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Abstract

The identification of a subset of genes having the ability to capture the necessary informa-
tion to distinguish classes of patients is crucial in bioinformatics applications. Ensemble and
bagging methods have been shown to work effectively in the process of gene selection and
classification. Testament to that is random forest which combines random decision trees
with bagging to improve overall feature selection and classification accuracy. Surprisingly,
the adoption of these methods in support vector machines has only recently received atten-
tion but mostly on classification not gene selection. This paper introduces an ensemble
SVM-Recursive Feature Elimination (ESVM-RFE) for gene selection that follows the con-
cepts of ensemble and bagging used in random forest but adopts the backward elimination
strategy which is the rationale of RFE algorithm. The rationale behind this is, building
ensemble SVM models using randomly drawn bootstrap samples from the training set, will
produce different feature rankings which will be subsequently aggregated as one feature
ranking. As a result, the decision for elimination of features is based upon the ranking of
multiple SVM models instead of choosing one particular model. Moreover, this approach
will address the problem of imbalanced datasets by constructing a nearly balanced boot-
strap sample. Our experiments show that ESVM-RFE for gene selection substantially
increased the classification performance on five microarray datasets compared to state-of-
the-art methods. Experiments on the childhood leukaemia dataset show that an average
9% better accuracy is achieved by ESVM-RFE over SVM-RFE, and 5% over random forest
based approach. The selected genes by the ESVM-RFE algorithm were further explored
with Singular Value Decomposition (SVD) which reveals significant clusters with the
selected data.

Introduction

Designing a classification model for patients, based on their gene expression profile, to capture
their variation based upon their subtype of disease is still a focus of many researchers working
in the field of bioinformatics [1] [2] [3]. The key difficulties of building this model are the vast
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number of gene expression measurements being generated for each patient through high
throughput genomic technologies. These data are typically very complex, noisy and highly
dimensional. Moreover, many cohorts have the imbalanced classes problem which raises chal-
lenges in dealing effectively with this kind of data.

Consequently, feature selection has become a prerequisite in many genomic applications
[4]. It selects a small subset of useful attributes that capture the necessary information to
explain the differences between patients based upon their subtype of disease. By selecting these
attributes, the dimensionality of the data is decreased and the ability to visualise and under-
stand the data can be better realised whilst maintaining an informatively ‘rich’ set of features to
provide higher quality results. Other benefits of performing attribute selection include the
capability to build robust and compact models using only a subset of the original attributes.

Saeys et al [5] define a taxonomy of feature selection techniques which divides feature selec-
tion into three approaches: filter, wrapper and embedded. Filter based algorithms are indepen-
dent of the classifiers. That is, genes are selected based on an evaluation criterion such as
looking at the intrinsic properties of the data regardless of the classifier [6]. The wrapper and
embedded approaches, on the other hand, select a subset of genes based on the classification
performance of a specific model. Wrapper methods follow a search strategy to find optimal fea-
ture subset tailored to a particular classification model, while embedded methods use the evalu-
ation of classification model to perform feature selection. Embedded methods are less
computationally expensive than wrapper methods and less prone to over-fitting, especially in
high-dimensional spaces [5].

In the present study, we use the embedded methods with Support Vector Machine (SVM)
[7] classifiers as the base learning model. Support Vector Machine (SVM) is a classifier using a
decision boundary to separate two classes defined by solving a quadratic optimization problem.
SVM finds an optimal solution that maximizes the distance between the hyperplane and the
most critical training samples. The decision boundary is then specified by a subset of critical
training samples named support vectors that lie on the edge. SVM extends to multi-class classi-
fication using several methods [8] [9] [10]. SVM has been extensively and effectively used in
many bioinformatic applications because its design is well suited to genomic data. SVM has the
ability to work in high dimensional space compared to the small number of samples [11]. Sev-
eral embedded methods have been proposed for feature selection using SVM classifier acting as
a base learning algorithm to decide which feature has to be eliminated [12] [8] [13]. A domi-
nant approach among them is the SVM-RFE selection method proposed by Guyon et al [13].

Besides embedded methods, ensemble methods [14] are also effective learning techniques
that have been introduced to improve overall prediction and feature selection accuracy. In this
approach, several classification models are combined to make the decision for elimination of
features instead of choosing one particular classifier. A good example is random forest [15]
which combines random decision trees with bagging to improve overall feature selection and
classification accuracy. Moreover, ensemble techniques have the advantage of handling the
problems of small sample size and high-dimensionality associated with gene expression data-
sets. They also reduce the potential of over fitting the training data. With ensemble methods,
the training dataset may be used more efficiently and a feature selection process can be
achieved using multiple prediction models each with a different sample subset.

Surprisingly, the adoption of ensemble methods in support vector machine has received
attention recently but mostly on classification not gene selection [2] [16] [17]. For instance,
Zou et al [17] employ a machine learning approach based on a novel ensemble classifier to pre-
dict cytokines. Similarly, Ding at al [18] use ensemble SVM classifier to achieve better predic-
tions, but without doing any feature selection. Abeel et al [2] proposed ensemble feature
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selection methods based on SVM-RFE. They merely employ ensemble methods as multiple
executions of SVM-RFE algorithm in order to increase the stability of the selected features.
However, our approach employs ensemble methods through constructing multiple SVM mod-
els at each iteration of SVM-RFE. The rationale behind this idea is to take the strengths of ran-
dom forest, such as ensemble and bagging, and apply it onto SVM. Valentini et al [19]
thoroughly analyse the bias and variance of SVM for the development of SVM-based ensemble
methods. The authors show that the bias-variance decomposition offers a hypothesis to
develop ensemble methods using SVMs as base learners [19].

In the following, we introduce an ensemble SVM (ESVM) for gene selection that follows
the ensemble and bagging concepts of random forest and adopts the backward elimination
strategy which is the rationale of recursive feature elimination algorithm [13]. The idea
behind this is that, building an ensemble of SVM models in each iteration of the SVM-RFE
using a randomly drawn subset of the training set, will produce different feature rankings
which will be aggregated as one ensemble vote. As a result, the decision for elimination of fea-
tures is based upon the votes of multiple SVM models instead of choosing one particular
model. Moreover, this approach will allow us to handle the problem of imbalanced datasets
by constructing roughly balanced bootstrap samples or bootstrap samples biased to the
minority class.

Materials and Methods
Ensemble SVM

This paper introduces a new algorithm for gene selection from microarray gene expression
datasets called Ensemble SVM-RFE (ESVM-RFE). ESVM-REFE is an embedded feature selec-
tor algorithm that follows a backward feature elimination method. Our base learning classi-
fier is a linear SVM which has been thoroughly investigated and benchmarked against a
variety of state-of-the-art methods [15] [20]. SVM is involved in the process of determining
what attributes to remove at each step since SVM generates a weight for each feature accord-
ing to the absolute value of their weight in the hyperplane. These weights can be used to rank
the features from most important to least important, which is the principle for SVM-RFE
algorithm [13].

Consequently, we propose an ensemble feature learning method which relies on the bagging
approach with SVM classifiers as the base learning algorithm. Following this approach, several
feature rankings are combined to make a principled decision for elimination of features at each
iteration in the SVM-RFE instead of choosing one particular feature ranking of SVM for a par-
ticular sample.

Algorithm of ESVM-RFE

The algorithm starts with the entire set of features in the dataset, and at every iteration, we
train an ensemble SVM by taking bootstrap samples from the original training dataset. In
order to mitigate the effect of class imbalanced data on classification, we take approximately
equal numbers of samples from each class

The estimated feature weights from each SVM are aggregated to form one final evaluation
of the ensemble. Subsequently, we sort the features according to their estimated weights in
decreasing order. The least important features with the smallest weight are eliminated and
another ensemble is re-constructed but restricted to the remaining set of features. This process
is repeated iteratively until a desired number of features is left, where this number is a user
defined variable (see Algorithm ESVM-RFE).

PLOS ONE | DOI:10.1371/journal.pone.0157330 June 15,2016 3/17



el e
@ : PLOS ‘ ONE Ensemble Feature Learning of Genomic Data

Algorithm ESVM-REFE (data,class,b,E,d,bagSize)

Require: survivelIndexes = seq(l : ncol(data))
Require: n=nrow(data)
while Ilength (surviveIndexes) > ddo
m= length (survivelndexes)
survive=m-mx E{ survive: number of features to select in the current
iteration}
ensRes=matrix(n, b) { ensRes: feature’ sweight of each SVMmodel}
fori=1:hbdo
bag«— bootstrap(data, bagSize)
bagClass < bootstrap(class,bagSize)
model « svm(bagl , survivingIndexes] ,bagClass)

o *

weightVector < transpose (model$coefs) $*smodel$SV{ Compute the
weight vector}
featureWeight « weightVector*weightVector{ Compute ranking
criteria}l
ensRes «+ merge (ensRes, featureWeight) { Accumulate feature’ s weight}
end for
totalWeight = rowSum(ensRes) { Aggregate feature’ s weight}
sortedWeight « sort (totalWeight) { Sort the total feature’ sweight by
decreasing order}
sortedIndexes « index (sortedWeight)
surviveIndexes < survivelndexes| sortedIndexes[ 1 : survive]] { Elimi-
nate featureswith smallest weight}
endwhile
selectedData= datal, survivelndexes]

The R package €1 071 that contains the algorithm SVM was used in this paper to implement
our ESVM-REFE algorithm which takes six parameters. Two parameters highly affect the
computational complexity of our ensemble SVM: E, the proportion of features to eliminate at
each iteration and b, the number of SVMs to train in each ensemble. Decreasing E increases the
computational cost since less features are removed at each step but perhaps provides more
well-mannered elimination. In normal SVM-RFE [13], one feature is eliminated at each step,
but the authors reported that the algorithm can be generalised to remove more than one feature
per step to improve computational time. Similarly, our ESVM-REE can be also generalized to
remove more than one feature per step. Accordingly, because we are constructing ensemble
SVM in each step and in order to speed up our process, we chose E = 10% by default [21].

With respect to the parameter b, it is associated with our main aim to obtain a diverse set of
feature rankings by drawing different bootstrap samples of the training data to train b SVMs.
In general, the more models you train the better results you get. However, at a certain point the
benefit in prediction performance from learning more SVMs will be lower than the cost in
computation time for learning these additional SVMs. Furthermore, learning a large number
of SVMs may produce redundant feature rankings because SVM-RFE procedure is determin-
istic. In this paper, we chose to generate 40 bags by default from the training data. The default
values of these two parameters (b and E) were based on earlier work [21], where it was demon-
strated that these parameter settings provided a good default.

Another parameter is the bagSize vector which contains the number of samples to take from
each class of the training dataset in order to train each SVM in the ensemble. This parameter
plays an important role in handling the problem of class imbalanced data. ESVM-RFE algo-
rithm has the capacity to mitigate the effect of imbalanced classes on gene selection through
constructing bootstrap samples to build the ensemble SVM. So that, at the same time as we are
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Table 1. Microarray gene expression datasets.

Datasets Number of
classes

Childhood
Leukaemia

NCI
Colon cancer
Breast2 cancer
Breast3 cancer

doi:10.1371/journal.pone.0157330.t001

2

w NN o

Number of Number of training Number of testing Profiles
features samples samples
22,277 45 15 Relapse/Non
Relapse
5,244 46 15 8 phenotypes
2,000 46 16 Cancer/Normal
4,869 58 19 2 phenotypes
4,869 72 23 3 phenotypes

extracting random bootstrap samples from the original training dataset, we induce our sam-
pling approach to generate a roughly balanced bootstrap samples.

These defined parameters are passed to ESVM-RFE algorithm along with the parameters
data, a data matrix contains the dataset, class, the response vector with one label for each row
data and d, the desired number of features.

Datasets

We have applied our feature selection approach on five microarray datasets using ESVM. The
main characteristics of these datasets are summarised in Table 1. They share common charac-
teristics such as a very small number of samples compared to thousands of genes and some of
them are imbalanced. The Affymetrix childhood leukaemia dataset is generated from the
U133A platform and it is collected from The Children’s Hospital at Westmead. For more infor-
mation, see S1 Text.

This childhood leukaemia gene expression dataset contains data for 60 patients with expres-
sion values for 22,277 probes. This dataset has associated clinical data which contains labora-
tory test results for each patient in addition to the general information about patients such as
treatment received, sex, age, date of birth, etc. Patient information was anonymized and de-
identified prior to analysis. The clinical data also contains outcomes for each patient such as
relapse status. This clinical information about relapse status is used in this study as a class label
for each patient in order to perform attribute selection. A stratified random sampling is applied
on the gene expression dataset in order to take quarter of the data as a test dataset having the
same distribution of the patients to the training data. For that we have used the R package
sampling which has the method balancedstratification. The training and test
datasets are composed of 45 and 15 patients, respectively. The distribution of patients in each
dataset is shown in Table 2.

The second Affymetrix microarray dataset used in this study is the Colon cancer dataset
[22] which contains 2000 expression values for 62 samples. Each sample indicates whether or
not it came from a tumour biopsy [22]. This dataset allows us to objectively compare our
result with earlier published results as it has been used in many different research papers [23]
[24] [25].

The third dataset, the National Cancer Institute cancer cell line dataset, is also a well-studied
publicly available microarray benchmark collected by Ross et al [26] and is produced using
Affymetrix HG-U133A chips. The dataset consists of 61 samples that are classified into eight
categories. Each sample is measured over 5,244 gene expression values. This dataset is complex
as it is composed of multiple classes with a low number of samples in some classes which raise
many challenges for the analysis.
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Table 2. The number of patients in the training and test datasets for childhood leukaemia dataset.

Relapse Non-Relapse Total
Training dataset 15 30 45
Test dataset 6 9 15

doi:10.1371/journal.pone.0157330.t002

The fourth dataset used in this study is related to breast cancer and was downloaded from
[http://www.rii.com/publications/2002/vantveer.htm] [27] as cited in [28]. The dataset mea-
sures 4,869 gene expression values corresponding to 33 patients that developed distant metas-
tases within 5 years, 44 that remained disease-free for over 5 years, and 18 with BRCA1
germline mutations and 2 with BRCA2 mutations). Similarly to the authors in [28], we
excluded the 2 patients with the BRCA2 mutation because of the small sample size. The breast
cancer dataset was used both for two class comparison (those that developed metastases within
5 years vs. those that remain metastases free after 5 years) and for three group comparisons by
adding the patients with BRCA2 germline mutations. The two class dataset is named Breast2
containing 78 patients, and the three classes dataset is named Breast 3 with a total of 95
patients. The five reported datasets are z-score normalized.

Results and Discussion

We report here the experimental evaluations on the five cancer microarray datasets. One of the
most important experiments is to compare our newly proposed ensemble SVM method to the
state-of-the-art SVM-RFE by analysing the classification performance for each of the five can-
cer datasets. All the experiments were run separately on an unloaded machine (with 3.4GHz i7
processors and 8GB memory).

Experiments on Childhood Leukaemia Dataset

We have initially applied our algorithm on the childhood leukaemia dataset. We run the first
experiment by taking 40 bootstrap samples from the training dataset. The ranking criteria for
each feature from the 40 sub-samples are added linearly and the features with the smallest
weight are discarded at each iteration. The result of this experiment is a set of features ranked
in decreasing order. To select the best top features, we used Leave One Out cross validation. A
100% AUC accuracy is achieved on the training dataset with number of features equal to 36.

The next experiment is to estimate the AUC accuracy of the test dataset using the selected
data of 36 attributes by ESVM-RFE. For that, we have used the.632+ bootstrap method [29]
[30] with 100 bootstrap samples. For each bootstrap sample, we have estimated the AUC of the
test dataset evaluated on each SVM model. The results of this experiment is shown in Fig 1. It
can be clearly seen that for some bootstrap samples, the AUC accuracy of the test dataset
reaches one for the 36 selected data. The Average AUC accuracy of the 100 bootstrap samples
is equal to 0.88.

The next experiment compares our achieved results to the result obtained by SVM-RFE. For
that, we have applied SVM-RFE on the childhood Leukaemia dataset using the same training
and test samples in order to objectively compare the classification performance of the SVM
using the features obtained by ESVM-RFE and the features produced by SVM-RFE.

Initially, we generate 100 bootstrap samples from the training dataset using the 0.632+ boot-
strap method to train two SVMs with the selected genes by ESVM-RFE and SVM-RFE. The
AUC of the test dataset evaluated on each SVM model is calculated and it suggests that our
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Fig 1. Box plot of AUC accuracies. Box plot of AUC accuracies of the Childhood Leukaemia test dataset
evaluated by SVMs trained on 100 bootstrap samples.

doi:10.1371/journal.pone.0157330.g001

ESVM-REFE algorithm outperforms SVM-RFE. Fig 2 shows the AUC evaluated on the test data-
set across different number of features for ensemble SVM and SVM-RFE. As can be seen, the
highest AUC accuracies across the different bootstrap samples are achieved at number of fea-
tures equal to 36 and 46 for the selected data by ESVM-RFE and SVM-RFE, respectively.

We have further investigated the classification performance of the selected data by
ESVM-RFE and SVM-RFE at number of features equal to 36 and 46, respectively. Fig 3 shows
the box plot of AUCs of the test dataset by SVM trained on 100 bootstrap samples. The AUC
of the selected data by ESVM-RFE significantly outperforms the AUC of selected data by
SVM-REFE. The highest AUC accuracy achieved by SVM-REFE is 0.86 in contrast to ESVM-RFE
which achieves 100% AUC accuracy for six bootstrap samples and an AUC accuracy greater
than or equal to 0.91 for 42 samples. The overall average AUC accuracies of ESVM-RFE and
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Fig 2. ESVM-RFE vs SVM-RFE. Classification performance comparison between ESVM-RFE and SVM-RFE evaluated using the 0.632
+ bootstrap method with 100 bootstrap samples across different number of features.
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Fig 3. ESVM-RFE vs SVM-RFE. Classification performance comparison between ESVM-RFE and
SVM-RFE estimated using the 0.632+ bootstrap method with 100 bootstrap samples at number of features
equal to 36 and 46, respectively.

doi:10.1371/journal.pone.0157330.g003

SVM-REE are 0.88 and 0.79, respectively. Table 3 shows the summary classification perfor-
mance comparison between ESVM-RFE and SVM-RFE. The paired t-test is also conducted
and generates a P-value of 0.03 which indicates a statistically significant different between
ESVM-RFE over SVM-REFE.

We have also compared the performance of ESVM-RFE to Random Forest based approach
such as Balanced Iterative Random Forest (BIRF) [31]. We have applied BIRF on the childhood
Leukaemia dataset using the same training and test samples. Similarly to the authors in [31],
we randomly split the dataset, by the number of genes, into multiple datasets having the same
count of samples but different number of genes. This process is applied only in the first
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Table 3. The quartile and mean values of AUC accuracies of ESVM-RFE, SVM-RFE and BIRF using Childhood Leukaemia dataset.

Min
ESVM-RFE 0.76
SVM-RFE 0.66
BIRF 0.72

doi:10.1371/journal.pone.0157330.1003

1st Qu Median Mean 3rd Qu Max
0.85 0.89 0.88 0.94 1
0.77 0.8 0.79 0.86 0.86
0.8 0.85 0.83 0.88 0.92

iteration of the algorithm due to the limitations of BIRF in terms of running time. The average
AUC accuracy of the random forest model built on the 67 BIRF-selected features is 0.83.
Table 3 shows the summary classification performance of BIRF.

The computational time of these experiments are presented in Table 4. As can be seen, the
running time of ESVM-REFE is quite similar to SVM-RFE with E = 1% and B = 40. But it much
faster when E is set to 10%. BIRF algorithm, on the other hand, consumes more time compared
to ESVM-RFE and SVM-RFE.

SVD on Childhood Leukaemia Dataset. Here we look further at the selected attributes
from the original childhood leukaemia dataset. For that, we used SVD to see if there is a separa-
tion of the selected data based on the class label relapse. We are trying to see if the defined clus-
ters (Relapse/Non Relapse) of the data can be seen now with the selected attributes where it
could not be seen in the original data. The resulting SVD of the 36 selected probes is shown in
Fig 4. It is clear that there is clustering in this data based on the Relapse label, as we expected
from the SVM classification.

We have applied SVD on the top 10 of the obtained ranked features. The resulting SVD is
shown in Fig 5 which demonstrates that there is a grouping in the top 10 however without a
clear partition. The top 25 attributes are similar but with just somewhat more separation
between the two classes. On the other hand, for the main 36 attributes in Fig 5 we can now see
a clear partition between the two classes. The separation between the two clusters has been
raised in this subset, along these lines we accept that a large portion of the essential characteris-
tics for relapse are contained in this subset of the data.

This is precisely what we anticipated to discover based upon the SVM results. The separa-
tion between the two groups begin to reduce again by applying SVD on the top 100 attributes
in Fig 5).

In order to fully understand the classification power of this subset of 36 probes in separating
data based on a relapse label, it is necessary to apply this to a new set of patients and see if the
desired result is still obtained. Consequently, we applied SVD on the test dataset with the
selected 36 attributes. The resulting SVD is shown in Fig 6 which shows that there is a cluster-
ing but without a perfect separation. The next step is to project this test data on the selected
data from the training dataset. As can be seen from the Fig 6, The new patients are almost

Table 4. Comparison of ESVM-RFE, SVM-RFE and BIRF in terms of time.

Data

Childhood Leukaemia
Colon
Breast
NCI

doi:10.1371/journal.pone.0157330.t004

ESVM-RFE (E = 10%) ESVM-RFE (E = 1%) SVM-RFE BIRF
25.851 mins 10.259 hours 9.496 hours 12.208 hours
1.824 mins 5.328 mins 4.587 mins 8.483 mins
3.021 mins 2.105 hours 1.799 hours 2.539 hours
4.362 mins 2.635 hours 2.482 hours 3.029 hours
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Fig 4. SVD images of childhood Leukaemia data. (a) SVD image of the original training data. (b) SVD image of the selected 36 attributes from the
training data, red = Relapse, black = Non Relapse.

doi:10.1371/journal.pone.0157330.9004

grouped with their target clusters which suggest that these selected attributes contain informa-
tive probes that can capture the necessary information.

Experiments on Four Public Microarray Datasets

Experiments on Colon Cancer Dataset. Our ensemble SVM algorithm is further vali-
dated on the colon cancer dataset. The same iterative procedure is applied here for backward
feature elimination and the result of this experiment produces a set of features ranked in
decreasing order. The Leave One Out test using the ranked features of the ESVM-RFE gives
100% of AUC accuracy with number of features equal to 11. The evaluation of the test dataset
by SVM trained on 100 bootstrap samples using the 0.632+ bootstrap method gives an average
value of AUC equal to 0.94.

We have also applied SVM-RFE on the colon dataset with the same samples in the training
and test datasets. The Leave One Out test suggests 16 features to be selected from the top
ranked features. The average classification performance of SVM-RFE evaluated on the same
100 bootstrap samples gives an average value of AUC equal to 0.89. The AUC values of
ESVM-RFE and SVM-RFE across the 100 bootstrap samples are shown in Fig 7. Table 5 shows
the summary classification performance comparison between ESVM-RFE and SVM-RFE.
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Fig 5. SVD images of childhood Leukaemia data across different number of attributes of the selected data. (a) SVD on 10
attributes, (b) SVD on 25 attributes, (c) SVD on 36 attributes, and (d) SVD on 100 attributes, red = Relapse, black = Non Relapse.

doi:10.1371/journal.pone.0157330.g005
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Fig 6. SVD images of childhood Leukaemia test data. (a) SVD image of the test data with the 36 selected attributes. (b) Projection of the test dataset

on the low dimensional vector of the selected training data, red = Relapse, black = Non Relapse.

doi:10.1371/journal.pone.0157330.9006

We have also compared our results to the results obtained by [2] using ensemble feature

selection methods (SVM-RFE). The maximum AUC accuracy achieved by [2] is equal to 0.87
where ESVM-RFE achieves an average AUC accuracy equal to 0.94.

As our method is inspired by the success of ensemble approach of feature selection with ran-

dom forest. We report here the AUC accuracies results obtained by two benchmarks feature
selection techniques based random forest, feature importance measures of Random Forests

[28] (0.87) and BIRF [31] (0.9) (see Table 5).
Experiments on Breast Cancer Dataset. The two breast cancer datasets (two and three

classes) are involved in these experiments. We performed initial experiment on breast 2 cancer
dataset. This experiment produced a set of features sorted in decreasing order. The Leave One
Out test using the ranked features gives 0.97 of AUC accuracy with number of features equal to
81. Subsequently, we evaluate the classification performance of the test dataset using the 81
attributes on 100 bootstrap samples. The average value of AUC is equal to 0.84. In contrast to

SVM-REFE, the average AUC accuracy on the same bootstrap samples is equal to 0.77 with
number of features equal to 91. Fig 7 shows the AUC values of ESVM-RFE and SVM-RFE
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Fig 7. Box plot of AUC accuracies on the four microarray datasets. Comparison of AUC accuracies on the four microarray datasets
estimated using the 0.632+ bootstrap method with 100 bootstrap samples. (a) Colon dataset, (b) Breast2 dataset, (c) Breast3 dataset, and (d)
NClI dataset.

doi:10.1371/journal.pone.0157330.g007
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Table 5. The quartile and mean values of AUC accuracies of ESVM-RFE, SVM-RFE and BIRF on the four microarray datasets.

Dataset Method

Colon ESVM-RFE
SVM-RFE
BIRF

Breast 2 ESVM-RFE
SVM-RFE
BIRF

Breast 3 ESVM-RFE
SVM-RFE
BIRF

NCI ESVM-RFE
SVM-RFE
BIRF

doi:10.1371/journal.pone.0157330.t005

Min 1st Qu Median Mean 3rd Qu Max
0.9 0.9 0.95 0.94 0.95 1

0.85 0.9 0.9 0.89 0.9 0.95
0.83 0.87 0.92 0.9 0.91 0.98
0.76 0.84 0.85 0.84 0.85 0.89
0.67 0.73 0.78 0.77 0.78 0.84
0.68 0.75 0.8 0.79 0.83 0.88
0.56 0.62 0.67 0.66 0.69 0.78
0.48 0.63 0.66 0.66 0.68 0.74
0.61 0.63 0.67 0.68 0.72 0.76
0.71 0.78 0.81 0.81 0.84 0.89
0.67 0.75 0.79 0.78 0.82 0.89
0.68 0.73 0.77 0.76 0.81 0.83

across the 100 bootstrap samples. Table 5 shows the summary classification performance com-
parison between ESVM-RFE and SVM-RFE in addition to BIRF.

With respect to the breast3 cancer dataset, both ESVM-RFE and SVM-RFE provides
approximately similar AUC accuracies with average value equal to 0.66 calculated using the
100 bootstrap test. The different values of AUCs across the 100 bootstrap samples are shown in
Fig 7.

Experiments on NCI Dataset. The NCI dataset is processed here by ESVM-RFE which
produces a set of features ranked based on their weight in decreasing order. The Leave One
Out suggests 125 attributes to be selected from this experiment. The average AUC accuracy of
the test dataset evaluated by SVM trained on 100 bootstrap samples is equal to 0.81. Similarly,
SVM-REFE provides approximately similar average AUC accuracy of 0.78 with number of fea-
tures equal to 200 (see Fig 7 and Table 5).

Conlcusion

We propose a method called Ensemble SVM-REFE to select features from gene expression data-
sets with the ability to handle the problems accompanying these kinds of datasets such as class-
imbalanced data and low number of observations. The present study discusses the potential
benefits of involving ensemble methods with SVM-RFE. In this paper, we followed the concept
of random forest as an example of ensemble and bagging, and adopted SVM-RFE as a bench-
mark technique that effectively offered state-of-the-art feature selection methods. This ensem-
ble feature selection algorithm improved the process of biomarker identification and
classification performance. Our experiments showed that the construction of ensemble SVM at
each iteration of SVM-RFE offered improvement in feature subset selection compared to
SVM-RFE. Even though ESVM-RFE will not be able to predict which biomarkers can abso-
lutely describe patient relapse, this strategy which involves selecting down to a small number of
features draws a meaningful lists of genomic features ranked according to their contribution to
the classifier.

We have evaluated our biomarker identification algorithm on five microarray datasets with
a particular focus on childhood leukaemia dataset. This is because we have all the clinical data
and outcomes of each patient in addition to the probe set ID and gene annotation. The experi-
ments demonstrated that this method provides improvements in the classification accuracy
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compared to SVM-RFE and random forest based approach (e.g BIRF) algorithms. To bolster
our methodology, we employ SVD for visual analytic with a goal to interrogate this complex
and voluminous genomic data. SVD shows that patients with similar biological background
are near one another in the low dimensional representation with the selected data.

Our future work is to follow our constructionist data analysis strategy to thoroughly assess a
range of clinical paradigms associated with childhood cancer. With more genomic data related
to individual patient differences there is more opportunity to identifying individuals with sig-
nificant actionable differences.

Supporting Information

$1 Text. Childhood Leukaemia Dataset. This dataset contains data for 60 patients with
expression values for 22,277 probes. It is generated from the U133A platform and collected
from The Children’s Hospital at Westmead.
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