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Abstract
Nicotinic acetylcholine receptors (nAChR) are ligand gated ion channels, identified as ther-

apeutic targets for a range of human diseases. Drug design for nAChR related disorders is

increasingly using structure-based approaches. Many of these structural insights for thera-

peutic lead development have been obtained from co-crystal structures of nAChR agonists

and antagonists with the acetylcholine binding protein (AChBP). AChBP is a water soluble,

structural and functional homolog of the extracellular, ligand-binding domain of nAChRs.

Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for

structural and biophysical studies. Here, we report the establishment of an Escherichia coli
(E. coli) expression system that significantly reduces the cost and time of production com-

pared to the existing expression systems. E. coli can efficiently express unglycosylated

AChBP for crystallography and makes the expression of isotopically labelled forms feasi-

ble for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion

protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to

recover protein from inclusion bodies. The purified protein yield obtained from the E. coli
expression system is comparable to that obtained from existing AChBP expression sys-

tems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities

matching those previously reported. Thus, the E. coli expression system significantly sim-

plifies the expression and purification of functional AChBP for structural and biophysical

studies.

Introduction
Nicotinic acetylcholine receptors (nAChR) are promising drug targets for a range of human
neurodegenerative diseases [1–6]. Traditionally, drug design and development for nAChR
related diseases have mostly followed ligand-based empirical approaches [7–10]. However,
nAChR subtypes share conserved features, especially at the orthosteric ligand binding site,
necessitating the use of high resolution structural information on receptor-ligand interactions
for the rational design of subtype-selective therapeutics [1, 2, 4–6, 11, 12]. Unfortunately, high
resolution structures of the nAChRs have been limited by challenges of membrane protein
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crystallography [9, 12–15]. This challenge has been side-stepped to a significant extent by the
use of acetylcholine binding protein (AChBP) as the soluble structural and functional homolog
of the nAChR ligand binding domain [13, 16–18]. AChBPs have enabled the application of
crystallography and solution based techniques to obtain high resolution insights into nAChR-
ligand interactions, required for efficient drug lead optimizations [9, 12, 19, 20].

AChBPs have been recombinantly expressed in eukaryotic expression systems for structural
and biophysical studies (Tables 1 and 2). These expression systems offer several advantages,
most importantly allowing post-translational modifications that can be important for the solu-
bility and bioactivity of the expressed protein [21, 22]. However, these expression systems
are typically more complex, time-consuming and costlier than E. coli [23–25]. With major
advances in the cell lines, expression vectors and fusion proteins available, E. coli expression
systems have become increasingly popular for the production of recombinant proteins [26–
28]. Considering that the AChBPs are routinely used for structural and biophysical studies that
require milligram quantities of proteins, an E. coli expression system for the AChBPs would
provide an additional, cost-effective and simpler source of protein.

Table 2. Comparison of eukaryotic and E. coli systems for Aplysia (Ac) AChBP expression and purification.

Construct Expression Used for Yield Purification Reference

pFastbac I—Ac-AChBP—secretion
signal sequence

Insect Sf9
cells

Crystallization / ITC /
radioligand binding
assays

NR(Secreted
protein)

Anion exchange (Q—sepharose)—
gel filtration (Superdex 200)—Mono
Q-sepharose

[30, 32,
33]

p3×FLAG—CMV— 9 —preprotrypsin
signal peptide (PPT)—FLAG—Ac-
AChBP

HEK-293S
cells

Crystallization ~1‒ 2.5 mg/L FLAG antibody column FLAG
peptide—SEC

[16, 34]

p3×FLAG—CMV— 9 —preprotrypsin
signal peptide (PPT)—FLAG—Ac-
AChBP— 6x His

HEK-293S
cells

Radioligand binding
assays

~ 0.5 ‒ 2 mg/
L

FLAG antibody column—FLAG
peptide—SEC

[16, 34]

pHUE—Ac-AChBP E. coli
(BL21DE3)

Radioligand binding
assays

1‒ 1.5 mg/L Affinity (Ni—NTA)—gel filtration
(Superdex 200)

This work

NR: not reported.

doi:10.1371/journal.pone.0157363.t002

Table 1. Comparison of eukaryotic and E. coli systems for Lymnaea (Ls) AChBP expression and purification.

Construct Expression Used for Yield Purification Reference

pPIC9 —Ls—AChBP Pichia pastoris
GS115

Crystallization NR Anion exchange (Poros50 HQ, Mono Q),
and gel filtration (Superdex 200)

[14]

pPICZα B—Ls—AChBP Pichia pastoris
X-33

Intrinsic tryptophan
fluorescence/
Crystallization

NR Anion exchange (Q-Sepharose column)—
deglycosylation—Mono Q—gel filtration
(Superdex 200)

[29]

pFastbac I—Ls—AChBP—secretion
signal sequence

Insect SF9
cells

Crystallization/ITC NR Anion exchange (Q-sepharose)—gel
filtration (Superdex 200)—Mono Q-
sepharose

[30, 31]

p3×FLAG—CMV— 9 —preprotrypsin
signal peptide (PPT)— 3xFLAG—Ls-
AChBP

HEK cells Fluorescence Assays 1‒2.5
mg/L

FLAG antibody column [20]

pHUE—Ls-AChBP E. coli
(BL21DE3)

Crystallization
/Radioligand binding
assays

4‒5
mg/L

Affinity (Ni-NTA)—gel filtration (Superdex
200)

This work

NR: not reported.

doi:10.1371/journal.pone.0157363.t001
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Furthermore, attempts have been made to use NMR techniques to monitor ligand induced
conformational changes of the nAChR in solution. Isotopically labelled (15N and 13C) ligand
binding domains of bacterial homologs have been expressed for this purpose, but these failed
to oligomerize as a pentamer in solution and therefore lacked an intact ligand binding pocket
[35, 36]. AChBP naturally assembles as a pentamer in solution and therefore is a suitable candi-
date for such studies. AChBPs with isotopically labelled cysteine residues have demonstrated
conformational changes of the C-loop associated with ligand binding [37]. However, this
selected residue labelling does not allow the identification of global conformational changes
that link ligand binding to channel gating. An E. coli expression system expressing AChBP
would be ideal for isotopic labelling required for the NMR analysis of large protein molecules.
Previous attempts to express the AChBPs in E. coli produced only insoluble AChBP, requiring
expensive and time-consuming stabilization and refolding steps to obtain functional protein
[38].

In this study, we report a high-throughput and economical E. coli expression system capable
of generating stable, soluble and functional AChBPs from Lymnaea stagnalis (Ls) and Aplysia
californica (Ac), which are the most widely used AChBPs. We achieved this by tagging the
AChBPs with ubiquitin (Ub), which enhanced the expression of correctly folded AChBPs in
the soluble fractions. Optimized expression parameters produced milligram quantities of
fusion protein per liter of culture that was readily enzymatically de-ubiquitinylated to yield
purified, native AChBPs for structural and biophysical applications.

Materials and Methods

Construct design
Synthetic Ls- and Ac-AChBP genes were designed and purchased (Blue Heron Biotechnology).
The AChBP genes were PCR-amplified from pUC19 cloning vector using primers with SacII
and NotI restriction sites, respectively, for cloning into the pHUE vector [39] for bacterial
expression. The resulting construct included the hexa-histidine tag for detection and purifica-
tion, followed by genes for ubiquitin and Ls/Ac AChBP respectively. (S1 Fig). All cloning work
was carried out using the One Shot1 Top10 chemically competent E. coli cells (Life Technolo-
gies) and clones were confirmed by sequencing by the Australian Genome Research Facility.

Optimization of E. coli protein expression
Protein expression conditions (Table 3) for Ls-AChBP and Ac-AChBP were optimized using
small scale (10 mL) cultures. Plasmids encoding the AChBPs were transformed into E. coli
BL21DE3 cells and plated onto Luria Bertani (LB) agar with ampicillin (Sigma-Aldrich) for
selection (0.1 mg/mL). Following overnight incubation, a single colony was picked and inocu-
lated into 5 mL LB with ampicillin (0.1 mg/mL), and incubated overnight at 37°C with constant
shaking. The following day 250 μL of the overnight cultures were inoculated into 10 mL of LB,

Table 3. Parameters optimized for the soluble expression of AChBPs.

Parameters Range

Temperature 37°C, 25°C, 16°C

Expression induction method IPTG and Auto induction

Inducer concentration (only for Ac-AChBP) 1 mM and 0.1 mM

Cell density for induction i.e O.D600 (only for Ac-AChBP) 0.8, 0.5, 0.1.

Optimal expression conditions are indicated in bold.

doi:10.1371/journal.pone.0157363.t003
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with ampicillin (0.1 mg/mL). For routine protein expression, overnight cultures were also
stored as glycerol stocks by mixing 500 μL of culture with 500 μL sterile 60% glycerol at ‒80°C.
Cells were grown under appropriate expression conditions (Table 3) and harvested using high
speed centrifugation (17,000 x g). Cell pellets were re-suspended in, 20 mM Tris, 150 mM
NaCl, 10% glycerol, pH 8.0 (AChBP) and 20 mMHEPES, 300 mMNaCl, pH 7.0 (DUB) to a
uniform OD600 to ensure equal protein loading. Cells were lysed using sonication and the cell
debris (insoluble/inclusion body material) was separated from the soluble material using high-
speed centrifugation. Soluble and insoluble fractions were analyzed using western blots. Protein
bands were quantified by densitometric analysis (Odyssey, Licor1 Biosciences), where inten-
sity was measured by defining each band with the rectangular tool.

Large-scale expression of AChBP in E. coli
Large scale protein production for Ls- and Ac-AChBPs were carried out in 2–6 L of 2x Yeast
extract Tryptone (2xYT) media using the optimized expression conditions. Expression was
performed in 2xYT media, which is capable of supporting higher biomass than LB and there-
fore improves protein expression levels. Protein expression was induced using 1 mM IPTG at
16°C and 0.5 OD600 for Ls-AChBP and DUB. For Ac-AChBP, expression was induced with 0.1
mM IPTG at 16°C and 0.2 OD600. Cells were harvested by centrifugation (6,076 x g) and the
cell pellet re-suspended in 20 mM Tris, 150 mM NaCl, 10% glycerol, pH 8.0 for AChBPs and
20 mMHEPES, 300 mMNaCl, pH 7.0 for DUB. Cell pellets were stored at –80°C until used for
purification.

Expression of AChBP in minimal media
The protein expression method followed here is adapted fromMarley et al., 2010 and Shiva-
shanmugam et al. [40, 41]. The pHUE expression construct for Ls-AChBP transformed into
BL21DE3 cells were used for the expression. Cells were grown in LB broth to an O.D of 0.7–0.8
after which they were pelleted at 5,000 x g for 30 min. The pellets were gently re-suspended in
1 x M9 salts (22 mM KH2PO4, 90 mM Na2HPO4, 17 mM NaCl) to remove residual LB broth.
The re-suspended cells were again pelleted at 5,000 x g for 30 min, re-suspended in 1L of
minimal media (1 x M9 salts 20% (w/v),Vitamin solution 0.2% (w/v),Thiamine solution 0.2%
(w/v),1 MMgSO4 0.16% (w/v), 1 M CaCl2 0.008% (w/v), 15NH4Cl 0.1% (w/v), 13C D-glucose
0.4% (w/v), Ampicillin 0.1 mg/mL) and grown at 37°C for 1–1.5 hours before protein expres-
sion was induced with 1 mM IPTG (final concentration) at 16°C for 18–20 h. Finally, cells
were harvested at 5,000 x g for 30 min at 4°C, the pellet re-suspended in 20 mM Tris, 150 mM
NaCl, 10% glycerol and pH 8.0 and stored at –80°C prior to use.

Large-scale purification of AChBP
Large-scale purification was carried out using a two-step purification protocol combining
immobilized metal affinity chromatography (IMAC) and size exclusion chromatography
(SEC). Cell pellets were lysed by repeated (3 x) freeze-thawing of the pellets, sonication and
incubation with lysozyme at a final concentration of 0.5 mg/mL (Sigma-Aldrich). To reduce
viscosity and to prevent proteolysis of the expressed protein DNAase, (10 units/μL) (Roche)
and protease inhibitor tablets (1 tablet/50 mL of supernatant, cOmplete EDTA-Free Roche)
were added. The lysed cells were pelleted at 39,000 x g and the supernatant purified by IMAC
using HIS-select(R) HF nickel affinity gel (Sigma Aldrich). To assess homogeneity and oligo-
merization state, the IMAC purified AChBPs were analyzed on an analytical grade Superdex
200 (S200) 10/300 column (GE healthcare) calibrated with molecular weight standards (blue
dextran (2,000,000 Da), β-amylase (200,000 Da), alcohol dehydrogenase (150,000 Da), albumin
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(66,000 Da), carbonic anhydrase (29,000 Da), and cytochrome C (12,400 Da) from Sigma-
Alrich) on an ÄKTA FPLC system (GE healthcare). Theoretical molecular weights for AChBPs
were calculated using expasy Protparam [42].

Cloning, expression and purification of DUB
Deubiquitinylating enzyme (DUB) was used in this study to cleave the AChBP-Ub fusion pro-
tein to yield native AChBPs. The gene for DUB cloned into the pET15b vector was kindly
provided by Prof. Bostjan Kobe. Screening for optimal E. coli expression conditions and purifi-
cation of DUB were performed using the same methods employed for AChBP, as described
above.

Ubiquitin cleavage
The AChBPs were cleaved from ubiquitin using the DUB enzyme incubated in a 1:50 (enzyme:
protein) ratio at 4°C for ~18 h at pH 8.0, as reported previously [39]. The cleaved proteins were
then purified using a pre-equilibrated S200 16/600 SEC column (GE healthcare). The fractions
containing the protein were pooled and concentrated to the desired concentration using an
ultrafilter (Amicon Ultra-15 MWCO 10kDa, Merck Millipore). For AChBP expressed in mini-
mal media, an additional buffer exchange step was introduced after concentrating the sample
and the labelled protein was transferred to a buffer more suitable for NMR (20 mM Tris, 100
mMNaCl and pH 7.5) using dialysis.

Radioligand binding assay at AChBP
Competitive radioligand binding assay with 3H-epibatidine (specific activity 1.11–2.59 TBq/
mmol) and nAChR agonists and antagonists was used to determine the functional activity of
the recombinant Ls- and Ac-AChBPs. The proteins were coated onto 96 well plates (Flexible
PET Microplate, Perkin Elmer) at a concentration of 8 μM total protein. Serial dilutions of
nAChR ligands together with a fixed concentration of 3H-epibatidine (1 nM) were incubated
with the immobilized protein in 100 μL of assay buffer (phosphate buffered saline with 0.05%
bovine serum albumin) for 1 h at 4°C. Unbound ligands were washed manually followed by
addition of 100 μL scintillant (Optiphase Supermix, Perkin Elmer). Plates were incubated with
the scintillant for 2 min on a shaker and radioactivity measured with a Wallac 1450 MicroBeta
liquid scintillation counter. Binding data were evaluated by a nonlinear, least squares one-site
competition fitting procedure using GraphPad Prism 6.0 (GraphPad Software Inc., San Diego,
CA, USA). The radioligand binding assays were performed in triplicate in three separate exper-
iments (n = 3), with IC50 values reported as mean ± standard error of the mean (S.E.M).

Results

Screening of protein expression conditions
AChBP and DUB expression levels were evaluated at different temperatures and induction
methods to determine the optimum parameters for protein expression (Table 3). Ls-AChBP
was successfully expressed in the soluble fraction using both IPTG and auto induction meth-
ods. Optimum expression levels were observed with 1 mM IPTG induction at 37°C (Fig 1A).
However, Ls-AChBP expressed at lower temperature (16°C) was more stable during purifica-
tion, hence routine expression of Ls-AChBP was performed at 16°C. In contrast, expression of
Ac-AChBP was detected in the insoluble fraction of both the auto induced and IPTG induced
cultures (Fig 1B). Therefore, the rate of protein expression was lowered by reducing the inducer
concentration and the optical density (OD600) of the culture at which protein expression is

E. coli Expression of AChBPs
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Fig 1. Expression optimization of AChBP and DUB in E. coli. Protein expression levels in the soluble
fractions at (1) 37°C, (2) 25°C and (3) 16°C and insoluble fractions (inclusion body) at (4) 37°C, (5) 25°C and
(6) 16°C using the (i) IPTG and (ii) auto induction methods were analyzed for (A) Ls-AChBP, (B) Ac-AChBP
and (C) DUB using western blots. Anti-His tag mouse monoclonal antibody at a dilution of 1:3000 in the
blocking solution was used as the primary antibody Fluorescently labelled goat anti-mouse IgG (H+L) Alexa
Fluor 680 at a dilution of 1:2500 was used as the secondary antibody. The western blots were imaged with an

E. coli Expression of AChBPs
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induced. This was based on a previous report suggesting that high rate of protein expression
often leads to accumulation of the recombinant protein in inclusion bodies [43]. Using a low
concentration of IPTG (0.1 mM) and low optical density of the culture (OD600: 0.2) Ac-
AChBP was expressed in the soluble fraction, albeit at lower concentrations (final purified
yield: 1–3 mg/L) compared to that for Ls-AChBP (final purified yield: 4–5 mg/L). IPTG
induced expression of DUB was superior to auto induction, with higher protein expression lev-
els at 16°C compared to the previously reported 37°C [39]. Therefore, routine expression of
DUB was carried out with IPTG induction (1 mM) at 16°C (Fig 1C).

Recombinant AChBPs are soluble and pentameric in solution
IMAC purified DUB had a relative molecular weight of 39.7 kDa (based on calculated relative
migration distance on the SDS-PAGE gel). DUB cleaved ubiquitin from the AChBPs, as
observed from the difference in the relative molecular weights for the AChBPs before and after
incubation with DUB (Fig 2B and 2C). The tagged Ls- and Ac-AChBP were found to have a rel-
ative molecular weight of 30.2 kDa and 35.9 kDa, respectively. De-tagged Ls- and Ac-AChBPs
were found to have a molecular weight of 19.2 and 24.6 kDa, a difference of ~11 kDa, corre-
sponding to the molecular weight of ubiquitin (10.3 kDa.)

Odyssey Infrared Imaging System (Licor1 Biosciences) at a wavelength of 700 nm and 2.0 intensity level.
Black arrows indicate expected bands for AChBPs and DUB. (D) Protein expression level in the soluble
fraction under the different induction methods and temperatures were quantified for (i) Ls-AChBP and (ii)
DUB. Ac-AChBP was not detected in the soluble fraction and therefore not quantified.

doi:10.1371/journal.pone.0157363.g001

Fig 2. IMAC purified Ls-, Ac-AChBP and DUB. (A) Recombinantly expressed DUBmigrates as the major
band to a relative molecular weight of 39.7 kDa. (B) Lane 1: IMAC purified ubiquitin tagged Ls-AChBP with a
relative molecular weight of 30.2 kDa. Lane 2: De-tagged Ls-AChBPmigrates to a relative molecular weight
of 19.2 kDa. (C) Lane 1: IMAC purified ubiquitin tagged Ac-AChBP with a relative molecular weight of 35.9
kDa. Lane 2: De-tagged Ac-AChBPmigrates to a relative molecular weight of 24.6 kDa. SDS-page gels were
stained Coomassie Brilliant Blue R250 and imaged with ImageScanner III (GE healthcare) at a resolution of
600 dpi.

doi:10.1371/journal.pone.0157363.g002
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Purified AChBPs were analyzed on a calibrated analytical Superdex 200 column (GL10/300)
to assess homogeneity and oligomerization state in solution. The ubiquitin tagged AChBPs
eluted as a major, homogenous peak at an elution volume consistent with the molecular weight
for pentameric, ubiquitin-tagged AChBPs (Figs 3A and 4A, S5 Fig and S1 Table). De-tagged
Ls-AChBP remained a soluble pentamer after cleavage of the ubiquitin (Fig 3B). However, de-
tagged Ac-AChBP was found to be unstable in solution without the ubiquitin tag (Fig 4B).
Therefore, ubiquitin was not cleaved from Ac-AChBP and the tagged protein can be used in
studies not affected by presence of fusion partners. Fractions corresponding to the protein
peak were found to be>90% pure when analyzed on SDS-PAGE gels, and therefore suitable
for functional as well as structural studies requiring highly purified protein samples. The final
yield of purified proteins was found to be 4–5 mg/L for Ls-AChBP and 1–1.5 mg/L for Ac-
AChBP. Similarly, Ls-AChBP expressed in minimal media was found to be stable and penta-
meric in solution with an elution profile matching that of Ls-AChBP expressed in 2xYT (Fig
5). The final yield for Ls-AChBP purified from minimal media was 1–1.5 mg/L of expression,
about 5-fold lower than that obtained from expression in 2xYT media.

Recombinant Ls and Ac-AChBPs are functional
To confirm that recombinant AChBPs expressed in E. coli cultures were functional, their ability
to interact with nAChR ligands was tested (Tables 4 and 5, Fig 6) in a competitive radioligand

Fig 3. Ls-AChBP is pentameric in solution. Elution profile on a calibrated analytical size exclusion chromatography column
(S200 10/300) for (A) pentameric, ubiquitin tagged Ls-AChBP with a molecular weight of 190.5 kDa. Peak fractions were
analyzed on a 10% SDS-PAGE gel (inset) and (B) pentameric, de-tagged Ls-AChBP with a molecular weight of 112.2 kDa. Peak
fractions were analyzed on a 12% SDS-PAGE gel (inset). Elution volumes for standard proteins used for calibration are indicated
on top of each panel.

doi:10.1371/journal.pone.0157363.g003
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binding assay. Both AChBPs had affinities for epibatidine, nicotine, ImI, PnIA (A10L) and
LsIA that were similar to literature values (Tables 4 and 5). Both AChBPs displayed low nano
molar affinities for epibatidine and micro molar affinities for nicotine. Ac-AChBP was found
to have nano molar affinities for the α-conotoxins, whereas Ls-AChBP displayed micro molar
affinities for these peptide antagonists, a typical binding behavior observed in previous studies
[32, 44]. This confirms that the AChBPs expressed in this E. coli expression system have similar
binding properties as that of AChBPs expressed in eukaryotic expression systems.

Discussion
AChBPs are widely used structural templates for the extracellular ligand binding domain of the
nAChRs [19]. Currently, AChBPs are expressed in eukaryotic systems, which are more suitable
than E. coli systems for large proteins such as AChBP, which also have post-translational modi-
fications like N-linked glycosylation [14, 16, 29–34, 46]. Subsequently, glycosylation was
shown not to be important for binding properties of the protein. In fact, de-glycosylation of the

Fig 4. Ac-AChBP is pentameric in solution. Elution profile on a calibrated analytical size exclusion chromatography column (S200 10/300) for (A)
pentameric, ubiquitin tagged Ac-AChBPwith a molecular weight of 190.5 kDa. Peak fractions were analyzed on a 10% SDS-PAGE gel (inset) and (B)
pentameric, de-tagged Ac-AChBP eluted at void volume as soluble aggregates. Peak fractions were analyzed on a 12% SDS-PAGE gel (inset). Elution
volumes for standard proteins used for calibration are indicated on top of each panel.

doi:10.1371/journal.pone.0157363.g004
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protein and/or a more homogenous glycosylation pattern was required to facilitate crystalliza-
tion of the protein [30, 34]. This presented an opportunity to develop an additional recombi-
nant expression system in E. coli, which would be a faster, simpler and economical source of
this protein for biophysical studies. However, previous attempts of AChBP expression in E. coli
resulted in accumulation of these proteins in inclusion bodies [38]. This necessitated the use of
expensive and time-consuming re-solubilization techniques to recover the expressed protein.

In this study we have established an E. coli expression system capable of expressing AChBPs
in the soluble fractions. We successfully expressed Ls- and Ac-AChBPs using this expression
system. Our method overcomes three major challenges (1) absence of post-translational
machinery prevents protein-glycosylation that can interfere with crystallization, (2) AChBPs
are expressed in the soluble fractions, therefore overcoming the need to recover protein from
inclusion bodies and (3) the E. coli expression system reduces the complexity and cost of pro-
duction by almost 10-fold compared to eukaryotic expression systems. It significantly reduces
the large scale protein expression and purification time frame from 2–3 weeks using eukaryotic
expression systems, to about 3–4 days. Additionally, we report optimized protein expression
conditions capable of generating milligram quantities of AChBPs. Yield and quality of the
AChBPs expressed in E. colimatch that of AChBPs expressed from existing AChBP expression
systems and meet the standards required for techniques such as x-ray crystallography.

Expression of AChBPs in the soluble fractions was largely facilitated by the use of ubiquitin
(Ub) which serves as a fusion tag. E. coli lacks Ub and all enzymes in the ubiquitin pathway,

Fig 5. Ls-AChBP expressed in minimal media. (A) Ls-AChBP expressed in minimal media with 15NH4Cl at
different stages of purification, (1) lysate (2) unbound proteins (3, 4) washes (5) ubiquitin tagged Ls-AChBP
(6) de-tagged Ls-AChBP. (B) Size-exclusion chromatogram for de-tagged, Ls-AChBP eluting as a pentamer
with an experimental molecular weight of 112.2 kDa.

doi:10.1371/journal.pone.0157363.g005

Table 4. Binding properties of Ac-AChBP expressed in E. coli.

Ligand Ki ± S.E.M (nM) (This work) Literature Ki (nM) Mode of action

Epibatidine 11.57 ± 4.8 11.4 ± 0.7 [45] Agonist

Nicotine 1056 ± 640 583 ± 84 [45] Agonist

ImI 3.0 ± 0.5 4.0 ± 2 [45] Antagonist

PnIA (A10L) 2.8 ± 0.2 36.7 ± 16.6 [32] Antagonist

LsIA 11.0 ± 0.8 ND Antagonist

Binding constants (Ki values) were determined using competitive radioligand binding assay with 3H-epibatidine (n = 3) each performed in triplicate. ND,

not determined.

doi:10.1371/journal.pone.0157363.t004
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thus preventing any non-specific proteolysis [39, 47, 48]. Previously, Ub has been particularly
valuable in driving the soluble expression for several difficult to express proteins [48]. Avail-
ability of de-ubiquitinylating enzymes (DUB) provides a convenient method to cleave Ub from
protein of interest efficiently [47]. These enzymes recognize the double glycine motif at the C-
terminal of Ub, ensuring specific cleavage without leaving additional residues, unlike several
commonly used proteases [49]. Additionally, DUBs can be expressed in-house, using E. coli,
further reducing overall expression costs for routinely expressed proteins such as AChBPs [39].

Hexa-His tagged Ub incorporated in the pHUE expression vector [39] was used in this
study for the E. coli expression of AChBPs. Using this construct, sufficient quantities of
AChBPs could be successfully retrieved from the soluble fraction; therefore solubilization of
AChBPs accumulated in insoluble fractions was not required. In addition, both AChBPs spon-
taneously oligomerize in the native pentameric form. Further, we were able to successfully
remove the ubiquitin from Ls-AChBP, and de-tagged Ls-AChBP retained the pentameric olig-
omerization state. A range of crystallization conditions yielded diffracting crystals for de-
tagged Ls-AChBP providing diffraction data up to 2.8 Å (S4 Fig), confirming that the E. coli
expression system does not compromise AChBP crystallization. On the contrary, de-tagged
Ac-AChBP was seen to aggregate in solution. Ubiquitin tagged Ac-AChBP could potentially
pose a problem for crystallographic studies, although some examples in the literature suggest
that fusion tags could potentially improve crystallization of the protein [50]. However, it

Table 5. Binding properties of Ls-AChBP expressed in E. coli.

Ligand Ki ±S.E.M (nM) (This work) Literature Ki (nM) Mode of action

Epibatidine 3.5 ± 1.6 2.5 ± 0.2 [45] Agonist

Nicotine 860 ± 400 1100 ± 230 [45] Agonist

ImI >10,000 >10,000 [45] Antagonist

PnIA (A10L) 2000 ± 1100 80 ± 30 [32] Antagonist

LsIA 700 ± 370 ND Antagonist

Binding constants (Ki values) were determined using competitive radioligand binding assay with 3H-epibatidine (n = 3), each performed in triplicate. ND,

not determined.

doi:10.1371/journal.pone.0157363.t005

Fig 6. AChBPs expressed in E. coli are functional. Competitive radioligand binding assay with [3H]-epibatidine and nAChR ligands were used to
determine the activity of (A) Ls-AChBP and (B) Ac-AChBP.

doi:10.1371/journal.pone.0157363.g006

E. coli Expression of AChBPs

PLOSONE | DOI:10.1371/journal.pone.0157363 June 15, 2016 11 / 15



remains to be seen whether the ubiquitin allows or hinders the crystallization of Ac-AChBP.
Importantly, the binding properties of AChBPs generated using this system were not altered,
with the pharmacological profiles of both Ls- and Ac-AChBP matching previously reported
values. As expected, Ac-AChBP exhibited higher affinity for the nAChR agonists and antago-
nists compared to Ls-AChBP, consistent with the observed trend [32, 44, 51].

Previous attempts have been made to express isotopically-labelled ligand binding domains of
nAChR homologs to monitor conformational changes in solution [35, 37]. However, these are
limited by the absence of an intact ligand binding pocket as is the case for gleobacter violaceus
ligand-gated ion channel which remains a monomer in solution [35]. AChBP overcomes this
limitation and not only exists as a pentamer in solution, but has been shown to possess channel
gating properties, therefore providing a reliable template to observe ligand-associated channel
gating mechanisms [52]. To facilitate NMR studies with AChBP, we utilized the E. coli expres-
sion system to express Ls-AChBP in minimal media. Although successful use of AChBP in
NMR will require further optimization, including buffer conditions and deuteration, we demon-
strated that it is possible to produce isotopically labelled AChBP that could allow monitoring of
dynamic processes such as ligand-induced conformational changes linked to channel gating.

Recently, important breakthroughs have been made in determining the structure of the
ligand binding domain of the nAChR [53]. However, these structures do not have an intact
ligand-binding pocket, and therefore do not allow characterization of subtype-selective recep-
tor and orthosteric ligand interactions. In the absence of high resolution structures of the
nAChR extracellular domain, AChBPs are the only nAChR homologs that exist in a soluble,
pentameric form facilitating biophysical characterization of nAChR-ligand interactions.
AChBPs are now being adapted through mutagenesis to mimic nAChR and other Cys-loop
ligand binding pockets including the 5-HT3 receptor [54, 55]. E. coli expression provides an
economical, and simpler alternative to eukaryotic systems currently used for the production of
AChBPs, facilitating more comprehensive structural studies including the structure-based drug
design of nAChR specific therapeutics.
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