.003 0.42 0.760

AB-11 -0.44 0.078 -0.13 0.654 -0.91 0.052 -0.98 0.019 -2.08 0.014 -2.82 0.014 -2.92 0.030 -0.03 0.834 -0.65 0.004

AB-12 0.12 0.446 -0.67 0.022 -0.31 0.288 -1.03 0.014 -1.41 0.012 -2.90 0.011 -3.71 0.001 -0.16 0.196 -1.36 0.001

48h of treatment

AB-1 -2.02 0.002 -0.67 0.009 -0.31 0.399 -0.50 0.012 -2.87 0.002 -2.83 0.002 -3.49 0.008 -0.26 0.050 -2.00 0.014

AB-2 -2.04 0.002 -0.69 0.004 -0.66 0.013 -0.45 0.003 -2.63 0.002 -2.73 0.002 -2.65 0.001 -0.01 0.795 0.17 0.142

AB-3 -2.59 0.020 -0.47 0.056 -1.69 0.002 -0.54 0.045 -2.54 0.019 -2.78 0.019 -4.83 0.007 0.16 0.447 -2.04 0.014

AB-4 -2.93 0.010 -0.90 0.054 -1.77 0.009 -0.05 0.500 -4.04 0.009 -3.80 0.009 -5.58 0.024 -1.21 0.002 -1.60 0.041

AB-5 -2.35 0.011 -0.45 0.027 -0.42 0.009 -0.16 0.233 -2.91 0.011 -3.15 0.011 -3.01 0.001 0.02 0.997 -1.24 <0.001

AB-6 -0.11 0.985 -0.25 0.243 -0.92 0.005 0.12 0.150 -2.56 0.001 -2.95 0.001 -2.85 0.005 0.01 0.867 -0.88 0.001

AB-7 0.21 0.086 -0.40 0.010 -0.31 0.017 -0.33 0.017 -2.36 0.004 -2.94 0.004 -2.87 0.009 -0.02 0.993 -1.49 0.032

AB-8 0.30 0.053 -0.27 0.747 -0.18 0.989 -0.75 0.008 -1.89 0.004 -3.10 0.004 -3.91 0.010 -0.15 0.182 -0.16 0.096

AB-9 -0.23 0.117 -0.33 0.029 -1.21 0.001 -0.34 0.015 -1.44 0.004 -3.04 0.004 -3.17 0.001 -0.34 0.017 -1.50 0.002

AB-10 -0.28 0.110 -0.13 0.087 -0.11 0.474 -0.70 0.003 -2.95 0.002 -2.94 0.002 -5.15 0.007 -0.14 0.313 0.54 0.515

AB-11 -0.09 0.566 -0.12 0.860 -1.95 0.002 -0.71 0.015 -2.49 0.008 -2.96 0.008 -2.87 0.004 -0.07 0.629 0.01 0.905

AB-12 -0.04 0.870 0.12 0.535 -1.49 0.007 -0.25 0.109 -1.59 0.017 -3.34 0.016 -2.97 <0.001 -0.12 0.283 -0.88 0.004

a CST, colistin; MER, meropenem; TIG, tigecycline; FOS, fosfomycin; FD, fusidic acid; RIF, rifampin; SUL, sulbactam.
b Δlog means the log10 recovered CFU of antibiotic combination therapy minus the log10 recovered CFU of monotherapy.
c A P value of < 0.05 indicates significance and is shown in bold.

doi:10.1371/journal.pone.0157757.t004
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may not have advantages over monotherapy against infections caused by XDR-AB strains with
high MICs for carbapenems.

Rifampin, which exhibited high MICs, was generally effective against XDR-AB strains,
being comparable to colistin and tigecycline in our study. Previous in vivo studies using differ-
ent animal models obtained similar outcomes [16, 23]. However, rifampin monotherapy is not
recommended in clinical practice. Treatment with colistin plus rifampin yielded synergistic
effects with all test strains at both 24 h and 48 h post-treatment. Compared with colistin com-
bined with meropenem, tigecycline, fosfomycin, or sulbactam, administration of colistin with
rifampin was more efficacious in treating XDR-AB infections. In a multicenter, open-label,
randomized trial conducted with enrolled patients having life-threatening XDR-AB infections,
including rifampin with colistin significantly increased the microbial-eradication rate
(P = 0.034), but did not reduce the 30-day mortality [26]. Thus, the authors suggested that
rifampin should not be routinely combined with colistin for treating severe XDR-AB infections
at present. However, it should be noted that this study had important limitations, such as the
lack of blinding of physicians to the intervention and the large number of patients who received
active (tigecycline) or potentially synergistic (carbapenems) agents in the control group [27].
In the future, well-designed studies will be needed to clarify the role of colistin-rifampin combi-
nation therapy in treating XDR-AB infections.

The lack of effective, novel antibiotics against XDR-AB requires the use of unorthodox com-
binations of existing anti-microbial agents. A potent synergistic effect was observed in vitro
between colistin and glycopeptides, daptomycin, or fusidic acid, which are only used against
Gram-positive bacterial infections [28–31]. The effect is thought to be mediated via a permea-
bilizing effect of colistin on the outer membrane of A. baumannii, facilitating the entry of anti-
biotics with large molecules [32]. Using a simple Galleria mellonella-infection model, several

Fig 2. Comparison of the efficacies of colistin-fusidic acid combination vs other combinations after 24 and 48 h of treatment. CST, colistin; MER,
meropenem; TIG, tigecycline; FOS, fosfomycin; FD, fusidic acid; RIF, rifampin; SUL, sulbactam. Δlog means the log10 recovered CFU of other combinations
minus the log10 recovered CFU of colistin-fusidic acid combination.

doi:10.1371/journal.pone.0157757.g002
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studies have demonstrated that colistin combined with glycopeptides and daptomycin are
highly active against A. baumannii in vivo [33–35]. Results from our study also revealed that
the addition of fusidic acid significantly improved the efficacy of colistin, with a synergistic
effect in 58.3% and 75.0% of the test strains after 24 h and 48 h of treatment. Colistin combined
with fusidic acid was superior to the combination of colistin with meropenem, tigecycline, fos-
fomycin, or sulbactam. Therefore, the colistin-fusidic acid combination should be considered
as a potential treatment for difficult-to-treat XDR-AB infections.

Although many in vitro studies have demonstrated that colistin combined with tigecycline,
fosfomycin, or sulbactam displayed synergistic effects [8], the addition of these agents did not
considerably improved the efficacy of colistin in the current study. Yilmaz et al. also showed
that no statistically significant differences of bacterial counts in lung tissue were observed
between colistin, tigecycline, and combination treatments against an XDR-AB strain, despite
the synergy observed in vitro [36]. Previous data by Dinc et al. showed that the addition of sul-
bactam to colistin and tigecycline therapy had no significant effect on bacterial counts in an
experimental model of carbapenem-resistant A. baumannii sepsis [21]. Thus, such colistin
combinations might not be advantageous over colistin monotherapy for treating XDR-AB
infections in clinical settings.

Our study has several limitations and should be interpreted with caution. First, although the
strains used in this study were isolated from different patients in our hospital, this is a single-
center study, and the strains segregated into only 4 groups, based on PFGE results. Second, we
did not evaluate differences in dissemination of bacteria in the blood and other organs follow-
ing treatment with different drug combinations. Third, because the thigh infection model is a
local infection model, we could not compare mortality rates and other clinical data in addition
to bacterial counts.

Fig 3. Comparison of the efficacies of colistin-rifampin combination vs other combinations after 24 and 48 h of treatment.CST, colistin; MER,
meropenem; TIG, tigecycline; FOS, fosfomycin; FD, fusidic acid; RIF, rifampin; SUL, sulbactam. Δlog means the log10 recovered CFU of other combinations
minus the log10 recovered CFU of colistin-rifampin combination.

doi:10.1371/journal.pone.0157757.g003
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In summary, our in vivo findings suggest that colistin in combination with rifampin or fusi-
dic acid is more efficacious in treating XDR-AB infections than are other combinations. Colis-
tin-meropenem combination may be another appropriate option, in cases where the MIC is
not higher than 32 mg/L. Further clinical studies are urgently needed to prove the relevance of
these findings in humans.
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