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Abstract
It has been suggested that the map-like representations that support human spatial mem-

ory are fragmented into sub-maps with local reference frames, rather than being unitary

and global. However, the principles underlying the structure of these ‘cognitive maps’ are

not well understood. We propose that the structure of the representations of navigation

space arises from clustering within individual psychological spaces, i.e. from a process

that groups together objects that are close in these spaces. Building on the ideas of repre-

sentational geometry and similarity-based representations in cognitive science, we formu-

late methods for learning dissimilarity functions (metrics) characterizing participants’

psychological spaces. We show that these learned metrics, together with a probabilistic

model of clustering based on the Bayesian cognition paradigm, allow prediction of partici-

pants’ cognitive map structures in advance. Apart from insights into spatial representation

learning in human cognition, these methods could facilitate novel computational tools

capable of using human-like spatial concepts. We also compare several features influenc-

ing spatial memory structure, including spatial distance, visual similarity and functional

similarity, and report strong correlations between these dimensions and the grouping

probability in participants’ spatial representations, providing further support for clustering

in spatial memory.

Introduction

Motivation
There has been considerable research on spatial representations facilitating navigation since
Tolman coined the term ‘cognitive map’ [1]. Since then, the neural bases of such allocentric
(world-centered) representations of space have been identified in rats [2, 3] and humans [4, 5]
and have been shown to play a vital role in representing locations within the environment in
long-term memory. Instead of learning a single spatial map with a global reference frame, as
proposed originally [1, 2], humans (as well as some non-human animals) seem to form
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structured spatial maps, consisting of multiple ‘sub-maps’, i.e. multiple representations con-
taining spatial information about sub-sets of objects in the environment.

Behavioural evidence has suggested that human spatial maps are structured, and has been
interpreted as comprising multi-level hierarchies [6–10], or at least as having multiple local ref-
erence frames [11, 12]. These hierarchies, extracted from recall sequences, can be observed
even in the case of randomly distributed objects with no boundaries [8], with participants’
response times and accuracies being affected by this structure (subjects overestimated distances
between objects on different branches of the hierarchy and underestimated distances within
branches, and showed shorter response times for within-branch judgements). Further evidence
for the existence of multiple representations in different spatial reference frames [11–13] has
been derived from the accuracies of judgements of relative direction, which are heavily affected
by subjects’ frames of reference.

Furthermore, there is also strong neuroscientific evidence for hierarchical spatial represen-
tations [14, 15], and for fragmentation into sub-maps [16] in mammalian brains. Finally, orga-
nized and structured maps (instead of a single representation) are consistent with ‘chunking’ in
long-term memory [17] and with hierarchical models of cognition [18], and have multiple
information processing advantages, including the increased speed and efficiency of retrieval
search, and economical storage.

Cognitive map structure is not introspectively accessible nor immediately apparent, and has
to be inferred indirectly. Nevertheless, these structures play an important role in spatial cogni-
tion. It has been shown in experiments involving priming, distance and angle estimations, and
sketch maps, that the speed and accuracy of subjects at various spatially relevant tasks are sig-
nificantly influenced by how they represent space [6, 8, 19, 20].

In addition to helping us understand these influences on cognitive performance, a model of
cognitive map structure could be of interest to several neighbouring fields, including human-
robot interaction (allowing robots to use human-like spatial concepts), artificial intelligence
(using insights from human memory to improve artificial memory), geographic information
science (presenting spatial information in a more easily comprehensible and memorable fash-
ion), or personal navigation aids (allowing specification of goals as human spatial concepts
instead of specific addresses, e.g. ‘navigate to the area with the student bars’).

Structured cognitive maps
In our usage of the terms in this paper, ‘spatial memory’ and ‘cognitive maps’ contain spatial
representations of objects in navigation space which are allocentric (world-centered instead of
stored in relation to the organism), goal-independent, and are stored long-term. They afford
flexible route planning (e.g., detours or shortcuts) and judgements of distances and directions
of represented objects. We will use the term ‘sub-map’ to mean one part of such ‘cognitive
maps’ (containing a subset of the objects stored in spatial memory that belong together, and
their spatial locations), and we use ‘map structure’ to refer to information regarding which
objects belong together (on the same sub-map). It has been argued that objects which belong
together in spatial memory are also consistently recalled together [6–8], based on prior uses of
the free recall paradigm to study memory organization [21, 22]. Thus, in this paper, we deter-
mine objects belonging together by extracting those that are always recalled together (see Mate-
rials and Methods). Other empirical methods for investigating cognitive map structure are
described in the Discussion.

Despite the importance of the question for several fields of cognitive science, it is not well
understood how cognitive maps might be structured in non-trivial, open environments. Several
types of abstract structure have been proposed, including graphs [23–25], hierarchies [6–10,
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26, 27], (semi-)lattices [28, 29], multiple local reference frames [11, 12, 30], or fragments or
sub-maps [16, 31].

Some computational models of cognitive map structure have been proposed. Most of them
have not been quantitatively evaluated against human data. Examples of abstract formal mod-
els include the graph-based model by [32] for outdoor virtual reality environments, or based
on image schemas [33] or predicate logic [34] for indoor environments (neither of these have
been evaluated against human data). More neuronally plausible but functionally simpler mod-
els of structured cognitive maps include the topological graph-based model of place cells by
[25] and the hierarchy-based model by [26, 27]. These models have not been compared to
empirical data. In contrast, the neural model by [35] can account for lesion effects in humans,
but not for large-scale cognitive map structure.

[36] has published the modelling work closest in spirit to the predictive models reported
below, utilizing self-organizing maps to model hierarchical cognitive map structure, and
reporting that on average, the model exhibits similar distance estimation error patterns to the
estimation biases (averaged over all subjects) reported by [6]. However, this model has not
been compared to individual subject maps; and is unable to account for per-subject data, since
it uses only Euclidean spatial distance and no other features (spatial distance seems to be insuf-
ficient to explain individual representation structures).

No consensus exists as to a formal structure best explaining the data. However, there is
some common ground. Instead of proposing a single, monolithic ‘cognitive map’, most studies
cited above claim that spatial memory contains several sets of objects belonging together in
some sense, i.e., on the same sub-map, fragment, branch of a hierarchy, etc. In addition to neu-
ral firing patterns changing significantly when transitioning from the vicinity of one such sub-
map to another [16, 31], it seems that objects on the same sub-maps are consistently recalled
together, even in not explicitly compartmentalized environments [6–8]. This observation
makes it possible to make explicit the sub-map structure of individual participants, by asking
them to produce recall lists, and looking for sets of objects always recalled together [6] (a meth-
odology based on utilizing item ordering in the free recall paradigm to study memory organiza-
tion [21, 22]).

Although objects belonging to the same sub-map seem to be located in close vicinity, spa-
tial proximity alone does not suffice to explain which objects belong to which representation
in the memories of individuals. The lack of either such an explanation or a predictive model
in the existing literature strongly suggests that other features may also play a role. In addition
to spatial proximity being insufficient to explain sub-map structure on an individual level,
associative learning mechanisms would also suggest other features to influence which objects
may be associated in memory. For example, functionally related buildings that are frequently
thought of together, such as places to eat close to one’s workplace, may become strongly asso-
ciated through Hebbian learning. Spatial memories are more useful when connected to non-
spatial information about objects, and can indeed be influenced and cued by non-spatial
stimuli.

Multiple features influencing map structure have been suggested, including boundaries in
the environment [5, 37], spatial distance and familiarity [6], action-based and perception-
based similarity [20, 38], and functional / semantic similarity [9]. However, to the authors’ best
knowledge, these influences have never been compared based on behavioural data. Further-
more, despite of the above-mentioned evidence for structured cognitive maps, no empirically
tested, formally defined model exists that would be able to predict the structure of spatial sub-
maps constructed by individual humans in unconstrained large-scale environments. The pres-
ent paper aims to advance the literature on spatial memory structure by providing the first
such comparison of features, and a first predictive computational model.
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Modelling cognitive map structure
Formulating models and testable hypotheses precisely and unambiguously is important for
efficiently driving research, especially in interdisciplinary areas such as spatial memory (which
is of interest in psychology, neuroscience, and artificial intelligence, among other fields).
Computational cognitive models are well suited to this challenge—being unambiguous formal
descriptions—and provide a common language across disciplines, as well as the additional
advantage of very fast prediction generation and hypothesis testing (once the data has been col-
lected, such models can be rapidly run and verified on computers). Thus, they play an impor-
tant role in the cognitive science of spatial memory, helping to integrate findings, to generate,
define, formalize and test hypotheses, and to guide research [39].

In order to develop and validate a computational model of cognitive map structure, it is nec-
essary to tackle the methodological difficulties associated with indirectly inferring consciously
inaccessible spatial representation structure from noisy data. In addition, there are also compu-
tational challenges. Just like brains can be said to create object representations based on per-
ceived and remembered properties of objects, a computational cognitive model also needs such
representations, capturing relevant features. The structure of the representations in the brain
and those in a good model should be similar; that is, objects belonging to the same representa-
tion in the brain of a participant should also belong together in the model.

It has been argued that representational geometries can capture both the content and format
of representations in brains as well as computational models [40]. The representational geome-
try of a brain region representing a number of possible objects can be characterised by means
of the dissimilarities of the brain-activity patterns corresponding to those objects. This charac-
terisation extends a long history of mathematical and cognitive psychology investigating
human representational geometry—also referred to as ‘psychological spaces’—using a notion
of [dis]similarity based on behavioural data [41–43] (we use the terms representational geome-
try and psychological space interchangeably, and use them to mean a metric space in which the
dissimilarities of objects can be represented as distances between points). Representational sim-
ilarity analysis (RSA) [44], a popular framework for quantitatively comparing representations
between behaviour, brain imaging, and computational models, is also based on this idea. RSA
has recently been applied to the hippocampus (a major brain region associated with spatial
memories), showing strong evidence of hierarchical organization of long-term memories [45].

Adopting the framework of representational geometries, a model of cognitive map structure
requires a dissimilarity function or ‘metric’ characterising the psychological space containing
objects stored in allocentric long-term spatial memory (see Fig 1). A metric (or dissimilarity
function, or distance function) is a function that defines a non-negative ‘distance’ between
pairs of objects, and characterises a metric space (two well-known examples for metrics include
the Euclidean distance, which characterises Euclidean space, and the taxicab or Manhattan dis-
tance defining l1 space). As opposed to using the simple Euclidean norm, a more general metric
can also account for different importances (or weights) of the features, such as the stronger
weighting of functional similarity compared to spatial distance in Fig 1. In addition, a ‘cluster-
ing’mechanism is needed for grouping together objects which are similar in this space,
according to this metric. Without such a mechanism, the model would not able to structure
cognitive maps, that is, to assign a subset of objects to the same representation or sub-map in
spatial memory.

A computational model of cognitive map structure constituted by a representational geome-
try model similar to that of a human participant, together with a cognitively plausible grouping
mechanism, should be able to not only fit the data of that participant, but to make advance pre-
dictions (i.e., to predict which objects will belong together in her cognitive map, based on their
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features). However, despite of the popularity of RSA and of the idea of structured cognitive
maps, neither an empirically validated spatial memory ‘metric’, nor a predictive model of the
grouping mechanism underlying spatial memory structure have been published to date.

This paper describes such a model of the structure of cognitive maps, as well as behavioural
experiments for investigating the features influencing these structures and for validating the
model. We hypothesize that the mechanism responsible for structuring cognitive maps can be
modelled by a clustering algorithm (clustering hypothesis), and that individual participants
may differ in their representational geometry within which this clustering takes place (individ-
ual psychological space hypothesis).

Our main contributions include:

• Evidence that the spatial memory structures inferred by the recall order paradigm (described
below) play a significant role in multiple spatial cognitive processes, including planning, dis-
tance estimation, memory accuracy, and response times;

• Comparison of several information types (features) significantly influencing cognitive map
structure;

• Ametric learning method to acquire the dissimilarity functions characterising the psycholog-
ical spaces of individual participants, from small amounts of training data obtainable from
recall lists;

• The (to our best knowledge) first computational model of cognitive map structure able to
predict individual map structures in navigation space, based on the individual psychological
space and clustering hypotheses, and supporting evidence. The ability of this model to pre-
dict a large majority of subject cognitive map structures substantiates these two hypotheses.

Materials and Methods

Experimental paradigm
We investigated the structure of spatial representations in navigation space in three experi-
ments. All of the experiments were concerned with the representations of buildings and their
relation to each other. In Experiments 1 and 3, subjects recalled real-world buildings that they

Fig 1. Modelling spatial representation structure using representational geometry. A: Example grouping where a
non-spatial feature (functional similarity) plays an important role. Coffee shops (3 and 4) and houses (1 and 2) are grouped
together in the respective representations in the illustrated person’s memory (grey/solid and blue/dashed ellipses), due to
their shared purpose and close proximity. This representation structure influences spatial cognitive processes, such as
distance estimations, planning times, or recall order. B: Representational geometry model. Several features (fA, fB, . . .),
spatial and non-spatial, can influence the organization of spatial memories. An appropriate metric or distance function dM
can quantify the dissimilarity between each pair of buildings, and characterize a representational geometry model, which
then represents the buildings as points in a metric space. Spatial representation structure can be inferred by performing
clustering (grouping objects in close proximity) within this model. The metric, and thus the psychological space, may differ
across individuals.

doi:10.1371/journal.pone.0157343.g001
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were already highly familiar with (see Fig 2). In Experiment 2, subjects were presented with
three-dimensional virtual reality environments—containing buildings with automatically gen-
erated properties—which they had to memorize prior to the recall task from which the repre-
sentation structure was inferred (see Fig 3).

The experiments reported below were approved by the Computer Science Ethics Review
Committee of the University of Manchester (application numbers CS163, CS155, and CS173
for Experiments 1, 2 and 3). Participants provided written informed consent for Experiment 2,
and confirmed their informed consent in the other experiments in their browsers, through the
online experiment platform Amazon Mechanical Turk. The Computer Science Ethics Review
Committee approved of this procedure.

Extraction of spatial representation structure
To extract the structure of spatial representations, we use a variant of ordered tree analysis on
subjects’ recall sequences, a behavioural methodology used by [6–9] among others for extract-
ing hierarchies in spatial representations, and by [21, 46] for verbal stimuli. The core assump-
tion behind this methodology is that objects recalled together belong to the same
representation; i.e. that on the whole, subjects recall every object within a representation (or
sub-map) before moving on to the next representation (see Fig 4). Tree analysis operates on a
set of recall sequences (with each sequence consisting of all object names, recalled with a partic-
ular ordering—usually different from the other recall sequences -, as exemplified in Fig 2 top).
Variety among these recall sequences is encouraged by cueing subjects with the object they are
required to start with (and only uncued parts of the sequence are analysed to avoid the interfer-
ence of the cue) [6].

Fig 2. A part of the real-world memories experiment interface of Experiments 1 and 3, with the sketch
map question for verifying that subjects have indeed formed allocentric cognitivemaps (top), and the
recall sequence question requiring them to recall every single building namemultiple times (bottom).
During this recall question the labelled sketch map was not visible to subjects.

doi:10.1371/journal.pone.0157343.g002
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To briefly summarize the collection of these recall sequences (for details, see Experiment 1):
in each trial, subjects were first asked to pick a few buildings (five / eight in Exp. 3B) within
walking distance of each other, which they were very familiar with, and such that they knew
how to walk from any one building to any other. Subsequently, they were asked to recall the
complete list (i.e. recall sequence) of their chosen buildings, starting with a cue building (except
for two interspersed uncued trials), multiple times. If building names were missing or incorrect,
subjects were prompted again, until they got all of them right. Thus, the ordering within the
individual sequences was their only variable aspect.

After obtaining the recall sequences, for each subject, the tree analysis algorithm simply iter-
ates through all possible combinations of subsets of object names in each recall sequence, finds

Fig 3. A part of the virtual reality experiment interface of Experiment 2 (the recall sequence interface
was equivalent to the real-world experiments; see Fig 2).

doi:10.1371/journal.pone.0157343.g003

Fig 4. The recall sequence-basedmethod used to extract cognitivemap structure. A: Example recall sequences of one of the participants of
Experiment 3. Each building was cued once, with two uncued recall trials interspersed (full building names abbreviated by their first character). B:
Hierarchical tree structures were constructed by tree analysis, based on the assumption that buildings always recalled together belong to the same sub-map.
C: Geographic map of the buildings recalled by this participant. Sub-maps shown in colour, according to the extracted structure.

doi:10.1371/journal.pone.0157343.g004
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those subsets which consistently appear together in all sequences (regardless of order), and con-
structs a hierarchy based on containment relationships from the subsets of items occurring
together. The original algorithm also extracts directionality information for each group (whether
the items within that group have always been recalled using a consistent ordering). We do not
use the directionality information in the recall sequences in this work (see S1 File for the algo-
rithm we have used). Fig 4 A shows example abbreviated recall sequences, and the resulting tree
structure, where each branch or sub-map consists of items which always occur together in the
sequences. Unambiguous sub-map memberships are obtained at the level just above the leaf
nodes, defining sub-maps as elementary sets of co-occurring items, i.e. those which do not them-
selves contain further co-occurring items. This procedure partitions buildings into one or two
sub-maps in Experiments 1, 2 and 3A, and up to four sub-maps in Experiment 3B.

Since this tree analysis algorithm requires buildings to be recalled together in every single
recall sequence in order to infer subjects’ sub-maps, it is very sensitive to individual inconsis-
tencies that may result from lapses of attention, task interruptions, and other kinds of noise
within participant response (see Discussion for an overview and comparison with other
approaches of inferring cognitive map structure). To mitigate this, we have eliminated ‘outlier’
recall sequences, defined as sequences which would have statistically significantly altered the
structure if they were included (whereas all others would not).

As proposed in previous work on hierarchical cognitive maps [6–8], we used jackknifing to
eliminate outliers. For each sequence, this procedure calculates how the inferred tree structure
would change if the sequence were omitted. More specifically, from the recall sequences
ðS1; :::;SNÞ produced by a subject for a specific environment, tree analysis was applied and the
tree obtained for the omission of each recall sequence, ðT 1; :::; T NÞ (where each T i denotes the
tree calculated from all recall sequences except Si. See S1 File for the tree analysis algorithm).
All trees should be the same if there were no outliers.

As suggested by [8], trees were quantified using two statistics, tree height hðT Þ (the maxi-

mum distance from the root) and log-cardinality cðT Þ ¼ log 2ð
QK

i¼1 ni!Þ (the logarithm of the
number of possible recall sequences consistent with that tree), where ni denotes the number of
branches in node i, and k is the number of nodes. These statistics were calculated for all trees
ðT 1; :::; T NÞ that would result from possible sequence omissions (i.e. if only sequences exclud-
ing the omitted one had been entered by the participant). If any of the sequence omissions lead
to a statistically significant change in the tree statistics, at a significance level of α = 0.05, then
that sequence was deemed an outlier and was omitted, and the tree resulting from the other
sequences of that trial was used for further analysis. That is, sequence i was excluded if either

the z-score of corresponding tree heights ðhðT iÞ � �hÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðVar½h�Þp
, or the z-score of log-cardi-

nalities ðcðT iÞ � �cÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðVar½c�Þp
exceeded the threshold corresponding to α = 0.05; where h and

c stand for the vector of all tree heights and log-cardinalities of all possible omissions of single
recall lists in the same environment, respectively (We used a less conservative significance cri-
terion than prior work due to the simpler structures and smaller numbers of objects used.
Using the extremely conservative significance level of α = 0.001 used in the prior work cited
above would have led to zero outliers being detected—presumably incorrectly, since it is
unlikely that not a single participant would have had any interruptions or lapses of attention.)

All sequences except for outliers were consistent with the same tree structure. Outlier
sequences, which significantly changed the tree structure, were likely to arise from the above-
mentioned sources of noise (lapses of attention, interruptions, etc.). The outlier sequences
detected and removed by the jackknifing procedure comprised 8.5% in Experiment 1, 10.0% in
Experiment 2 and 9.5% in Experiment 3, corresponding to less than one omission per subject
(across the 7 recall sequences produced per subject and trial).
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Due to the reliance on significance testing, and to the small numbers of recall lists collected,
the described jackknifing procedure is not able to remove every outlier disrupting inferred map
structures. Thus, in some environments, participants’ inferred building groupings may be
incorrect. We have estimated the probability of unremoved outliers in the data using simulated
distractions, i.e. simulated ‘mistakes’ in the orderings of recall lists, investigating which propor-
tion of them can successfully be recognized and eliminated using jackknifing. Briefly, 6.5% of
the outliers in the 5-building condition (A), and 2.5% in the 8-building condition (B) in Experi-
ment 3 are estimated to remain undetected by jackknifing. Due to these undetected outliers in
the training and testing data, even a ‘perfect’ computational model would not be able to achieve
100% prediction. Based on the undetected 6.5% and 2.5% outliers, the maximum possible pre-
diction rates are 63% in condition A and 78% in condition B of Experiment 3 according to our
simulation (see S1 File).

To simplify the analysis, we subsequently extract the elementary sub-maps (those not con-
taining smaller sub-maps) from the constructed tree—this allows us to model sub-maps, as
opposed to full hierarchies. These elementary sub-maps must contain at least two buildings. If
a sub-map only contains a single object, then this object is excluded from subsequent analysis.
The main reason being that our hypothesis implies sub-maps to be clusters or groups of
objects; however, there is no way to verify the plausibility of a single-object cluster (as opposed
to clusters containing multiple buildings, for which performance consequences such as
between/within-cluster distance biases, priming effects etc. can be investigated—see Experi-
ment 1 for evidence). A further reason for the exclusion of single-object sub-maps is that they
were likely to actually be parts of bigger sub-maps in subjects’ spatial memories, together with
additional buildings not captured due to the necessarily limited number of recalled items per
trial in our experiments. The exclusion of these single buildings did not have an impact on the
plausibility of our claims, since two sub-maps containing pairs of buildings suffice for compar-
ing within sub-map and across sub-map estimations in order to investigate whether represen-
tation structure inferred from recall order has an effect on spatial cognition (see Experiment 1.
Exp. 3B collected map structures with eight buildings and up to four sub-maps to show that the
model is not limited to two).

A final difference between our methodology and prior uses of the recall order paradigm is
the repetition with several different geographic environments for each subject in Experiment 3.
Repeatedly extracting cognitive map structures from the same participants is not only interest-
ing, e.g. to compare the variability of the features in subjects’ psychological spaces, but also of
vital importance for producing and validating a predictive model of the structure of spatial rep-
resentations. Given the large inter-subject variability in terms of features and feature impor-
tances influencing map structure, parametrizing such a predictive model necessitates gathering
multiple different cognitive map structures from separate environments (and not just one
structure), both for training the model, and for subsequently testing it. The main differences
between a repeated and a single-trial paradigm include possible effects of fatigue due to the
increased length of experiments, as well as declining accuracy of representations towards the
later stages (participants started struggling to cue readily available buildings which they could
accurately draw on a map beyond 20 buildings, as evidenced by much slower progress, higher
error rates, and much higher rate of participants abandoning the experiment as compared to
Experiment 1 which used single trials).

An attempt to mitigate these effects—as well as practical limitations—motivated the deci-
sion to use a smaller number of buildings (five in Experiments 1 and 2, five and eight in 3 A
and B) compared to the single-trial setup of [6, 8], who used 32 and 28 objects, respectively.
Using their dozens of buildings for each of the five or three map structures of Experiment 3
would have required participants to recall (and accurately localize) around one hundred
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buildings or more—as well as judging all of their pairwise similarities, the number of which
increases quadratically with the number of buildings (in the case of 32 buildings, they would
amount to 496 similarity judgements each for visual and functional similarities, and for each
trial, which is nowhere near feasible).

Experimental platforms and participants
Participants in two of the three Experiments (1 and 3) were recruited from the online survey
website Amazon Mechanical Turk (MTurk—https://www.mturk.com). Multiple psychological
findings have been replicated before, using subjects from MTurk [47], showing the breadth of
this platform for psychological experimentation. MTurk offers a participant pool that is signifi-
cantly more diverse than samples of university students, containing subjects from many coun-
tries worldwide and of different age groups; as well being several orders of magnitude larger
than most universities’ subject pools. But the most important advantage offered by this plat-
form lay in facilitating the collection of information about spatial representations of many,
very different geographic environments. Such variety is critical for two main reasons:

• To facilitate generalizable observations (for example, insights from inflexibly planned city
areas such as the grid layout of Manhattan might not have been generalizable to other street
layouts), and

• To avoid local biases (for example, using exclusively local maps in the same city for each par-
ticipant might have led to conclusions about the spatial structure of the local city, reflected in
subjects’ representations, as opposed to insights into the way subjects structure space in
general).

Our objective of collecting cognitive map structures from a large variety of different geo-
graphical environments was indeed successful—we collected data and analysed spatial repre-
sentations from several environments within 149 different cities across multiple continents
(see Fig 5—a list of these cities can be found in S1 File).

Exclusion of participant maps not significantly better than random chance
Throughout this paper, we have only analysed participants’ data if their sketch maps were sig-
nificantly better than random chance, in order to avoid false conclusions about cognitive maps

Fig 5. Overview over the 149 cities in which participants’ spatial memory structures were extracted (and predicted
by the computational model) in the real-world experiments (full list in S1 File).

doi:10.1371/journal.pone.0157343.g005
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being made on the basis of non-allocentric representations. Since route knowledge suffices for
navigating between buildings, participants might have lacked survey knowledge about some of
the buildings in these experiments. To rule out participant data not showing evidence of allo-
centric cognitive maps, we first performed a test of participants’ sketch maps against random-
ness, before carrying out the subsequent analyses described in the Results section.

We compared the sum of squared errors (SSE) calculated by subtracting the positions of
buildings on participants’ sketch maps from those on the correct geographical map (obtained
from Google Maps), with the SSEs of 10,000 randomly generated maps containing 5 buildings
against the correct map. Since subjects’ sketch maps were produced on empty surfaces without
any position, orientation or scale cues, as seen in Fig 2, they were first aligned (translated,
rotated, and scaled) with the correct map using Procrustes analysis [48] without reflection. The
randomly generated maps were also aligned in the same fashion. The distribution of the SSEs
of 10,000 Procrustes-aligned random maps was then used to test whether subject maps were
better than random (further increasing the number of maps, e.g. to 20,000, did not make a dif-
ference to the results). Specifically, subject SSEs were tested against the null hypothesis that
they were drawn from the distribution of uniformly randommap SSEs. Two different signifi-
cance tests were applied at α = 0.05 significance level, and found to largely agree (in all but 3%
of the cases in Experiment 1, 1.3% in Exp. 2 and 4% in Exp. 3): a Z-test assuming normal distri-
butions of SSEs, and a non-parametric Bootstrap hypothesis test [49], which requires subject
maps to be better than a proportion of 1 − α of the randommaps.

Because the former test makes the assumption of normally distributed data, which is incor-
rect for the vast majority of distributions of random map SSEs according to Shapiro-Wilk tests,
we use the latter, non-parametric hypothesis testing method throughout this paper to test par-
ticipant maps against randomness.

Computational model
As outlined in the introduction, we use a representational geometry model to account for par-
ticipants’ spatial representation structure. In particular, the model consists of two parts: 1) a
dissimilarity function or ‘metric’ which can calculate distances for any two objects, given their
features, and allows constructing a ‘psychological space’ within which objects can be repre-
sented as points with these distances; and 2) a clustering mechanism for grouping together
points in this space. The subsections below describe the employed metrics and clustering
algorithms.

Distance metrics defining subjects’ psychological spaces do not constitute mechanistic mod-
els of cognition—they do not clearly correspond to neural processing (they operate on Marr’s
algorithmic level). Nor are they isomorph to the real world in the manner of image schemas.
Rather, they are models seeking second-order isomorphisms [50, 51]. That is, correspondence
is sought between the similarities of represented objects in the model and those represented in
participants’memory, not between distal stimuli and their proximal representations. Neverthe-
less, such models aiming for second-order isomorphisms have been successful at modelling
and predicting human behaviour, and have even been argued to be superior to models directly
aiming for veridical representations [42].

Two different kinds of dissimilarity functions (metrics) are used below: linear metrics
(based on linearly weighted Euclidean distance), and nonlinear metrics (based on a Gaussian
model expressing the co-representation probability of pairs of objects). The former is the sim-
plest way to extend the standard Euclidean metric to account for different feature importances,
but is limited to representational geometries that can be obtained by affine transforms of the
feature space (as they are linear models). Little is known about the representational geometry
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of navigation-space spatial memory, but there is strong evidence that other neural representa-
tions employ nonlinear transformations [52]. For this reason, a nonlinear metric is also evalu-
ated below. Leveraging a Gaussian model for this metric is both mathematically
straightforward and plausible for systems adding up large numbers of inputs—which include
many models of the brain—due to the Central Limit Theorem (which states that the sum of a
large number of independent variables will be approximately Gaussian, regardless of their
actual distribution).

Passively learning linear metrics characterizing psychological spaces. Automatically
learning human representation similarity metrics (or psychological spaces) from highly noisy
and sparse data is a largely unexplored problem in the cognitive sciences. Given full similarity
matrices obtained from subjects (all possible pairwise similarities), there is a popular approach
for projecting data into a space in which distances accurately reflect these similarities, called
multidimensional scaling (MDS) [53]. This method is not applicable in our case, because it
requires a full pairwise distance matrix, whereas our training data comes from several different
environments. Pairwise distances and similarities are only known within, and not across, those
environments. Furthermore, it is not straightforward to generalize from known similarities to
those of novel objects in an MDS model.

In machine learning and statistics, the Mahalanobis distance is frequently used as a general
metric which is able to produce distances (dissimilarities) for novel pairs of objects, and can
account for weighted features. Below, we will assume that the features of all objects can be

described using vectors x ¼
fA
fB
:::

 !
consisting of feature values fA, fB, . . ., and will denote the

vector of pairwise differences between two objects as Dx ¼ x1 � x2 ¼
DfA
DfB
:::

 !
. The Mahalano-

bis distance is defined as

dðx1; x2Þ ¼ dMðDxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxTWDx

p
; ð1Þ

whereW is the inverse of the covariance matrix expressing the importance of each feature,
and their influences on each other. Assuming a diagonal inverse covariance matrix (i.e., inde-

pendent features), that is,W ¼
wA 0 :::
0 wB :::
:::

 !
, this expression reduces to a metric that is

equivalent to a weighted Euclidean distance:

dMðDxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wADf 2A þ wBDf 2B þ :::

p
; ð2Þ

where the weights w� express the importance of each feature (this expression would equal
the usual Euclidean distance if all w� = 1). Once these weights are known, Eq (2) allows calcu-
lating the distance for any pair of novel objects (provided the pairwise difference Δx of their
features is known). As a metric, it fully characterises a metric space, and suffices to define a psy-
chological space modelling the representational geometry of a human participant—provided
the weights actually correspond to the relative importances attributed to these features by that
participant.

Thus, the computational problem of acquiring such a metric reduces to learning the weights
wA, wB, . . . from the available, known sub-map memberships of buildings. In particular, the
weights have to be adjusted such that any pair of buildings known to be co-represented on the
same sub-map yields a smaller distance than any pair of buildings represented on different
sub-maps. The easiest way to do so is using an off-the-shelf global optimization approach to
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learn these parameters of a linear metric. We have used the locally biased variant [54] of
DIRECT (DIviding RECTangles) [55], a global, deterministic, derivative-free optimization
method based on Lipschitzian optimization, which can handle the kinds of non-linear and
non-convex functions which clustering accuracy inevitably entails. DIRECT finds global
optima by systematically dividing the feature space into smaller and smaller hyperrectangles,
returning the one yielding the best results upon convergence (see Fig 6).

To summarize the procedure of passively learning and verifying a linear metric defining a
psychological space model (see also Fig 7 for an illustration of the learning / testing procedure):

1. Collect map structures / groupingsM (information which buildings belonging together in a
participants’memory) from n environments, using the ordered tree paradigm.

2. Based on the features of the buildings (see Results), collect all pairwise difference vectors D
= [Δx1,2 Δx1,3 . . .] between all building pairs in each environment.

3. Split the dataM and D from the n environments into training dataMtrain and Dtrain, from
which the subject-specific model (metric) will be learned, and test dataMtest and Dtest,
which will be used for evaluating the model.

4. Define an objective function o(w,Mtrain, Dtrain), which, given a set of parameters w (in the
linear case, feature weights) as well as map structuresMtrain and differences Dtrain, returns
the clustering accuracy (a numerical value expressing how closely a clustering of the build-
ings under the given metric corresponds to the correct grouping imposed by the
participant).

5. Find the weights best modelling the participant data using global optimization:
wbest ¼ argminDw oðw;M ;DÞ.

6. Evaluate the model characterized by the linear metric with parameters wbest, by applying
clustering under this metric to the test data Dtest, and comparing the model predictions with
the participant groupingsMtest.

Clustering accuracies are quantified using Rand indices [56]. The Rand index is a measure

of the amount of correctly assigned pairs among all pairs, and is defined as R ¼ ðsþ dÞ= B
2

� �
,

where B is the total number of buildings on a map structure, s is the number of building pairs

Fig 6. Passively learning a linear metric.Weights for a linear metric can be obtained by searching for the
optimal weights using global optimization, e.g. the DIRECT (DIviding RECTangles) [55] method illustrated
here. This method keeps dividing the space of possible feature weights into thirds, and further divides
potentially optimal regions (those which minimize the objective function—in our case, weights that
parametrize a metric which yields a grouping close to participant’s map structure), until the weights best
matching participant training data (producing groupings most similar to participants’ actual representation
structure) are found.

doi:10.1371/journal.pone.0157343.g006
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on the same sub-map both in the predicted and actual map structure, and d the pairs on differ-
ent sub-maps both in prediction and in subject data.

An automatic learning procedure similar to steps 1-6 above was applied in the following
two sections, varying only step 5 (the procedure for finding the parameters of the metric).
Instead of using global optimization, in the case of active learning, the parameters minimizing
the model uncertainty are calculated, and in the case of passive non-linear metrics, a Gaussian
model was used to learn dissimilarity functions for each subject (see below) instead of optimiz-
ing the weights of a linear metric.

Actively learning linear metrics characterizing psychological spaces. In experimental
paradigms allowing full control of the environment to be memorized by participants (such as
Experiment 2), one way to tackle the challenge of learning accurate metrics from few data
points involves generating the environments such that participants’ subsequent responses min-
imize the uncertainty of the model regarding the feature importances, inspired by active learn-
ing in machine learning [57]. The idea is to alternate between acquiring a model from known
groupings of buildings by a participant, and generating an environment based on it, such that
model uncertainty is reduced as much as possible (because of the optimal reduction of uncer-
tainty, this method can be expected to learn a better model from less data points than global
optimization). After subjects have been queried on a reasonable number of generated environ-
ments, and the model’s uncertainty regarding their psychological space has decreased, they are
presented with completely random environments, on which the trained models are tested.

We have implemented an active linear metric learning approach, the decision hyperplane
method, based on this idea, using generated virtual reality environments in Experiment 2. We

Fig 7. Training and testing procedure for learning a metric and evaluating it against participant data.

doi:10.1371/journal.pone.0157343.g007
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constructed a training environment for each trial such that 1) they contained two clusters
(shop buildings and house buildings), 2) only the features of a single building, which lay some-
where between the two clusters, were varied (see Fig 8). We trained a linear classifier to assign
the middle buildings of all trials of a participant to one or the other cluster in feature space.
The class label (dependent variable) y was derived from that participant’s recall sequences in
each trial (y = 1 if the middle building was co-represented—i.e. recalled together—with the
shop buildings, and 0 if it was co-represented with the house buildings). The differences
between the middle building and the shop buildings along all features (in unweighted feature
space) served as predictor (independent) variables Δx.

Based on these variables, a linear ‘decision hyperplane’ was calculated, which separated the
set of all data points characterizing the middle buildings of a participant’s trials into two sets:
into middle buildings which were represented together with shops (if below the decision hyper-
plane) and into those which were co-represented with houses (if above the decision hyper-
plane)—see Fig 8. The slope of this ‘decision hyperplane’ in each feature dimension (distance,
visual similarity / colour similarity, functional similarity) thus indicated the importance of each
feature to this participant (for example, if the decision hyperplane in Fig 8 was horizontal, that

Fig 8. The decision hyperplane method for inferring feature importances and generating environments in Experiment 2. A: General layout of training
trials, which consisted of two groups of two buildings (with equal colour and function within a group), and a middle building, the parameters of which could be
varied (distance, similarity in colour and in function to the shop group). B: Feature space representation—each building can be represented as a single point
x in a space spanned by the features (position, colour, function). C: Difference space representation—middle buildings can be represented in terms of their
difference to the shop group along each feature. According to the clustering hypothesis, there has to be a ‘decision hyperplane’ calculable from these middle
buildings, such that those below the plane (i.e. those closer to the shop group) are most likely clustered with the shop group, and those above the plane (i.e.
farther away from the shop group) are most likely clustered with the house group. D. Subject-specific models consist of a metric, in this case a weighted
Euclidean distance (with weights expressing the importance of each feature to that subject), and a clustering algorithm. The weights can be calculated from
the decision boundary—the importance of each feature is proportional to the derivative (slope) of the decision boundary by that feature. E. Randomly
generated testing environments, and comparison procedure. Subjects impose a grouping even on random, unstructured environments, as shown by
previous research [8]. Based on this metric, a clustering model produces a grouping. Subsequently, cluster labels are compared (and, in this example, found
to be incorrect).

doi:10.1371/journal.pone.0157343.g008
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would mean that the y-axis—spatial distance—would be the only feature of relevance for this
subject. Conversely, if the plane was almost vertical, spatial distance would be unimportant).

The decision hyperplane was calculated using logistic regression [58], formulating the ques-
tion whether to group the middle building on the shop sub-map or the house sub-map as a
binary classification problem. Thus, the probability P(S = 1|Δx) of clustering the middle build-
ing to the shop sub-map, given the pairwise differences Δx = (Δfs, Δff, Δfp, . . .) from the shop
buildings along a number of features, including spatial (Δfs), functional (Δff) and perceptual
(Δfp) difference (i.e., difference in colour in Experiment 2), was modelled using the logistic
regression equation

PðS ¼ 1jDxÞ ¼ 1

1þ e�wTDx
; ð3Þ

in which the model parameters w ¼
ws

wf

wp

:::

0
B@

1
CA control the slope of the decision hyperplane,

and thus represent participants’ feature importances in this model. After learning the decision
hyperplane, these model parameters were used to construct the metric in Eq (2) characterizing
the participant’s ‘psychological space’, which leads to attenuated differences along features
unimportant to the participant.

The accuracy of the learned weights w depends on where known data points (i.e. the pairs of
buildings for which it is known whether or not they belong to the same representation) are
located in the feature space. The linear model described above assumes that for a building
located between two different groups of buildings, there is a specific linear hyperplane in fea-
ture space, such that points on one side of the hyperplane belong with the first group and
points on the other side belong to the second group (see Fig 8).

In order to obtain the most information from the fewest possible environments, they should
be generated such that they minimize the model’s uncertainty regarding feature importances,
once the associated grouping in the participant’s psychological space becomes apparent from
her response. To achieve this, the parameters of the new middle building were drawn from the
region of the currently calculated decision hyperplane, since this is the region in which the
model is least certain as to where buildings should be assigned. As the region of least certainty,
or greatest uncertainty, comprises the points with a classification probability of 0.5 to either
class, these points can be defined as: DxLC ¼ argminDx j0:5� PðSjDxÞj. From this and Eq (3),
it follows that wTΔxLC = 0, i.e. that points of least certainty lie on the hyperplane described by
w. Formally, this is equivalent to active learning [57] with uncertainty sampling [59] in
machine learning.

The experiment actively learning a linear metric (Experiment 2) employ the same training
and testing procedure outlined in the previous subsection (see Fig 7), with two differences.
First, the environments generated to collect the training data (Mtrain and Dtrain) are created
based on the current decision hyperplane (always taking into account all training data collected
so far). In contrast, the environments generated to collect the test data are created with
completely random features.

Second, instead of using global optimization and a clustering-based objective function, the
weights are calculated using linear regression. The best decision hyperplane (the one most con-
sistent with the data) is learned by maximizing the probability of Eq (3) over all known data

points (middle buildings), i.e. wbest ¼ arg max w

QN
i¼1 PðS ¼ 1jDxiÞSið1� PðS ¼ 1jDxiÞÞ1�Si ,

where Si is 1 if the i’th middle building is a shop, and 0 otherwise. The best parameters can be
calculated using gradient descent [58].
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Passively learning non-linear metrics characterizing psychological spaces. Because of
existing evidence for non-linear transformations employed in the brain’s representational
geometry, e.g. in the visual domain [52], it is worthwhile to extend the above modelling proce-
dure to non-linear metrics. Metric learning [60] in machine learning is concerned with finding
a distance metric—such as linear, Mahalanobis distance metrics, and their associated parame-
ters (see above), or non-linear metrics by projecting the data into kernel space using e.g. a
Radial Basis Function (RBF) kernel F in a distance function

dRBFðx1; x2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFðx1Þ � Fðx2ÞÞ⊺ðFðx1Þ � Fðx2ÞÞ

q
, e.g. [61, 62].

Here, we propose a novel metric, for the following reasons. First, the popular RBF-based
metric requires variances to be isotropic, i.e. to not differ much across features (since the RBF
kernel uses a single parameter instead of a full covariance matrix, it cannot fit non-isotropic
data well—see [63]). This assumption does not hold in our data (perceptual similarities usually
vary more than functional similarities, and both vary orders of magnitude less than spatial dis-
tances between buildings).

Second, our method can naturally incorporate the hypothesis that same sub-map building
pair differences should be small (thus located close to the origin), and should be separable from
different sub-map building pair differences (these two distributions of pair differences can be
naturally modelled using Gaussian distributions)—see Fig 9. Third, most existing machine
learning solutions—as well as MDS, used in cognitive psychology to model similarities as dis-
tances [53]—need to embed both training map and test map buildings into the same space for
model training and testing. This is not possible in our case, because 1) for the features of func-
tional and perceptual similarity, the pairwise similarities across environments are unknown
(since subjects only indicate these within each environment, not across environments), and 2)
spatial distances might not be comparable across cities or countries (whether two buildings
belong to the same representation strongly depends on their geographical distance; but this
dependence likely becomes weak or non-existent if they are very far apart).

Finally, for a system additively combining a large number of input signals (as is the case in
many neural models of cognition), the Central Limit Theorem suggests a Gaussian-based

Fig 9. Learning a Gaussian-based non-linear metric. Left: based on a participant’s knownmap structure, a
probabilistic model (GDA) can be trained which can predict the probability of two buildings being co-
represented, given their feature differences. Right: These probabilities from a trained GDAmodel can be
taken as similarities and used as the distance metric for a psychological space model. As in the linear models
above, map structure predictions for new environments are made by clustering under the learned metric.

doi:10.1371/journal.pone.0157343.g009
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metric to be plausible; stating that the sum of a large number of variables will converge to a
Gaussian distribution.

The proposed GDAmetric is based on applying GDA (Gaussian Discriminant Analysis)
[64] in the difference space Δx (see Fig 8C)—using the set of all training building pairs, a prob-
abilistic (Gaussian-based) model p(c = 1|Δx) is learned capable of calculating the probability of
whether any given pair of buildings are co-represented on the same sub-map, given the differ-
ences along various features. We simply define the metric as

dðx1; x2Þ ¼ dGDAðDxÞ ¼ 1� pðc ¼ 1jDxÞ; ð4Þ

where the probability of co-representation is derived using Bayes rule, p(c = 1|Δx)/ p(Δx|
c = 1)p(c = 1), and the generative densities are modelled using multivariate Normal distribu-
tionsN (see S1 File for details):

pðDxjc ¼ 1Þ ¼ N ðDx; mc;ScÞ ð5Þ

An accurate GDA model (one that correctly separates co-represented and not co-repre-
sented building) will ensure that building pairs which are likely to be on the same representa-
tion are close, and those which are not are distant, under the metric defined in Eq (4). Just as
above, subject map structures are predicted in the testing environments by performing cluster-
ing under this subject-specific metric (acquired using data from the training environments).

Grouping objects in psychological spaces using clustering. Ametric adequately model-
ling a participant’s representational geometry uniquely characterises her psychological space

model. In the case of linear metrics, an object represented by means of its features, x ¼
fA
fB
:::

 !
,

can be embedded into a new metric space (the psychological space model), in which Euclidean
distances correspond to similarities under this metric, by simply weighting each feature by the

learned weights of the metric: p ¼
wafA
wBfB
:::

 !
. For non-linear metrics, the embedding is less

straightforward, but can be performed by applying multi-dimensional scaling [53] on the full
set of objects within the modelled environment, to ensure that the resulting points p in the psy-
chological space model have the distances prescribed by the metric.

Subsequently, the presented model performs clustering in this psychological space to gener-
ate predicted map structures (groupings of buildings), in accordance with the clustering
hypothesis. We employed the DP-GMM (Dirichlet Process Gaussian Mixture Model), from
the family of Bayesian nonparametric models, for clustering (see [65] for a tutorial review).
Bayesian nonparametric models were successfully employed in categorization models [66] and
shown to be psychologically plausible, unifying previously proposed models of human category
learning [67] and accounting for several cognitive mechanisms including category learning and
causal learning [68], transfer learning [69], and semi-supervised learning [70] in humans.
Given that such models give a good account of how humans acquire novel concepts (subsum-
ing prototype, exemplar, and rational models of category learning, among others), and given
that they can be seen as probabilistic clustering models, we hypothesized that they might also
account for sub-map learning.

DP-GMMs are extensions of Gaussian Mixture Models (GMMs) for an unlimited number
of clusters. GMMs are statistical models which aim to partition a set of data points in some
space into a number of clusters C by fitting C Gaussian probability distributions to the data, i.e.
adjusting the parameters of these C Gaussians such that the probability that the data was
drawn from these distributions is maximized. DP-GMMs have the same aim, but also allow
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inferring the number of distributions (and thus the number of clusters C), not just their param-
eters. In this lies their key advantage compared to most other clustering models: they can be
used without prior knowledge of the correct number of clusters (and they can expand by add-
ing new points either to the most likely existing cluster, or to a novel cluster, when observing
new data). This process of assigning new data points to clusters by calculating probabilities
from distributions optimally fitted to previous data has a lot in common with the basic problem
of categorization, which is to identify the category of a new object based on its observed proper-
ties and previously observed objects, which is why Bayesian nonparametric models are similar
to (in fact, if parametrized accordingly, mathematically equivalent to) multiple psychological
models of human category learning proposed in the past [67].

Briefly, the generative DP-GMMmodel can be defined as follows:

�k � Betað1; a1Þ

mk � N ð0; IÞ

Sk � WishartðD; IÞ

pk � SBPð�Þ

xt � Normalðmzi
;S�1

z;i Þ;

ð6Þ

where SBP stands for the stick-breaking process for generating mixture weights:

pk ¼ vk
Qk�1

j¼1 ð1� vjÞ, andN denotes the multivariate normal distribution. Data can be gener-

ated from this model by first choosing a cluster with probabilities specified by mixture weights:
z* Cat(π), and then drawing an observation from the parameters of that cluster x* Normal
(μz, Sz). To find a clustering (grouping) of existing data, this generative process has to be
inverted. That is, the parameters of a mixture model which characterise each cluster (πk, μk, Sk)
have to be inferred, for example using variational inference [71]. We have used the bnpy
Python library for this purpose—see [72] for further implementation details.

Once the parameters are known, cluster memberships ci of specific points p in psychological
space can easily be inferred by calculating which of the clusters each point is most likely to
belong to:

ciðpÞ ¼ argmax
c

pcN ðp; mc;ScÞ ð7Þ

Final sub-map membership predictions were derived from the results of the DP-GMM clus-
tering under the metric automatically learned from the subject—buildings predicted to belong
together correspond to points in psychological space which are assigned to the same cluster by
Eq (7). These predictions were evaluated by calculating prediction accuracies and Rand indices
[56]. The former is simply the ratio of perfectly predicted sub-map structures to all subject
structures—however, this strict accuracy metric penalizes ‘near misses’ equally to completely
wrong structure predictions (e.g. if seven building sub-map memberships are correct, but a sin-
gle one incorrect, the entire prediction is counted as incorrect; just like completely wrong
structures).

Average Rand indices are reported as more fair metrics which provide a continuum between
flawlessly correct (R = 1) and completely incorrect (R = 0) prediction. The Rand index is

defined as R ¼ ðsþ dÞ= B

2

 !
, where B is the total number of buildings on a map structure, s is
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the number of building pairs on the same sub-map both in the predicted and actual map struc-
ture, and d the pairs on different sub-maps both in prediction and in subject data.

Results

Overview of the experiments
This section reports the results of four experiments investigating the principles underlying cog-
nitive map structure. Experiment 1 is concerned with the question of whether this kind of
structure uncovered by the recall order paradigm is relevant—whether it impacts cognitive per-
formance in other ways than recall orderings—, investigating effects on distance estimation
biases, sketch map accuracies, estimated walking times, and planning times in real-world envi-
ronments well known to subjects.

The plausibility of our central hypothesis—that cognitive map structure arises from cluster-
ing—is investigated in the subsequent section, also in real-world environments chosen by sub-
jects themselves. This claim requires buildings that are more similar (closer in psychological
space) to be more likely to be grouped together in long-term memory representations, and thus
more likely to be recalled together. We report correlations between the probability of buildings
being represented together, and proximity in various features relevant to cognitive mapping.
We also make between- and across-subject comparisons with regard to feature importances.

Since a good model should be able to make predictions, we proceed to report the predict-
ability of spatial representation structure. We use a clustering model in order to predict map
structure, assuming that cluster membership in an appropriate ‘psychological space’ (i.e. under
an accurate metric) corresponds to sub-map memberships.

However, feature importances—and thus the metric characterising representational similar-
ities—can vary among participants (see Experiment 1). We utilize three methods to automati-
cally learn subject-specific metrics characterizing the psychological space hypothesized to
underlie spatial representation grouping in Experiments 2 and 3. We collect map structures of
several different environments from the same subjects in these experiments, using a subset of
them to learn a model, and testing its predictions on the remaining subset.

In Experiment 2, participants are asked to learn spatial memories of 3D virtual reality envi-
ronments. Unlike the other experiments, this approach allows full control over all properties of
the stimuli being memorized. Utilizing this flexibility of virtual reality, we report prediction
results using clustering, and the decision hyperplane method for acquiring subject-specific
metrics, which tackles the challenge of inferring multiple feature importances from few data
points by generating the environments such that participants’ subsequent responses minimize
the uncertainty of the model regarding the feature importances. After subjects have been que-
ried on a reasonable number of environments, and the model’s uncertainty regarding their psy-
chological space has decreased, they are presented with completely random environments, on
which the trained models are tested. We report prediction accuracies both on environments
generated such that they minimize model uncertainty (using active learning), and on random
environments.

Although virtual reality allows fine-grained control over memorized environments, it is nec-
essarily composed of strongly simplified stimuli and less complex surroundings. To show that
the approach of inferring subject-specific models and subsequently clustering objects can also
successfully predict cognitive map structure in the much more complex real world, we once
again collect data from subjects’ spatial memories of real environments freely chosen by them
in Experiment 3. Since the approach of optimally minimizing model uncertainty is infeasible
when using uncontrolled real-world memories, we use two more general methods to infer sub-
jects’ psychological spaces, global optimization and a GDA-based metric (see Materials and
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Methods). Of these, the latter is novel, and the best performing approach on our data. We
report prediction results on data excluded from the model training process, substantiating our
central hypothesis, and showing, for the first time, the predictability of spatial representation
structures on the individual level.

Experiment 1—Relevance of cognitive map structure extracted from
recall sequences
This experiment was conducted to substantiate the recall order paradigm used throughout this
paper to infer cognitive map structure. If this paradigm infers something about actual represen-
tation structures in spatial memory, then the uncovered structures should have a significant
impact on both the speed and accuracy of memory recall for spatially relevant information. To
avoid possibly confounding effects of stimulus presentation and memorization, the stimuli
used were ones participants had already committed to their long-term spatial memory—the
experiment used buildings subjects were already very familiar with and could easily recall
information about.

The possible objection that the structures might be induced by the experimental paradigm,
and learned by participants during the trials, can be excluded, because of the approximately
uniform distribution of the outlier sequences (the first few sequences were not more likely to
be outliers than the last few sequences, and no evidence for any learning effects during the real-
world experiments could be found in the data—see S1 File for details).

Although data consistent with two of the results presented in this section (the effects of map
structure on distance estimation biases and sketch map accuracies) have been observed and
published before, this prior work had used significantly fewer subjects than our experiment,
and exclusively university students, unlike our participants. [6] had six participants, reporting
distance biases and sketch map accuracies; and [8] had twenty eight, reporting only the former.

Participants. One hundred and fifty two participants were recruited, consented, and com-
pensated through the Amazon Mechanical Turk (MTurk) online survey system (78 females, 74
males). Participants were required to have at least 95% approval rating on previous MTurk
jobs to ensure higher data quality, and all of them were over 18 years of age (as required by the
website).

Procedure. The experiment was conducted on a website participants could access through
MTurk after giving their consent. In the first two questions, subjects were asked to enter the
name of a city they were very familiar with, and, subsequently, to pick five buildings they know
well. Thus, well-established long-term memories were tested instead of novel stimuli. Subjects
were instructed to make sure that they knew where in the city these buildings were located,
how to walk from any one building to any of the others, what each building looked like, and
what purpose it served. They were only able to proceed past this stage if the website was able to
locate all five of the buildings on a geographical map (Google Maps API—https://developers.
google.com/maps/—was used to look up the latitude and longitude of each building).

To verify that subjects had indeed formed allocentric spatial representations of the area of
the city they had selected, and to allow the analysis of the accuracy of their representations,
they were also asked to produce a ‘sketch map’, by dragging and dropping five labelled squares
representing their buildings into their correct place using their mouse (Fig 4A, top). No cues or
information was provided on the sketch map canvas, just an empty gray surface with five
squares labelled according to subjects’ entered building names. Thus, only the relative configu-
ration of the buildings was analysed in this research, after optimal translation, rotation and
scaling to fit the placement and size of the correct map as well as possible, by using Procrustes
transformation [48].
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After the sketch map, subjects performed a seven-trial recall test. In five of the seven trials,
they were given a cue or starting building, and were instructed to ‘recall all five buildings, begin-
ning with the starting buildings and the buildings that you think go with it’, encouraging recall
of building names in the order they came to subjects’mind, closely following the instructions
given by [6, 8] and others. In the remaining two, uncued trials, subjects were asked to start with
any building they wished. If subjects omitted or incorrectly recalled any of the buildings, they
had to repeat the trial (thus, only the ordering changed across trials).

The recall test allowed the experiment software to immediately infer subjects’map structure
using the tree analysis algorithm (see Materials and Methods. Smallest sub-maps—those not
containing further sub-maps—were extracted). The next stage of the experiment proceeded
based on this structure. Participants were first asked to estimate the time required to walk
between four pairs of buildings. Unbeknownst to them, two of the estimations concerned
within-, and two of them across-sub-map pairs, in randomized order, and were chosen such
that the Euclidean distances in the within-cluster trials were as close as possible to the distances
in the across-cluster trials, to mitigate effects of simple distance, as opposed to map structure.
After reading the instructions in their own time, subjects were told to estimate and enter the
walking time in minutes (the time required to walk from one of these buildings to another) as
rapidly as possible. Their responses, as well as their response times (time elapsed between pre-
sentation of the pair of buildings for walking time estimation and subjects entering a number
and clicking a button) were recorded.

In a subsequent stage, also based on the uncovered map structure, participants had to esti-
mate the distance between four pairs of buildings (Euclidean distance—‘as the crow flies’—as
opposed to the walking times of the previous stage). Once again, two within-cluster and two
across-cluster pairs were selected such that within- and across-cluster trials differed as little as
possible from each other in terms of spatial distance.

Finally, once again in an untimed fashion, subjects were asked to judge the similarities of all

pairs of buildings, i.e.
5

2

 !
¼ 10 pairs, as well as a control pair of one of the buildings to itself,

both in terms of visual similarity, and similarity of purpose/function—thus, they had to enter
2x11 similarity judgements. Similarities were judged with the help of 1-10 rating scales, with 1
standing for not similar and 10 for very similar. The two self-similarity judgements were ran-
domly interspersed and verified to avoid subjects rushing the process or entering random
values.

Ground truth geographical maps containing participants’ self-chosen buildings were con-
structed by obtaining latitude and longitude coordinates from Google Maps API, and utilizing
an elliptical Mercator projection to obtain x and y coordinates suitable for comparison with
subjects’ sketch maps. Euclidean distances between buildings were also calculated based on this
projection (as this procedure is more accurate than most alternatives such as the Haversine for-
mula). Finally, path distances as well as ground truth walking times were obtained from Google
Directions API, which plans the shortest possible walking route between two buildings along
pedestrian paths (which is usually distinct from, and longer than, Euclidean or ‘beeline’
distance).

Results. Participants with sketch maps not significantly better than random chance were
excluded (using the procedure described in the Materials and Methods section). 86 participants
with reasonably accurate survey knowledge of their chosen environments remained (40 female,
46 male). Of these participants, 53 had structure apparent in their recall sequences (20 female,
33 male). The difference in the ratio of structured representations between male (72%) and
female (50%) participants is statistically significant at p = 0.04 (U = 4.39) according to a Mann-
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Whitney U test. We employed this test here and for a majority of our other significance tests
(unless otherwise specified), because the tested variables were not normally distributed accord-
ing to a Shapiro-Wilk normality test (p = 0.00,W = 0.63), violating the assumptions behind
ANOVA or t-testing. The Mann-Whitney test is a nonparametric test which has greater effi-
ciency than the t-test on non-normal distributions (and is comparably efficient to the t-test
even on normal distributions) [73].

To test whether map structure has an impact on other cognitive phenomena, we compared
estimations of distance, walking times, and planning times, between pairs of buildings lying on
the same representation (within sub-map estimations), and pairs of buildings on different rep-
resentations (across sub-map estimations). Table 1 reports the results (6 across sub-map and 1
within sub-map distance estimations were excluded, because they exceeded 10km, clearly vio-
lating the instruction of being within walking distance). Reported correlations are Spearman’s
correlation coefficients, here as well as throughout the paper.

In order to avoid effects arising purely from differences in spatial distance, we have queried
subjects on the pairs of their buildings (among all possible pairs) which were the least different
in spatial distance. In these comparisons, effects purely of spatial distance are unlikely, since
distances were not significantly different between within sub-map and across sub-maps estima-
tions (1242m and 1245m on average)—according to a Mann-Whitney test (U = 12594,
p = 0.11), the difference is not significant.

We have also examined the effect of whether maps were structured on sketch map accura-
cies. The sum of squared errors (SSE) between the resulting sketch map building positions and
the geographical building positions were calculated, and SSEs for all maps with structure (μ =
0.305, σ = 0.276) were compared to the SSEs for maps without structure (μ = 0.370, σ = 0.307).
SSEs were found to be significantly smaller for structured than for unstructured maps
(p = 0.019, U = 2325), hinting at a correlation between map accuracy and structuredness which
can indeed be observed (r = −0.17, p = 0.04).

Finally, the SSEs between sketch map and geographic map distances were compared for
pairs of within sub-maps and pairs across sub-maps, after alignment and normalization. The
sketch map distance SSEs within sub-maps (μ = 0.607, σ = 1.677) were significantly smaller
than those across sub-maps (μ = 0.916, σ = 1.53) according to a Mann-Whitney U test
(p = 0.023, U = 6304000).

Discussion. The highly significant differences in the accuracies of sketch maps, distance
and walking time estimations, which all depend on whether or not the buildings involved in
the estimation are on the same sub-map or on different sub-maps, substantiate the claim that

Table 1. Effects of spatial representation structure on distance estimation, walking time estimation, and response times. All of these estimated mag-
nitudes, as well as response times, are significantly smaller when both buildings are on the same sub-map (i.e. on the same representation) compared to
when they are not. Data from 380 pairs of buildings were compared (269 across sub-maps, and 111 within sub-map). Apart from the representation-depen-
dent biases, subject estimations were reasonably accurate (correlation of r = 0.40 between estimated and actual Euclidean distance, and r = 0.48 between
estimated and actual walking time as calculated by Google Maps).

Actual distance (m) Estimated distance
(m)

Distance bias
(Estimated-Actual)

Estimated walking
time (min:sec)

Response time when
estimating walking time (s)

Within mean
Within std

μ = 1242, σ = 1508 μ = 676, σ = 1036 μ = −574, σ = 1825 μ = 8 : 43, σ = 8 : 23 μ = 8.4, σ = 6.0

Across mean
Across std

μ = 1245, σ = 1931 μ = 1139, σ = 1739 μ = −146, σ = 1703 μ = 12 : 45, σ = 11 : 36 μ = 18.0, σ = 92.3

Significance of
difference

p = 0.109 (nonsignificant),
U = 12594

p = 0.019 (significant),
U = 12502

p = 0.047 (significant),
U = 11900

p = 0.001 (significant),
U = 11009

p = 0.030 (significant),
U = 13097

doi:10.1371/journal.pone.0157343.t001
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the structures uncovered by this method are indeed relevant, and play a significant role in mul-
tiple cognitive mechanisms.

The trends in the distance error biases—distances generally being underestimated within
sub-maps compared to across sub-map estimates—match previously made observations using
smaller numbers of subjects [6]. The main difference is that this previous work has found
underestimation within- and overestimation across sub-maps, whereas our results suggest
underestimation in both cases. The negativity (underestimation) of the across sub-map dis-
tance estimation errors is statistically significant compared to the null hypothesis that there is
zero or positive bias (p = 0.03, U = 4937).

Both the difference in estimated walking times, and the differences in the response time in
this question, are novel results. As opposed to Euclidean distance estimation or sketch map
drawing, which can be done by glancing at or recalling a geographical map, accurate walking
times are difficult to estimate without actually having explored this environment and being
able to plan the routes in question. Subjects need to mentally plan the route and simulate the
walk to estimate the time (or to recall the duration of the walk from long-term memory, should
the durations of all walks between all possible building pairs be readily memorized by subjects,
which is unlikely). The observation that the mean time required to do so more than doubles
across sub-maps, compared to within (and that the variance in RTs increases by an order of
magnitude) provides additional, substantial evidence for the relevance of map structures—as
inferred from recall sequences—to spatial cognitive processes.

Clustering and features determining map structure
In the Introduction, we have hypothesized that the structure of spatial representations in
humans arises from clustering within some psychological space. In this section, we investigate
the plausibility of this hypothesis. If this was the case, we would expect the probability of a pair
of buildings being co-represented (i.e. represented on the same sub-map) to strongly depend
on their ‘similarity’ or distance across various features including spatial distance, with stronger
dependencies for spatially relevant features compared to semantic or visual features. These
dependencies should be apparent across a population of individuals, even if they assign slightly
different importances to each feature (i.e., even if the metrics characterizing their representa-
tional geometries differ).

We would also expect several features to play a role, since distance alone is insufficient to
explain previous results [6, 8]. We would expect the relevance of each feature to be apparent
from its influence on map structure, measurable by the correlation between co-representation
probability (the probability that two buildings are co-represented on the same sub-map) and
the distance in this feature. Finally, we would expect large inter- but small intra-subject vari-
ability in these correlations, i.e. stable feature relevances within subjects which are not necessar-
ily generalizable across subjects, analogously to psychological spaces for concept representation
[43, 74].

We investigate several features listed below, motivated by hints in the literature that they
might play a role in the representation structure of object-location memory.

1. Remembered distance, i.e. the distance on subjects’ sketch maps

2. True Euclidean distance based on geographical maps

3. Path distance (or ‘city-block’ / ‘Manhattan’ distance), since recent brain imaging evidence
suggests that the hippocampus—a spatially relevant brain region—represents both Euclid-
ean and path distances [75]
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4. Boundaries in the environment (such as rivers, cliffs, city walls, etc.)—based on neuroscientific
and behavioral evidence that boundaries play an important role in spatial memories [5, 37]

5. The number of streets separating a pair of buildings (intersecting with a straight line con-
necting these buildings)

6. The sizes of separating streets; that is, whether these streets could easily be crossed (whether
or not they were highways/motorways/primary roads which are difficult for pedestrians to
cross)

7. Visual similarity (as indicated by participants), since clustering by perceptual properties has
been reported [20], and vision has been suggested to be vital to spatial representation [76],

8. Functional similarity, or similarity of purpose, as indicated by participants—because action-
based similarity has been claimed to have an effect on spatial memory [38], and also because
of the importance of action-related roles within the influential grounded cognition para-
digm [77].

9. Phonetic and morphological similarity of building names. The main motivation behind
including these features was to investigate any possible interference on the structures
inferred from recall sequences caused by verbal short-term representations. Subjects might
employ some short-term representation strategy to complete the recall trials more rapidly—
instead of recalling from long-term spatial memory -, for example subvocal rehearsal loops
(articulatory loops). Including phonetic and morphological similarity features helps mea-
sure the effect of such verbal strategies.
(Phonetic similarities have been determined using the Double Metaphone [78] phonetic
encoding algorithm, since it accounts for irregularities in multiple languages, not just
English. This was important for names from non-English speaking countries—see S1 File.
Morphological similarities were calculated based on recent work by [79]. For building
names consisting of multiple words, the sum of the respective phonological or morphologi-
cal similarities of the constituent words was used.)

The first six of these features—remembered, Euclidean and path distance, and boundaries,
separating streets, and crossable streets—were obtained based on geographical data available
online. Most such geospatial ground truth data used was obtained using Google’s publicly
available Maps API, with the exception of boundaries in the environment, and crossable streets
(whether separating streets were difficult to cross)—these two features were obtained from
Open Street Maps (OSM) through their publicly available API called Overpass (http://
overpass-api.de/). As in all experiments in this paper, ground truth maps and distances are
based on an elliptical Mercator projection of latitudes and longitudes obtained from Google
Maps API, except for path distances and walking times which were queried from Google Direc-
tions API.

All features were converted into distances / dissimilarities before subsequent analysis. Simi-
larity features, such as visual, functional, phonetic and morphological similarities, were sub-
tracted from the maximum value possible for that feature to obtain corresponding
dissimilarities.

Participants, Materials, and Procedure. The clustering hypothesis introduced in the
Introduction implies that buildings closer together in psychological space are more likely to be
represented on the same sub-map in participants’ spatial memory. Data from Experiment 1 as
well as Exp. 2 and Exp. 3 A and B were analysed with regard to the plausibility of the clustering
hypothesis, as well as the underlying features determining map structure. Thus, the partici-
pants, materials and procedures for data collection were exactly the same as in those
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experiments, following the recall order paradigm described in the Materials and Methods sec-
tion and in S1 File.

All Figures in this Section are split into four parts, for Experiment 1, Exp. 2, and conditions
A and B of Experiment 3. We report results separately, since there were slight changes in proce-
dure. Briefly, Exp. 2 was conducted in three-dimensional virtual reality environments, whereas
the other experiments used subjects’ established real-world spatial memories. Furthermore,
cues were presented verbally in Exp. 1 and 2 and spatially, highlighted on sketch maps, in
Exp. 3 (Exp. 3B also used 8 buildings, unlike the 5 used in the other experiments). Finally,
Experiments 2 and 3 tested spatial memories of several different environments, in order to
facilitate acquiring a model and testing its predictions, whereas Exp. 1 did not.

To test the clustering hypothesis, we investigated the co-representation probabilities of pairs
of buildings belonging on the same sub-maps, and each of the features listed above. In particu-
lar, the correlations rf for each feature reported in Fig 10 are the Spearman’s rank correlations
between the differences Δxf for that feature f (e.g. the number of streets separating two build-
ings), and the co-representation probabilities Pf, i.e. the probabilities of pairs of buildings
belonging on the same sub-maps. Simply put, the likelihood of co-representation at a specific
distance equals the ratio of the number of co-represented pairs divided by the number of all
pairs within some small window w close to this distance.

Let Δxf = (Δxf,1, . . ., Δxf,n) be the sorted sequence of differences in feature f for all pairs of
buildings across all participants and all environments, such that Δxf,1 is the smallest such

Fig 10. Correlations between probabilities of being on the same sub-map, and distances along each feature, for pairs of buildings in
Experiments (from top to bottom): 1, Experiment 2 in virtual reality (therefore lacking geospatial features), and 3A, 3B. Correlations are reported
separately for each feature. The three bars per feature show results at three different window sizesw used for calculating co-representation probabilities
(higherw lead to less noisy probability estimates through smoothing, resulting in higher correlations). Empty bars show levels of correlation that would be
expected if maps were clustered according to the single respective feature only.

doi:10.1371/journal.pone.0157343.g010
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difference. Furthermore, using the same sorted ordering of building pairs, let Cf ¼ ðcf ;1; :::; cf ;nÞ
contain ci = 1 if building pair i belongs to the same sub-map, and ci = 0 otherwise, for all build-
ing pairs (and sorted such that cf,1 expresses whether the buildings closest in feature f are con-
sistently recalled together).

Then, we can define co-representation probabilities Pf = (pf,1, . . ., pf,n) for each feature using a

moving average of the sorted co-occurrences: pf ;i ¼ 1=w �Piþbw=2c
j¼i�bw=2c cf ;j (for example, if w = 3

and out of three building pairs with distances 95m, 100m and 105m two were represented on the
same sub-map, then the probability of co-representation at 100m would equal p = 2/3). The cor-
relations reported below were calculated between these co-representation probabilities Pf, and
the feature differences Δxf, both in the same order, sorted by the feature differences. In cases
where there were too few data points to estimate Pf, the biserial correlation coefficient [80] was
calculated between the binary co-representation values Cf and feature differences Δxf.

Results. Fig 10 provides an overview of the correlations of these features with the probabil-
ities of co-representation on the same sub-map, reporting Spearman correlations rs(Pf, Δxf) for
each feature f. The correlations are reported for three different window sizes w, to show that
the high correlations are not artefacts of a particular window. Supporting the central hypothesis
of this paper, which implies that buildings closer together in psychological space are more
likely to be on the same sub-map, we indeed found strong correlations between multiple of the
above-mentioned features, and the probability that two buildings were clustered together.

The Figure also shows the correlations that could be expected if participant’s map structure
had arisen from clustering by just that one feature (empty bars in Fig 10)—i.e. the correlations
that would have been observed had participants 1) used clustering to structure their maps, and
2) used only distances within one respective feature for this clustering. These expected correla-
tions were calculated using the same participant data; but artificially structuring the subject
map—using clustering along one respective feature—instead of using subjects’ sub-map mem-
berships. Gaussian mixture models (GMMs) [81] were used for the artificial structuring, just
like for prediction in the computational models described below, since they are more psycho-
logically motivated than other clustering algorithms (see Materials and Methods).

Next, we have investigated the variability of the reliance of these features within and across
subjects; i.e. whether the same features were used by—and whether they were similarly impor-
tant for—all subjects, and whether they were the same for individual participants in different
environments. Fig 11 shows the standard deviations of the co-representation correlations of
these features, across subjects (left panels) and within subjects, i.e. across the maps of individual
subjects (right panels), averaged over all subjects.

Specifically, the standard deviations of the biserial correlation coefficients [80] between the
binary co-representation values and feature differences rpbðCf ;DxfÞ are reported for all error
bars in the plot. (Biserial correlation with the binary vector indicating same or different sub-
map pairs was used, instead of calculating probabilities and using continuous correlation,
because the numbers of available within and across sub-map pairs of buildings for a specific
map of a specific participant were frequently below the window sizes used for estimating co-
representation probabilities in Fig 10, preventing the estimation of these probabilities). For the
within-subject plots (right panels), the magnitude of the bars is also calculated using biserial
correlation, for the same reason—there being too few within-subject building pairs for the
moving average-based probability calculation.

Finally, according to Shapiro-Wilk normality tests, none of the distributions of feature cor-
relations are normally distributed (all p values for all features are many orders of magnitude
less than 0.01). Rather than most subject structures arising from these features weighted in the
same fashion, or from feature correlations concentrated around a most common value, the
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particular strengths of the influences on participants’ representation structures seem to be
irregularly distributed. However, they are significantly more consistent across individual par-
ticipants’map structures (Fig 11 right) than across all participants (Fig 11 left).

Discussion. The strong dependence of co-representation probability on distance along
various features (Fig 10) provides strong evidence for the plausibility of the clustering hypothe-
sis in participants able to learn allocentric cognitive maps. Furthermore, confirming intuitive
expectation, spatial features show a much stronger influence on map structure than other,
non-spatial dimensions.

Fig 11 shows that there is a large amount of variability in the importance of different fea-
tures to various subjects. This spread is significantly less across the map structures of individual
participants (Fig 11 right) than across all participants. Thus, although collecting a high enough
number of map structures to reliably infer subject-specific feature importances presents several
practical challenges (see next section), doing so is unavoidable for predicting spatial representa-
tion structures.

It is important to point out that correlation with co-representation probability alone is not a
sufficient metric for describing the influence exerted by a feature on cognitive maps. There
might be indirect causation or a common cause, or deceptively low correlations due to sparse
data (for example, very few natural boundaries are present in most cities, which causes low cor-
relations despite their importance according to the results below), or other reasons for correla-
tion not translating to causation.

For this reason, to what extent different features facilitate the prediction of individual map
structures is a more meaningful measure of their importance in the cognitive map structuring
process. The following sections report prediction results, both in automatically generated

Fig 11. Variability of features influencing cognitivemap structure. Feature variabilities across all subjects (left) and across map structures of individual
subjects (right) are shown, plotted as error bars on each average feature correlation. Top: Bottom: Feature variabilities in the test trials of Experiment 2.
Middle: Feature variabilities in Experiment 3A. Bottom: Feature variabilities in Experiment 3B.

doi:10.1371/journal.pone.0157343.g011
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virtual reality environments (Section 2) and in real-world environments freely chosen by sub-
jects (Experiment 3).

Experiment 2—Predictability of map structure in virtual reality
environments
This experiment investigated the question whether the clustering hypothesis allows robust
advance prediction of participant map structures. Because of the observation that feature
importances vary greatly across subjects, but less for individuals (Fig 11), it was designed to
first learn these per-subject importances, before producing predictions using a clustering
mechanism. This process was inspired by active learning [57], a field in machine learning
which allows algorithms to choose the data from which they learn, thus facilitating better per-
formance with less training data. This latter point is crucial for our experimental paradigm—as
inferring the representation structure of even small environments with few buildings requires
several full recall sequences, there is a practical limit on how many structures per participant
can be produced—thus, this limited budget of data should be used in a fashion close to the sta-
tistical optimum. Optimally reducing model uncertainty using active learning is one possible
approach towards this objective.

Participants. Fifty students at the University of Manchester (compensated by vouchers)
participated in the experiment. 38 subjects who did not produce sketch maps significantly bet-
ter than random chance in at least 50% of all training trials were excluded, leaving 12 subjects
whose data was analysed. Participants were recruited and tested at the University of Manches-
ter (instead of online) primarily because the setup required a modern PC equipped with a
graphics card to run the experiment smoothly. A further reason was the need to ensure that the
setup was equivalent across subjects (e.g. screens were of the same size and quality, all subjects
used a mouse and not a touchpad, etc.).

Procedure. After giving their consent and reading instructions, participants completed 20
trials—15 ‘training’ trials which were used for training the model, and 5 ‘testing’ trials which
were used for verifying the predictions of the computational model. In total, the experiment
took about 1.5 hours on average. Each trial was set in a unique environment consisting of a
horizontal ground plane, featureless sky, and 5 buildings. All buildings used the same 3D
model and thus had equal measurements, but could vary in colour, in function (being labelled
as either shops or houses) and in distance; and could have different labels (e.g. coffee shop,
John’s house).

Both trial types followed the same sequence. First, participants could freely explore the envi-
ronment, and were asked to memorize the positions and names of all buildings in it. In this
memorization phase, they were also asked to deliver a package from one of the shops to one of
the houses. This task served the dual purpose of forcing subjects to do a minimum amount of
exploration, and, additionally, to make the functional distinction between shops and houses
more meaningful. After the memorization phase and the delivery task, the environment van-
ished, and participants’ spatial memory was tested, by asking them for 1) a sketch map, pro-
duced by dragging and dropping labelled squares into their correct places, and 2) seven recall
sequences, 5 cued, and 2 uncued.

The first 15 ‘training trials’ each contained two distant groups of two buildings in close
proximity, and a ‘middle’ building somewhere between these two groups. Both buildings in
each group always had the same colour and function, and there was always one group contain-
ing two shops and a second group containing two houses. The middle building was intended to
be represented together with one or the other group by subjects, depending on its distance and
similarity to the groups. Data from trials in which the middle building was not clearly co-
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represented with one or the other group, or in which no groups were present, were excluded.
All subjects showed the two groups in their structure, and co-represented the middle building
with one of them, in more than half of their trials. The 16% of the trials in which this was not
the case were excluded from further analysis.

In the first 7 of the included trials, the colours, functions, and distances of the groups and
the middle building were generated randomly, ensuring only within-group consistency of col-
our and function and that buildings within groups were closer than the distance between the
groups, such that they unambiguously formed clusters.

After the 7th training trial and all subsequent training trials, a ‘decision hyperplane’ was cal-
culated using logistic regression, which separated all middle buildings into two groups, those
belonging to the shop cluster, and those belonging to the house cluster. (The initial seven trials
were required to initialize a reasonably accurate hyperplane to generate further environments
from—seven being the minimum number required for reliably good performance in prelimi-
nary simulations). This decision hyperplane facilitated the generation of the remaining 8 train-
ing trial environments. For each trial after the 7th, the two groups were again generated
randomly, but the middle building was parametrized such that the uncertainty regarding sub-
jects’ feature importances was minimized. To achieve this, the parameters of the new middle
building were drawn from the region of the currently calculated decision hyperplane, since this
is the region in which the model is least certain as to where buildings should be assigned (see
Materials and Methods). Formally, this is equivalent to active learning [57] with uncertainty
sampling [59] in machine learning. Each of these remaining 8 training trials maximally
reduced the model uncertainty regarding feature importances.

Finally, participants completed 5 ‘testing’ trials, going through the same procedure of mem-
orization, delivery task, and producing a sketch map and recall sequences. These testing trials
were generated randomly, without any restrictions on building parameters, not even the
restriction of there needing to be clusters defined in any way along any of the features (how-
ever, testing environments were required to contain at least one shop and one house). They
were used to test the predictions of the computational model.

Results. We included all features described above in the following analysis, except for the
four geospatial features not relevant in our simple virtual reality environment (path distance,
natural boundaries, number of intersecting streets, whether they could be easily crossed). See
Fig 10 for the correlations of these features with co-representation probabilities, and Fig 11 for
the across- and within-subject variances of these correlations.

Above, we have introduced a method to infer participants’ feature importances for cluster-
ing, based on the inference of a decision hyperplane describing at which point in feature space
subjects stop assigning a middle building to one sub-map and start assigning it to another.
With this method, we have both components of a predictive model of cognitive map structure:
1) subjects’ psychological spaces, spanned by a set of features and feature importances, as
inferred by the decision hyperplane approach, and 2) a clustering algorithm. We chose
DP-GMM as the clustering algorithm, given its substantial advantage of being able to infer the
number of sub-maps automatically, and motivated by its success in other psychological
models.

Fig 12 shows the results of this predictive model on all participant cognitive map structures
(20 per subject; 15 training maps used to infer feature importances, and 5 testing maps used to
verify model predictions). Prediction can be incorrect on training trials, because feature impor-
tances are being inferred using the decision hyperplane approach without taking into account
the clustering algorithm and its idiosyncrasies (see red cells of the first 3 rows). After inference
of feature importances and running the clustering model within this feature space, 73.5% of the
training map structures could be predicted.
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The interesting part of Fig 12 is the bottom row of each sub-plot, which contains the
advance predictions of the model on randomly generated environments it was not trained on
and not confronted with prior to making the prediction. On average, 75.0% of all test map
structures could be predicted correctly in advance using the decision hyperplane method and
DP-GMM for clustering; and the majority of map structures could be predicted for all subjects
except for one.

Note that this is a strict accuracy metric—if the model predicts four out of five building sub-
map memberships correctly, but a single one incorrectly, the entire prediction is counted as
incorrect. The Rand index [56] is a more comprehensive metric, providing a number between
1 (flawless clustering) and 0 (all cluster memberships incorrect). The average Rand index of
predicted vs. actual test map structures was 0.83 in this experiment, meaning that for 83% of
the pairs of buildings, it could be correctly predicted whether or not they belong to the same
sub-map in participants’ spatial memory (according to their recall sequences).

If using the same DP-GMMmodel with feature importances inferred from co-representa-
tion correlations instead, the prediction accuracy drops to 59.1% on the testing maps, with an
average test-map Rand index of 0.75, indicating that the decision hyperplane approach is better
suited to uncovering feature importances than just using correlations.

Since each environment contained five buildings, there could be up to two sub-maps, and
the clustering process could be framed as assigning one of three values to each building—mem-
ber of sub-map #1, or of sub-map #2, or a single-building cluster (sub-maps with only a single
building were excluded from participant data, for reasons explained in the Materials and Meth-
ods section; however, if the model produced single-building clusters, these were not excluded
from the model predictions, but instead counted as mistakes). Thus, the baseline probability of
randomly coming up with the correct clustering is, on average, (1/3)5 = 0.4% for map structures
with two sub-maps, and (1/2)5 = 3.1% for structures with one sub-map of unknown size. In
this experiment, 14 subject test map structures contained two sub-maps, and 30 structures one
sub-map.

Fig 12. Results of a predictive clusteringmodel using subjects’ feature importances, learned using
the decision hyperplane approach. Each sub-plot reports all prediction results for one subject, using green
cells for correct predictions, red cells for incorrect predictions (one or more buildings grouped to the wrong
sub-map), and white cells for subject maps either not better than random chance or without apparent
structure. Top 3 rows in each subplot show results on the training trials (dark colours), and the 4th, bottom
row shows the prediction accuracies on the test trials (bright colours). On average, 75% of all test map
structures could be predicted correctly (green cells). For comparison, the probability of prediction by random
chance is 0.4% for two sub-map and 3.1% for one sub-map structures.

doi:10.1371/journal.pone.0157343.g012
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Discussion. The observation that a large majority of subject map structures can be pre-
dicted in advance using a clustering model, together with an appropriately scaled feature space,
provides further support for the clustering hypothesis. The improvement of prediction accu-
racy from 59.1% to 75.0% (and Rand index from 0.75 to 0.83) when using the decision hyper-
plane approach to infer feature importances, instead of just using co-representation
correlations, suggests that this approach is more suitable to uncover the psychological spaces in
which the clustering takes place.

However, the present approach has some shortcomings. First, it is only applicable to con-
trolled environments—thus, investigating participants’ past long-term memory structures
requires different methods (see next section). Second, the fact that calculating feature weights
from a decision hyperplane does not take into account the actual model generating the predic-
tions (in this case, the DP-GMM). Finally, the approach assumes linearity, i.e. that the surface
separating buildings co-represented with one or the other sub-map is a linear hyperplane (as
opposed to a non-linear surface). These shortcomings are reflected in the sub-optimal perfor-
mance of the model on the training trials in Fig 12. Although a model should be able to fit its
training data well, the performance on training trials (73.5%) and testing trials (75%) is not sta-
tistically significantly different.

The next section uses two different approaches which are not subject to these shortcomings
(introduced in the Materials and Methods section), one learning the optimal feature weights
for the employed clustering model using global optimization, and the second lifting the linear-
ity assumption. Both of them have the additional advantage that they do not require controlled
environments.

Experiment 3—Predictability of cognitive map structure in the real world
In this experiment, real-world buildings well known to participants were used (similarly to
Exp. 1). Apart from providing additional evidence for the clustering hypothesis by showing
that cognitive map structures in real-world environments can be predicted using a clustering
model, this section also validates the two generally applicable ways of acquiring subject-specific
models (the linear metric learned passively by means of global optimization, and the GDAmet-
ric) introduces in the Materials and Methods section. The same features introduced above were
used in this experiment. In addition, combinations of features (pairwise products of pairs of
features) were also included, in order to allow the learned metric to capture dependences
between features.

Participants. In total, data from 73 participants was analysed in this section. Subjects
unable to produce at least two sketch maps significantly better than random chance, with struc-
ture apparent from their recall sequences for at least two maps, were excluded, as at least two
map structures were required to have both a training and testing map.

In Experiment 3A (which asked for 5 environments with 5 buildings each), out of 81 partici-
pants, 54 had at least two better-than-random and structured maps. In Experiment 3B (which
asked for 3 environments with 8 buildings), out of 30 participants, data from 19 were analysed.
Participants were recruited, consented, and compensated through the Amazon Mechanical
Turk online survey system, and were required to have at least 95% approval rating on previous
jobs to ensure higher data quality.

Procedure. The procedure was similar to the one used in Experiment 1. This experiment
was also conducted on a website participants could access through MTurk after giving their
consent. Unlike 1, this experiment consisted of multiple trials (5 in condition A, 3 in condition
B), each trial following an equivalent procedure but asking for a completely different set of
buildings, possibly in a different city. Subjects took between one and 3.5 hours to complete this
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repeated trial experiment (this includes possible breaks, since the experiment was performed
online in participants’ homes, unsupervised, and the experiment was not timed).

In the first questions of each trial, subjects were asked to pick a number of buildings they
know well—5 in condition A, and 8 in condition B (thus, in total, 25 buildings had to be
recalled for the 5 trials of condition A, and 24 for the 3 trials of condition B). Thus, well-memo-
rized long-term memories of real-world environments were tested instead of novel stimuli in
virtual reality. Subjects were instructed to make sure that they know where in the city these
buildings are located, how to walk from any one building to any of the others, what each build-
ing looks like, and what purpose it serves.

The subsequent questions of each trial required subjects to produce a sketch map, and to per-
form a recall test consisting of 7 recall sequences in condition A, and 10 in condition B (in both
cases, as many cued sequences as there were buildings on the maps, and two additional uncued
sequences). Subjects followed the same instructions as in Experiment 1; the crucial difference
being that instead of presenting cues verbally by writing out the name of the cue building, cues
were presented visually (cue modality was changed to mitigate the strong effects of phonetic and
morphological similarity in the prior experiments, presumably due to articulatory rehearsal strat-
egies). That is, the participants’ own sketch maps were displayed again (showing only their
remembered building positions, without any names or labels), and the cue building was
highlighted using a thick border and green colouring. In the final question, subjects were asked to

judge the similarities of all pairs of buildings, i.e.
5

2

 !
¼ 10 pairs in condition A and

8

2

 !
¼

28 pairs in condition B, as well as a control pair of one of the buildings to itself, both in terms of
visual similarity, and similarity of purpose/function (using 1-10 rating scales as before).

Results. Fig 13 shows prediction accuracies (the ratio of perfectly predicted map structures
to all subject map structures) using DP-GMM clustering and GDA subject-specific model
learning. The best possible set of features and feature combinations was estimated from the
training data, using a greedy search approach—starting with a single feature (Euclidean dis-
tance) and then iteratively adding the feature which brings the clustering prediction closest to
participants’ actual groupings; repeated until either all features are included or the clustering
prediction accuracy stops increasing. Using the best possible set of features shown to the
model, 68.6% of the 185 subject map structures with 5 buildings of Experiment 3A (with up
to two sub-maps per structure), and 79.2% of the 48 subject map structures with 8 buildings
of Experiment 3B (with up to four sub-maps per structure) can be predicted accurately, such
that every single predicted sub-map membership is correct for these percentages of test maps.

Average Rand indices for these models are 0.87 for condition A and 0.95 for condition
B, which means that even the structures which are imperfectly predicted, causing a lower than
optimal prediction accuracy, are highly similar to the correct structures (co-represented build-
ing pairs are predicted correctly in 87% in condition A and 95% in B). Note that the prediction
accuracy of the best model is statistically indistinguishable from the estimated maximum possi-
ble prediction rate (calculated above based on simulating distractions by random swapping).
This suggests that the proposed novel GDA-based method does well at learning subject feature
spaces, and that the subsequent clustering model, based on a previously proposed Bayesian
model of human category learning, can infer the sub-map memberships and numbers
accurately.

Fig 13 also shows the numbers of sub-maps contained in participants’ structures. In general,
the prediction task can be seen as assigning one of K + 1 values to each building, where K is the
maximal number of possible sub-maps (single-building clusters are also possible, hence the
increment by one). Thus, the baseline probability of randomly coming up with the correct
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Fig 13. Prediction accuracies. First bars show the numbers of all subject map structures (and, within them,
the structures containing the specified numbers of sub-maps). Top: results in condition A. The second bar
shows the accuracy for the best feature set (Euclidean, path*morphological, sketch map, path*visual,
phonetic, Euclidean*morphological, morphological, sketch map*Euclidean distances); bars 3-8. show
accuracies when successively removing the last feature. Middle: results in condition B. The second bar
shows the best accuracy (Euclidean, path*functional, sketch map*morphological, morphological*separating
streets, path*phonetic, sketch map, sketch map*path and sketch map*Euclidean distances); bars 3-8.
accuracies when successively removing the last feature. Bottom: accuracies of the optimization-based
metric.

doi:10.1371/journal.pone.0157343.g013
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clustering is, for condition A, (1/3)5 = 0.4% for map structures with two sub-maps, and (1/2)5

= 3.1% for structures with one sub-map. For condition B, this baseline expected random clus-
tering accuracies are several orders of magnitude lower (2.5 � 10−4%, 1.5 � 10−3%, 1.5 � 10−2%
and 0.3% respectively for K = 4, 3, 2 and 1).

The model accuracies when successively removing particular features (bars from left to
right in Fig 13) provide an additional measure for how important these features were, aggre-
gated over all subjects, and measuring importance in a causal fashion, since this is a predictive
model. The most important features were those which caused the greatest drops in accuracy
upon their removal. In condition A, two features are significantly more important than the rest
—sketch map distance and the product of path distance and visual similarity -, whereas the
importances are similar in condition B, with a slightly larger accuracy drop caused if omitting
sketch map distance. In both conditions, about 2 out of 5 map structures can still be predicted
when using solely Euclidean distance.

The bottom row of Fig 13 shows prediction accuracies obtaining using the same procedure,
but the passive global optimization-based metric learning method instead of the non-linear
GDA metric (see Materials and Methods). The GDA-based method significantly outperforms
global optimization, suggesting that the Gaussian assumptions are more reasonable than the
linearity assumption made by the other methods.

The strong influence of sketch map distances raises an additional question regarding
predictability of cognitive map structures—is advance prediction possible without asking the
subject anything (other than a list of buildings he knows)? To investigate this question, we have
run the predictive model on data from which visual similarities and sketch map distances were
removed, i.e. solely on data which can be derived from the list of subjects’ buildings and geos-
patial data sources such as Google Maps API.

Subjects’ functional similarities were also removed from this data, and replaced by an objec-
tively calculated measure of functional relatedness. Specifically, we used the Jaccard similarity
metric on lists of building types from Google Places API. This API can return a list of known
building types when queried—see https://developers.google.com/places/supported_types for a
list. Usually buildings have several applicable types, ranging from specific to general, e.g. ‘meal
takeaway’, ‘restaurant’ and ‘food’ for McDonalds. The Jaccard index (JI), defined as the ratio of
the size of the intersection to the size of the union of two sets, measures how many items in
these type lists match between two buildings, as a proxy for their functional similarity. (For
example, JI = 0.5 between the McDonalds example and a building with types ‘bakery’, ‘restau-
rant’ and ‘food’). The objective functional similarity metric thus obtained does reflect subjects’
own judgements—the correlation between them is r = 0.66—but is somewhat different, since it
does not reflect subject idiosyncrasies, and is also free of noise or biases.

Using GDA for subject-specific model inference, and using these features which are all
known a priori—derivable from the subject building lists and public geospatial databases -,
75% of map structures can be predicted in advance for condition A (Rand index: 0.91), and
63.4% in condition B (Rand index: 0.88).

Finally, we have attempted to predict subjects’ cognitive map structures without learning
subject-specific models at all, by trying to infer a psychological space common to all subjects,
and clustering within this space. Inferring someone’s spatial representation structure without
knowing anything about them would have great advantages for robotics applications and geo-
graphical planning and map design, among other fields (see Discussion). The resulting predic-
tion accuracies (and Rand indices) for condition A and B were 41.7% and 60.2% (and RI = 0.76
and 0.78) respectively. In accordance with the individual psychological space hypothesis and
with the results in Fig 11, the model performs significantly worse when not allowed to learn
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subject-specific feature spaces. However, even these impoverished models can predict whether
or not two buildings are co-represented on the same sub-map in more than 3 out of 4 cases.

Table 2 summarizes the prediction accuracies and Rand indices of the best models in both
condition 3A and 3B, in all three above-mentioned settings (using all features, or only features
which do not require asking for similarities or sketch maps, or using a general, ‘one size fits all’
model requiring no questions at all).

Discussion. The model prediction accuracies reported above are close to the estimated
maximum possible prediction rates from noisy map structures (based on simulating partici-
pant distractions using random swapping), calculated at the beginning of this Section: 62.5%
for condition A, and 78.0% for condition B. This shows that the model accounts well for this
noisy data, despite not being able to predict 100% of subject map structures.

Even using solely features which can be objectively derived from geospatial information
from participants’ specified buildings, without collecting any subjective data such as sketch
maps or visual similarity judgements for the test maps, solid prediction is still possible—70.8%
for condition A and 68.8% in B (although recall sequences still need to be collected in order to
learn subject-specific models). This makes a subject model, once learned, applicable to any
environment encountered by that subject.

These results further substantiate the plausibility of the individual psychological space and
the clustering hypotheses introduced in the Introduction, and show for the first time that
human spatial representation structures can be predicted in advance.

Discussion
A growing body of evidence suggests that rather than storing spatial information within some
global reference frame, human spatial memory employs local, object-centered representations
[11, 12, 82, 83]. This is consistent with the much earlier proposal that spatial memories are
organized according to hierarchies [6–10], as well as with recent neuronal evidence [16, 19].

In this paper, we made the first attempt to quantitatively explain and predict the local struc-
ture of spatial representations. We have found strong correlations between the probability that
two buildings are co-represented in participants’ allocentric spatial representations, and fea-
tures such as Euclidean distance, path distance, and visual and functional similarity. These cor-
relations suggest that clustering based on proximity along these features is likely to give rise to
the observed representation structure. We have developed multiple methods for exploring how
important these features are for individual subjects (i.e. automatically learning their ‘psycho-
logical spaces’), even if only small amounts of data are available, and have developed and evalu-
ated a predictive model of cognitive map structure based on Bayesian nonparametric clustering
in these learned psychological spaces. We have shown that our model can successfully predict
spatial representation structures in advance in the majority of cases.

The results from our model are very promising, but their plausibility depends on the empiri-
cal method used to expose spatial representation structure. Although the structures identified

Table 2. Prediction accuracies (and Rand indices) in Experiment 3, for all features and subject-specific GDA+DP-GMMmodel (second column), for
features known a-priori, without having to ask subjects to rate similarities or draw sketchmaps (third column), and finally using a subject-general
model, without learning subject-specific feature weights.Rows: Condition 3A (19 subjects, 48 map structures from as many distinct environments, 112
sub-maps), and condition B (54 subjects, 185 map structures from as many distinct environments, 310 sub-maps).

Condition All features, subject-specific GDAmodel A-priori features subject-specific GDAmodel No subject- specific model

Condition 3A 79.2% (RI = 0.94) 70.8% (RI = 0.88) 41.7% (RI = 0.76)

Condition 3B 68.6% (RI = 0.89) 63.4% (RI = 0.83) 60.2% (RI = 0.78)

doi:10.1371/journal.pone.0157343.t002
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by our recall order paradigm are substantiated by their significant influence on several cogni-
tive phenomena (Experiment 1), there is clearly room for improving the experimental method-
ology. After briefly outlining the implications of models of cognitive map structure, the
discussion below outlines some alternative approaches, and suggests reasons for the imperfect
prediction rates.

The mentioned feature correlations, as well as the predictions of the computational model
and the conclusions with regard to the individual psychological space and clustering hypothe-
ses, only concern individuals who are capable of learning structured allocentric cognitive maps.
There is evidence for substantial individual differences in cognitive map formation—some par-
ticipants seem to be substantially more accurate at recalling spatial relationships, or may only
learn route-based representations [84–86]. This was also evident from our data—a substantial
proportion of our subjects produced sketch maps which either had errors comparable to ran-
domly generated maps, or showed no evidence of structure.

It is possible that the participants unable to produce accurate sketch maps, or not showing
structure in their recall protocols, nevertheless use a clustering process to structure their repre-
sentations. In principle, this would be possible even for egocentric or route-based spatial
knowledge as well. However, this cannot be tested with our present paradigm. The question
could be investigated in future work with a different experimental setup, for example, using
error patterns in judgements of relative direction to infer representation structure (see below).

Implications of modelling cognitive map structure
We have reported significant effects exerted by cognitive map structure on spatial memory-
related performance in the Results section. Together with prior evidence on priming, map dis-
tortion, distance estimation biases, and related effects, it seems clear that representation struc-
ture is relevant to spatial memory.

Apart from psychology, its investigation is also of interest for neuroscience. Strong evidence
exists for hierarchies in the neural correlates of rodent spatial memory, place cells and grid
cells, specialized neuron types discovered in mammalian—and, more recently, human—brains
[4, 87], and is shown to play a key role in representing space [88]. Place cells show increased
activity in small, spatially localized areas, encoding spatial locations within particular spaces—
with firing patterns changing significantly upon switching or changing immediate surround-
ings (the set of active place cells is completely different in separate environments). Grid cell fir-
ing shows a highly regular, triangular grid spanning the surface of an environment,
independently of its configuration of landmarks, thus encoding a direction and distance
metric.

Both of these spatially relevant neuron types have been observed to show natural hierar-
chies, with the granularity of representations (the sizes of the firing fields of individual cells)
increasing from dorsal to ventral poles of the relevant brain areas [14, 15]. Furthermore, frag-
mentation in separate parts of an environment has also been observed in electrophysiological
recordings of grid cells [31, 89], indicating that instead of a single ‘cognitive map’, there a man-
ifold of sub-maps are represented in brains [16].

However, the connection between these hierarchical and/or fragmented neural representa-
tions, and cognitive representations of map structure, remains largely unexplored. The predic-
tive modelling approach presented in this paper could facilitate and accelerate research into
this connection—after a subject-specific model has been learned from a small number of envi-
ronments, subjects do not need to be subjected to arduous recall sequences (or large numbers
of estimations), and can quickly be tested in large numbers of virtual reality environments in
an fMRI.
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Models of cognitive map structure could be of interest not only to the cognitive sciences but
also to neighbouring fields. For example, in geographic information science, the insight that
both planning times and estimation accuracies are improved within sub-maps compared to
across, together with a subject-general model (which is good enough for this purpose—see
Experiment 3), could help design schematics or transit maps which are cognitively easy to use
for a majority of subjects.

Furthermore, models of human spatial representation are relevant for robotics for the pur-
pose of communicating and interacting with humans. This is a rapidly growing area, with over
three million personal (non-industrial) service robots sold in 2012 (according to the World
Robotics 2013 Service Robot Statistics); a figure that can be expected to grow with the increas-
ing demands on care robotics due to the rapid ageing of the world population. A model of spa-
tial representation structure could allow artificial agents to use and understand human-like
concepts (for example, translating latitudes and longitudes to easily understandable expres-
sions like ‘between the shopping area and the university buildings’). Approaches to conceptual-
ize spatial representations exist only for indoor robots [90]. The present approach, in contrast,
is applicable to unconstrained outdoor environments (and is demonstrated by our results to
work in a human-like fashion in over a hundred cities). In the nearer future, computational
models of spatial concepts could facilitate specifying vague areas (sub-maps) as goals for GPS
devices.

Finally, the particular way individual subjects structure their commonly encountered envi-
ronments depending on past experience and task demands could give insight into computa-
tionally more efficient spatial representations for artificial intelligence (AI). With only around
40 million principal neurons in the human Hippocampus [91], adults seem to be able to effort-
lessly store and recall navigation-relevant spatial details of many dozens of cities and hundreds
of square kilometers. Storing a comparable amount on a trivial AI map representation such as
an occupancy grid [92], with the accuracy relevant for navigation, and including rich percep-
tual information, is not possible using today’s hardware (let alone searching through such a
vast database in split seconds, as humans are able to do). Human spatial representation struc-
ture could give inspiration for more efficient computational structures for representing space.

Alternative empirical approaches to uncovering cognitive map structure
Since humans do not have introspective insight into their own memory structure, uncovering
organization principles of spatial memory is challenging. Several methods have been proposed
in the literature to investigate which reference frames, or imposed structure, might be
employed by participants. Of these, the recall order paradigm was used here, and described in
Materials and Methods. Its main shortcomings are the lack of robustness to outliers due to e.g.
lapses of attention (mitigated by the jackknifing procedure), and the influences of phonological
and morphological features of verbally cued items (mitigated by spatial cueing, as in Experi-
ment 3). Despite these shortcomings, the structures extracted by this method have substantial
influence on various cognitive phenomena, as reported in the results above.

Other experimental approaches for investigating representation structure include judge-
ments of relative direction (JRD), in which subjects imagine standing at some specified location
and heading, are asked to point to specified objects they have memorized previously. The angu-
lar error in JRD seems to be strongly affected by interobject spatial relations (rather than only
depending on a global reference frame), with better accuracy for judgements aligned with the
intrinsic reference frame of an array of objects both in navigation space [11, 93] and in small-
scale environments in a room [94]. These experiments have utilized object arrays with clear
axes of alignment, either employing a grid-like array (mainly used in small-scale experiments)
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or making use of single major roads or paths as intrinsic axes in large-scale surroundings. This
setup limits the applicability to general environments. However, the idea of direction judge-
ment errors induced by changes of reference frame is generalizable, and has also been used to
investigate reference frames of arrays without enforced intrinsic structure [19, 83]. Because
direction errors are smaller within reference frames than across [19], they could in principle be
used to infer representation structure. The main disadvantage of this approach is the large
number of direction estimations required to distinguish reference frames reliably, due to the
large variance of direction errors. Furthermore, the number of estimations needed for pairwise
comparison grows quadratically with the number of objects and / or frames (none of the cited
papers compare more than two frames).

Cognitive map structure impinges on behavioural performance in several ways, most nota-
bly including biasing direction estimation (see above), distance estimation—overestimated
across- and underestimated within representations [6] -, and priming, i.e. accelerated recogni-
tion latencies [8], direction estimation latencies [19], and verifications of spatial relations [20].
All of these biases in errors or response times cause the same difficulties when trying to infer
the exact representation structure for a particular participant—due to large variances, a very
large number of judgements is required to obtain acceptable statistical significance (and the
number grows quadratically with the number of objects). How to mitigate this problem, and
which of these metrics have the smallest variance and thus highest reliability for map structure
extraction, as well as whether they all yield consistent structures as would be expected, remain
important questions for future research on cognitive map structuring.

Assuming either no distractions, or that jackknifing can successfully eliminate the majority
of outliers caused by distractions, the recall order paradigm is able to provide the most deter-
ministic way of inferring map structure, since it does not rely on comparing distributions of
errors (or response times) using significance testing. It is also deterministic over time, resulting
in very similar structures to the original hierarchies when re-testing subjects several weeks later
[6]. These advantages, together with the difficulty of obtaining statistically significant results
from error / RT patterns with high variances, have motivated our choice for the recall order
paradigm for uncovering the structures modelled in this work.

Obstacles to predicting cognitive map structure
Our results indicate strong correlations of co-representation probability with distance, suggest-
ing that a clustering mechanism underlies map structures, and substantiating the plausibility of
our computational model. However, these conclusions are based on a number of assumptions;
and it is possible that some of them might not be correct. Below, we list some possible obstacles
to a predictive model based on these assumptions.

First, it might be the case that subjects did not learn allocentric spatial representations of
their chosen buildings at all. They might have painstakingly constructed the sketch maps in
these experiments from egocentric representations, for example by imagining egocentric vec-
tors from a particular vantage point, and estimating distances. If subjects can accurately esti-
mate distances, then this procedure might yield sketch maps that are better than random,
despite the absence of a metric cognitive map (subjects might well do this, for example, if they
have only ever visited their chosen buildings by underground public transport). However, note
that 1) in this case they would be violating the experiment instructions, which state that they
need to know how to walk from any of the buildings to any of the others, and 2) it is much
harder to draw accurate sketch maps when estimating from only one (or few) egocentric van-
tage points, as opposed to when a full ‘map’ is accessible allowing the choice of any building or
points between buildings as vantage points.
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Second, subject cognitive maps might be unstructured. However, according to the recall
order paradigm, structure is evident from the recalls of a majority of subjects and subject maps.
There is also the independent evidence of several distinct local reference frames, and of local
neural representations (see above).

Third, apparent structure might actually arise from non-spatial context effects or long-term
memory events which happened at, or are relevant to, a sub-set of buildings or locations on a
subject’s cognitive map. For example, a subject might cluster together multiple restaurants
after having had dinner at all of them with her significant other. When filling out the recall
sequences, she might employ her salient episodic memories of these dinners to quickly recall
these restaurants (and recall them together, which would lead to the tree analysis algorithm to
assume that they are clustered together). It is difficult to exclude such influences in the real-
world experiments, as most buildings familiar to subjects will have some sort of episodic mem-
ories associated with them. How frequent such influences are, and to what extent they distort
apparent map structure, remain questions for future research (one approach might be trying to
induce meaningful episodic memories in the virtual reality experiment, and measure their
effects). However, if a majority of subject map structures had been affected by such context
effects (which naturally cannot be modelled with the described features), reliable prediction
would not be possible at all. The observation that a majority of structures can be predicted sug-
gests that these influences affect a minority of recalled structures.

Fourth, spurious structures could appear in the recall sequences from phonetic or morpho-
logical name similarity in case subjects use articulatory rehearsal to facilitate quick recall; in
which case it is a natural strategy to rehearse and recall similarly sounding object names
together. This was indeed a significant influence in the verbally cued experiments (Experiment
1 and 2), although much weaker than the dominating influence of spatial distance. However, it
seems that the effect can be mitigated substantially by changing the cue modality from verbal
to visuospatial cues, which reduces the correlations between phonetic/morphological similarity
and co-representation probability to insignificant levels (see Fig 10). A further possible objec-
tion related to working memory, that the uncovered structures might be learned during the
experiment (instead of arising from long-term spatial memory), can be ruled out based on the
approximately uniform distribution of outlier positions (the first few sequences were not more
likely to be outliers than the last few sequences, and no evidence for any learning of map struc-
tures during the real-world experiments could be found in the data, indicating that the
responses were indeed indicative of long-term memory structure and not of more recent struc-
tures in working memory—see S1 File for details).

Fifth, in the real-world experiments during which subjects were not observed, they could
have lightened the cognitive load and speeded up the process by either writing down the list of
buildings, or sketching a map on paper, and then reading instead of recalling. Although they
were explicitly instructed to do everything from memory, without looking anything up, an
unfortunate side effect of the monetary re-compensation is that they have financial incentive to
speed up the task (however, [95] have found no significant difference between the ratio of cor-
rect answers between Mechanical Turk participants and supervised subject from a middle-class
urban neighbourhood; although there was a significant difference to student participants). The
proportion of subjects ignoring task instructions can be reduced by ensuring that most of their
other tasks were accepted by requesters on MTurk (in these experiments, they were required to
have at least 95% approval rating on previous jobs to ensure higher data quality). Furthermore,
since the easiest strategy when using a list or a sketch on paper is to always use the same order-
ing, this should cause recall sequences to be circular, which can be detected in the data. As
would be expected, the rate of circular recalls is significantly higher for the MTurk subjects
(Experiment 3)—12.6%—than for the student participants of Experiment 2—5.3%. However,
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they are still a minority of the data, and have been excluded in the reported analyses (as they
lead to a lack of apparent structure).

An additional obstacle to predicting cognitive map structure is the rigidity of the tree analy-
sis algorithm. Sub-maps are only recognized as such if they occur together, without interrup-
tion, in every single recall sequence. Fig 14 F illustrates an example (revisiting the example from
Fig 4) where a distraction, which interrupts the sequence cued with ‘C’ and causes the partici-
pant to continue with ‘B’, for example because the distraction has reminded him of ‘B’. This
causes a substantially different extracted map structure—were a well-trained predictive model
to predict the correct (CRU)- (BM) sub-map structure, it would show up as an incorrect pre-
diction, and to have a Rand index of 0.6 instead of 1.0. S1 File suggests a calculation of how
many such incorrectly inferred map structures there might be in our data, based on the per-
centage of recognized outliers using jackknifing.

Apart from devising a less simplistic outlier detection method, one possibility to reduce the
occurrence of distractions—for future work—would be timing all recall sequences, and dis-
carding those that exceed a temporal threshold, forcing participants to re-do the recall.

Conclusion
The way spatial memories of open, large-scale environments are structured has remained an
unanswered question. In this paper, we have provided the first attempt at a quantitative answer,
hypothesizing that cognitive map structure arises from clustering in some subject-specific psy-
chological space, including (but not necessarily limited to) a list of features such as spatial dis-
tance, separating boundaries and streets, and visual and functional similarity. As this claim
implies a strong dependence between whether or not objects are stored on the same representa-
tions, and these features, we have examined this dependence using subjects from over a hun-
dred cities worldwide.

Fig 14. Possible obstacles to predicting subject cognitive map structures. A: Subjects may not have formed allocentric cognitive maps. B: Their maps
may not have been structured. C: The apparent structure might be due to episodic memories, emotionally significant events, or other types of non-spatial
long-termmemory. D: Spurious structure might arise from articulatory rehearsal or other working memory strategies, instead of LTM. E: Subjects can list or
sketch their buildings on paper, instead of recalling them frommemory, to make the task faster and easier; usually resulting in circular recall sequences. F:
Mind wandering or lapses in attention during recall sequences can cause tree analysis to reconstruct incorrect map structures.

doi:10.1371/journal.pone.0157343.g014
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We have found that for participants who have learned structured allocentric cognitive
maps, there is a strong correlation between the probability of co-representation of buildings
and their distance in these features (including, perhaps surprisingly, their visual similarities).
Furthermore, we report that despite the noisy inference of subject map structures, they can be
predicted correctly in a majority of cases, after learning metric characterising subjects’ psycho-
logical spaces and applying a clustering method based on Bayesian models of cognition.
Together, these results provide support for the individual psychological space and clustering
hypotheses, and for the plausibility of a Bayesian clustering model of cognitive map
structuring.
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