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Abstract
Background

Biomarker discovery and new insights into the pathophysiology of heart failure with reduced

ejection fraction (HFrEF) may emerge from recent advances in high-throughput urinary proteo-

mics. This could lead to improved diagnosis, risk stratification and management of HFrEF.

Methods and Results

Urine samples were analyzed by on-line capillary electrophoresis coupled to electrospray ioni-

zation micro time-of-flight mass spectrometry (CE-MS) to generate individual urinary proteome

profiles. In an initial biomarker discovery cohort, analysis of urinary proteome profiles from 33

HFrEF patients and 29 age- and sex-matched individuals without HFrEF resulted in identifica-

tion of 103 peptides that were significantly differentially excreted in HFrEF. These 103 peptides

were used to establish the support vector machine-based HFrEF classifier HFrEF103. In a

subsequent validation cohort, HFrEF103 very accurately (area under the curve, AUC = 0.972)

discriminated between HFrEF patients (N = 94, sensitivity = 93.6%) and control individuals

with and without impaired renal function and hypertension (N = 552, specificity = 92.9%). Inter-

estingly, HFrEF103 showed low sensitivity (12.6%) in individuals with diastolic left ventricular

dysfunction (N = 176). The HFrEF-related peptide biomarkers mainly included fragments of

fibrillar type I and III collagen but also, e.g., of fibrinogen beta and alpha-1-antitrypsin.

Conclusion

CE-MS based urine proteome analysis served as a sensitive tool to determine a vast array

of HFrEF-related urinary peptide biomarkers which might help improving our understanding

and diagnosis of heart failure.
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Introduction
Heart failure is a complex clinical syndrome characterized by impaired ventricular filling and/
or ejection of blood resulting in the disability of the heart to pump a sufficient amount of blood
to meet the metabolic demands of the body. Heart failure with reduced ejection fraction
(HFrEF; left ventricular ejection fraction< 45%) is a potential end-stage of various cardiac dis-
eases and represents an enormous public health and socioeconomic burden [1]. Different
aetiologies may lead to the HFrEF phenotype including myocardial ischemia, hypertension,
diabetes, valvular heart disease, arrhythmias and inherited cardiomyopathy. However, in the
clinical setting it is often difficult to clearly identify all contributing factors. Many of the cur-
rently used biomarkers only depict part of the pathology [2]. Diagnosis, prognostication and
follow-up of HFrEF patients based on currently utilized clinical, laboratory and imaging mark-
ers in the everyday practice is therefore often complex [3,4]. A new multi-biomarker-based
HFrEF classifier that identifies distinct HFrEF-related molecular phenotypic expressions may
provide additional (differential) diagnostic and prognostic value and prove beneficial in guid-
ing therapy and identify new targets of treatment. It may especially help to identify and stratify
asymptomatic individuals at an early stage of cardiac structural impairment.

The clinical use of proteomic analysis of body fluids like blood and urine is an emerging
and promising field of research made possible through recent advances in high-throughput
methods. As a non-hypothesis-driven approach, the identification of protein/peptide bio-
markers by proteomic analysis may provide a novel modality for diagnosis, prognostication,
and treatment guidance as well as for development of new treatment strategies [5]. Previous
studies have used urine proteome analysis (UPA) to identify patterns of urinary peptide bio-
markers for coronary artery disease and preclinical left ventricular diastolic dysfunction
(LVDD) [5,6]. These biomarkers were utilized to establish specific disease classifiers. This
approach has not yet been applied to HFrEF. Potential benefits of proteomic analysis for
HFrEF management has been shown by Lemesle et al. who demonstrated that plasma multi-
marker proteomic profiling can predict cardiovascular mortality in patients with chronic
heart failure [7].

The aim of the present case-control study was therefore to assess the feasibility of UPA for
the identification of a HFrEF-related urinary peptide biomarker pattern and the usability of
such a pattern to establish a diagnostic HFrEF classifying algorithm.

Methods

Study population
HFrEF patients were enrolled prospectively at their first visit to a heart failure clinic at the
North Zealand Hospital in Denmark (N = 149) as described in detail previously [8]. Urine sam-
ples from these 149 HFrEF patients were analyzed by CE-MS-based UPA performed by Mosai-
ques Diagnostics GmbH (Hanover, Germany) and 127 passed all quality control criteria [9]
and were thus included in the present study. All patients were known to have heart failure
(HF) with left ventricular ejection fraction (LVEF)<45% [10] and were referred to the clinic
for up-titration of guideline recommended therapy. To be included, the patients had to be in a
stable condition with no hospital admissions for a minimum of 60 days and plasma creatinine
had to be stable (+/- 10 μg/l) for a period of 60 days. Descriptions of coronary angiography
were retrieved when available, for categorizing the patients as having non-ischemic or ischemic
heart disease [11]. Patients collected a 24-hour urine sample, starting on the day before the
exam and delivered spontaneously voided urine on the day of the exam for UPA. Fasting
venous blood samples were taken and patients underwent echocardiography.
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CE-MS based urinary proteome profiles of 581 control urine samples of individuals without
heart failure and 176 urine samples of asymptomatic individuals diagnosed with preclinical
LVDD [6] were provided by Mosaiques Diagnostics GmbH and originated from the Flemish
Study on Environment, Genes and Health Outcomes (FLEMENGHO). Briefly, in this cohort
left ventricular function was assessed by echocardiography and preclinical LVDD defined as
(1) an abnormally low age-specific transmitral E/A ratio indicative of impaired relaxation, but
without evidence of increased LV filling pressures (E/e'�8.5), (2) mildly-to-moderately ele-
vated LV filling pressure (E/e'>8.5) and an E/A ratio within the normal age-specific range or
(3) an elevated E/e' ratio and an abnormally low age-specific E/A ratio (combined dysfunction).
Differences in durations between the transmitral A flow and the reverse PV flow during atrial
systole (Ad < ARd + 10) and/or LA volume index (�28 mL/m2) were checked to confirm pos-
sible elevation of the LV filling pressures in group 2. For staging LV diastolic dysfunction, the
mitral inflow and TDI velocities were combined.

The study complies with the Declaration of Helsinki, and all subjects provided informed
oral and written consent. The study was approved by the local Ethical Committee of the capital
region of Denmark (H-1-2010-074) and Commissie Medische Ethiek van de Universitaire Zie-
kenhuizen Kuleuven, U.Z. Gasthuisberg E330 Leuven, Belgium (ML4804).

To identify and validate the HFrEF-related urinary peptide biomarkers potentially discrimi-
nating between HFrEF and healthy individuals, these HFrEF patients and healthy control indi-
viduals were divided into a biomarker discovery cohort and a validation cohort. Overall, study
participants had rather well preserved kidney function (Table 1) but 38 HFrEF patients
(29.9%) and 19 controls (3.4%) had moderate to severe chronic kidney disease (CKD) with an
estimated glomerular filtration rate (eGFR)< 60 ml/min/1,73m2 (CKD stage 3–5).

Selection of HFrEF patients and controls for biomarker discovery. For the discovery of
HFrEF-related urinary peptide biomarkers, HFrEF patients have been selected to be represen-
tative of the patient cohort with regard to New York Heart Association (NYHA) class, left ven-
tricular ejection fraction and ischemic and non-ischemic aetiology of HFrEF. However, with
regard to kidney function the selection was only partly representative since patients with
severely impaired kidney function (CKD stage 4 and 5; eGFR� 30 ml/min/1.73m2) have not

Table 1. Demographics and clinical features of study participants.

control (N = 581) HFrEF (N = 127) LVDD (N = 176)

Gender, male / female 268 / 283 95 / 32 77/99

Age, years 47 ± 13 70 ± 10* 64 ± 13*

NYHA I / II / III / IV n.a. 28 / 62 / 34 / 3 n.a.

LVEF (%) 69 ± 6 32 ± 9* 70 ± 8

Aetiology (N; ischemic/non-ischemic) n.a. 65/47 n.a.

Atrial fibrillation n.a. 46 n.a.

Hypertension (N, (% of Ntotal)) 185 (32) 77 (61) 132 (75)

Systolic blood pressure (mm Hg) 126 ± 15 129 ± 22 140 ± 19*

Diastolic blood pressure (mm Hg) 80 ± 9 76 ± 13* 82 ± 10*

BMI (kg/m2) 26 ± 4 27 ± 6* 28 ± 5*

eGFR (MDRD; ml/min/1,73m2) 82 ± 15 72 ± 24* 72 ± 15*

Diabetes type 2 (N) 4 26 5

LVDD, left ventricular diastolic dysfunction; NYHA, New York Heart Association; LVEF, left ventricular ejection fraction; eGFR, estimated glomerular

filtration rate

* One-way ANOVA in regard to control with P < 0.05

doi:10.1371/journal.pone.0157167.t001
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been considered for biomarker discovery to limit a bias in the HFrEF-relevant peptide bio-
marker pattern due to CKD-relevant peptides. HFrEF patients with cancer have also been
excluded from biomarker discovery. Due to the fact that CKD is a common comorbidity in
acute and/or chronic heart failure result in increased complications and mortality [12,13],
HFrEF patients with an eGFR between 30 and 60 ml/min/1.73m2 were randomly selected in a
number representative of the patient cohort. This resulted in the selection of 33 HFrEF patients
for biomarker discovery comprising 13 patients with non-ischemic and 20 patients with ische-
mic aetiology. The controls were individuals from the FLEMENGHO cohort without cardio-
vascular conditions at baseline and/or during follow-up that were best matched with the
HFrEF patients for age, sex and eGFR. The controls selected for biomarker discovery were thus
only partly representative of the FLEMENGHO cohort. Individuals omitted in biomarker dis-
covery were assessed in validation. The clinical characteristics of these selected patients and
controls are presented in Table 2.

Sample preparation and CE-MS analysis
All urine samples for CE-MS analyses were taken from spontaneously voided urine at the day
of the exam and stored at -80°C until analysis. For proteomic analysis, a 0.7 mL aliquot of
urine was thawed immediately before use and diluted with 0.7 mL of 2 M urea, 10 mM
NH4OH containing 0.02% SDS. To remove higher molecular mass proteins, such as albumin
and immunoglobulin G, the sample was ultra-filtered using Centrisart ultracentrifugation filter
devices (20 kDa MWCO; Sartorius, Goettingen, Germany) at 3,000 rcf until 1.1 ml of filtrate
was obtained. This filtrate was then applied onto a PD-10 desalting column (GE Healthcare,
Uppsala, Sweden) equilibrated in 0.01% NH4OH in HPLC-grade in H2O (Roth, Germany) to
decrease matrix effects by removing urea, electrolytes, salts, and to enrich polypeptides present.
Finally, all samples were lyophilized, stored at 4°C, and suspended in HPLC-grade H2O shortly
before CE-MS analyses, as described [14].

CE-MS analyses were performed using a P/ACE MDQ capillary electrophoresis system
(Beckman Coulter, Fullerton, USA) on-line coupled to a micrOTOF MS (Bruker Daltonics,
Bremen, Germany) as described previously [14,15]. The ESI sprayer (Agilent Technologies,
Palo Alto, CA, USA) was grounded, and the ion spray interface potential was set between –4
and –4.5 kV. Data acquisition and MS acquisition methods were automatically controlled by

Table 2. Demographics and clinical features of individuals in the cohort for biomarker discovery and creation of the HFrEF classifiers.

control (N = 29) HFrEF-NI (N = 13) HFrEF-I (N = 20)

Gender, male / female/ % female 21 / 8 / 27.6 11 / 2 / 15.4 15 / 5 / 25

Age, years (range) 67 ± 7 (49–79) 65 ± 8 (49–78) 72 ± 5* (64–81)

NYHA I / II / III / IV n.a. 4 / 7 / 2 / 0 4 / 8 / 6 / 2

LVEF, % 71 ± 8 38 ± 8* 29 ± 8*

Atrial fibrillation n.a. 7 3

Hypertension 20 0 0

Systolic blood pressure (mm Hg) 138 ± 14 123 ± 20* 120 ± 21*

Diastolic blood pressure (mm Hg) 80 ± 8 74 ± 14 74 ± 10*

BMI (kg/m2) 29 ± 6 28 ± 5 25 ± 4*

eGFR (MDRD; ml/min/1,73m2) 76 ± 12 79 ± 17 69 ± 27

NYHA, New York Heart Association; LVEF, left ventricular ejection fraction; eGFR, estimated glomerular filtration rate; HFrEF-NI, heart failure with

reduced ejection fraction with non-ischemic etiology; HFrEF-I, heart failure with reduced ejection fraction with ischemic etiology

* One-way ANOVA in regard to control with P < 0.05

doi:10.1371/journal.pone.0157167.t002
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the CE via contact-close-relays. Spectra were accumulated every 3 s, over a range ofm/z 350 to
3000. Accuracy, precision, selectivity, sensitivity, reproducibility, and stability of the CE-MS
measurements were demonstrated elsewhere [14].

Mass spectrometry data processing. Mass spectral peaks representing identical molecules
at different charge states were deconvoluted into single masses using MosaiquesVisu software
[16]. Only signals with z>1 observed in a minimum of 3 consecutive spectra with a signal-to-
noise ratio of at least 4 were considered. Reference signals of 1770 urinary polypeptides were
used for CE-time calibration by locally weighted regression. For normalization of analytical
and urine dilution variances, signal intensities were normalized relative to 29 ‘‘housekeeping”
peptides [17,18]. The obtained peak lists characterize each polypeptide by its molecular mass
(Dalton; Da), normalized CE migration time (minutes; min) and normalized signal intensity.
All detected peptides were deposited, matched, and annotated in a Microsoft SQL database
allowing further statistical analysis [19]. For clustering, peptides in different samples were con-
sidered identical if mass deviation was<50 ppm. CE migration time was controlled to be
below 0.35 minutes after calibration.

Sequencing of polypeptides. Identified heart failure biomarkers were in silico assigned to
the previously sequenced peptides from Human urinary proteome database, version 2.0. Pep-
tides from the Human urinary proteome database were sequenced as described elsewhere
[20,21]. Briefly, urinary peptides were fragmented using different tandem mass spectrometry
techniques with prior separation step with CE or HPLC. Fragmentation spectra were matched
to the protein sequences from the up-to-date databases (IPI, NCBI nr and Uniprot) using MS/
MS search engines MASCOT (Matrix Sciences Ltd., London, UK) and OMSSA (The National
Center for Biotechnology Information, Bethesda, USA). Characteristic for urinary proteins
post-translational modifications (PTM), such as hydroxylation of lysine and proline, and mass
spectrometer specific settings were used. Identified peptide sequences from LC-MS analyses
were verified by the comparison of experimental and theoretical CE migration time, which is
dependent on the number of basic and neutral polar amino acid.

Definition of biomarkers. For biomarker discovery, statistical analysis of the selected uri-
nary proteome profiles was performed using non-parametric Wilcoxon rank sum test. Only
biomarkers that were found at a 70% frequency or higher in either case or control group were
examined. The false discovery rate adjustments of Benjamini-Hochberg [22] were employed to
correct for multiple testing. A p-value less than 0.05 was considered to be statistically
significant.

Support vector machine (SVM) modelling. HFrEF-related peptide biomarkers were
combined into single summary multidimensional classifying variables, hereinafter referred to
as classifiers, based on non-ischemic and ischemic aetiologies, using the support-vector
machine based MosaCluster proprietary software, version 1.7.0 [23]. These classifiers based on
SVMmodelling allowed the classification of samples in the high dimensional data space.
MosaCluster calculated classification scores based on the amplitudes of the HFrEF biomarkers.
Classification is performed by determining the Euclidian distance (defined as the SVM classifi-
cation score) of the vector to a maximal margin hyperplane. The SVM classifier uses the log
transformed intensities of x features (peptides) as coordinates in a x-dimensional space. It then
builds a x-1 dimensional hyperplane that spans this space by performing a quadratic program-
ming optimisation of a Lagrangian using the training labels only while allowing for samples to
lie on the wrong side of the plane. For such mistakes in classification the SVM introduces a
cost parameter C. Because non-separable problems in low dimensions may be separable in
higher dimensions the SVM uses the Kernel-trick to transform the samples to a higher dimen-
sional space. MosaCluster uses the standard radial basis functions as kernel. These functions
are just Gaussians with the parameter gamma controlling their width. The optimal parameters
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C and gamma are found via e.g. leave one out cross validation error estimation. There are gen-
erally implemented in SVMs in all popular data mining software, particularly the kernlab cran
contributed R package is a versatile tool for building SVM based-classifiers [24]. After identifi-
cation of significant biomarkers and generation of different classifiers, they were assessed in a
test set to check their performance.

Other Measurements
Echocardiography was performed using a Vivid 9E [8,25] and Vivid7 Pro [6] (General Electric,
Horten, Norway), and images were transferred to a remote workstation for offline analysis
(Echopac, General Electric, Horten, Norway). Two dimensional parasternal images were used
to determine LV dimensions and LVEF was determined from the biplane Simpson model.
Blood pressure was the average of five consecutive auscultator readings obtained according to
European guideline with a standard mercury sphygmomanometer with the participant in the
seated position for at least 10 minutes. As described elsewhere, we applied a stringent quality
control program to the blood pressure measurements, looking for digit and number preference
[26,27]. Hypertension was defined as elevated blood pressure of at least 140 mm Hg systolic or
90 mmHg diastolic at the time of inclusion in the study, use of antihypertensive drugs at the
time of inclusion in the study and/or a history of elevated blood pressure. Body mass index was
weight in kilograms divided by the square of height in meters. Glomerular filtration rate was
estimated from the Chronic Kidney Disease Epidemiology Collaboration equation [28].

Statistical methods and sample classification
By maximizing Youden’s index, we determined optimal thresholds for the HFrEF classifiers to
differentiate normal individuals from HFrEF patients based on exact binomial calculations and
were carried out in MedCalc version 12.7.3.0 (MedCalc Software, Mariakerke, Belgium, http://
www.medcalc.be). Estimates of sensitivity and specificity and their confidence intervals (95% CI)
were calculated based on tabulating the number of correctly classified samples and exact bino-
mial calculations. The Receiver Operating Characteristic (ROC) plot was obtained and the area
under the ROC curve (AUC) was evaluated. The reported unadjusted p-values were calculated
using the natural logarithm-transformed intensities and the Gaussian approximation to the t-dis-
tribution. Statistical adjustment due to the existence of multiple test sets was performed by using
theWestfall and Young maxT-procedure [29], by adjusting according to Bonferroni [30], and by
applying the Benjamini-Hochberg function to the entire dataset (case vs. control) [31,32].

Means were compared using the large-sample z-test or ANOVA and proportions by Fisher’s
exact test. Statistical significance was a 1-sided significance level of 0.05.

We used Cox regression to compute standardized hazard ratios. The baseline characteristics
considered as covariates in Cox regression were sex, age, body mass index, systolic blood pres-
sure and history of cardiovascular disease. We identified covariates to be retained in the analy-
ses by a step-down procedure, removing the least significant covariates at each step until all P-
values of covariates were less than 0.05. We applied the generalized R2 statistic to assess the
contribution of HFrEF classifiers to risk over and beyond other risk factors.

Results

Characteristics of participants
Clinical characteristics of all 884 study participants comprising HFrEF patients and controls
are presented in Table 1. Overall, patients with HFrEF as compared with control individuals
were more likely to be older, and to have lower eGFR and hypertension.
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Identification of HFrEF biomarkers
Univariate analysis and correction for multiple testing identified a pattern of 103 distinct
HFrEF-related peptide biomarkers which differed significantly (p<0.05) between HFrEF and
control proteomic profiles. Overall 65 of the 103 peptides could be characterized by sequence
and post-translational modifications (Table 3). The majority of the sequenced peptides origi-
nated from constituents of the extracellular matrix (ECM), i.e. fragments of various types of
mostly fibrillar collagens. The collagens comprise type I (N = 34), II (N = 3), III (N = 13), V
(N = 1), XVI (N = 1) and XXIV (N = 1), respectively. Other peptides originated e.g. from
alpha-1-antitrypsin, apolipoprotein A-I, complement C3, fibrinogen beta chain, retinol-bind-
ing protein 4, and histone-lysine N-methyltransferase MLL4/WBP7. Comparisons between the
HFrEF-related pattern identified in this study and the recently published patterns of 85 and
273 urinary peptides related to preclinical LVDD (classifier HF1) [6,33] and CKD (classifier
CKD273) [34] revealed 7 common peptides for the LVDD pattern and 24 common peptides
for the CKD pattern (Table 3). For 5 out of the 7 peptides in common with LVDD sequence
information was available with 4 originating from type I collagen and 1 from apolipoprotein
A-1. These 5 common sequenced peptides also showed a comparable differential excretion in
both conditions.The mass spectrometry amplitude data of all peptides of all study subjects is
provide as supporting information (S1, S2 and S3 Tables).

HFrEF classifier modelling
First, the pattern of 103 HFrEF-related peptide biomarkers was used for subsequent SVM
based modelling of a proteomic HFrEF disease classifier. The resulting classifier HFrEF103
showed a radial basis function kernel with parameters C = 6.4 and γ = 0.001024. To determine
the contribution of the 24 peptides in common with CKD273, we also modelled an HFrEF clas-
sifier based on the 79 remaining peptides. The resulting classifier HFrEF79 showed a radial
basis function kernel with parameters C = 12.8 and γ = 0.001024. Both classifiers allowed cor-
rect classification of all 33 HFrEF patients and all 29 controls of the discovery cohort resulting
in sensitivity and specificity of 100% upon complete cross-validation of HFrEF103 derived
score factors in ROC analysis.

Validation of HFrEF disease classifiers. The discriminatory power of HFrEF103 and
HFrEF79 was tested by assessing the proteome profiles of the remaining 94 HFrEF patients
with ischemic (N = 34), non-ischemic (N = 45) or uncertain aetiology (N = 15). They were
between 38 and 94 years of age with various stages of renal impairment (eGFR between 11 and
140 ml/min/1,73m2). The validation data set further comprised profiles of 552 controls without
heart failure between 20 and 84 years of age with various stages of renal impairment (eGFR
between 44 and 138 ml/min/1,73m2).

Applying HFrEF103 to this validation cohort resulted in very accurate discrimination
between HFrEF patients and control individuals. Sensitivity in patients with HFrEF reached
93.6% (86.6–97.6) and specificity in control individuals with and without impaired kidney
function and hypertension 92.9% (90.5–94.9) based on an optimized HFrEF score factor
threshold of> -0.083 (Table 4). An HFrEF score factor generated by HFrEF103 above this
threshold thus indicated a large increase in the likelihood of HFrEF as specified by a positive
likelihood ratio of 13.25. The negative likelihood ratio of 0.07 further indicated that a HFrEF
score factor below the threshold largely ruled out HFrEF. An AUC of 0.972 (0.957–0.984;
p< 0.0001) in ROC analysis of the score factors also confirmed the discriminatory power of
HFrEF103 (Fig 1). A comparable but nonetheless significantly (p = 0.0119) lower discrimina-
tory power of HFrEF79 was shown by an AUC of 0.954 (0.936–0.969; p< 0.0001) (Fig 1) with
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a sensitivity of 89.5% (81.5–94.8) and a specificity of 93.6% (91.3–95.5) based on an optimized
HFrEF score factor threshold of> 0.018.

Diagnosis of HFrEF at NYHA class I. In the validation data set 20 (21%) out of the 94
HFrEF patients had no symptoms of heart failure during ordinary activities thus being NYHA
class I [35]. These patients can therefore be considered as individuals with preclinical left ven-
tricular systolic dysfunction (LVSD). Importantly, HFrEF103 classified this group with a sensi-
tivity of 95% (75.1–99.9) based on the HFrEF score factor threshold of> -0.083. Further
assessing the diagnostic performance for LVSD by using HFrEF103 score factors as a dichoto-
mous variable (0 = HFrEF103 score factor< -0.083; 1 = HFrEF103 score factor> -0.083) in
multivariate logistic regression analysis revealed a high stepwise covariate-adjusted (age, sex
and eGFR) odds ratio of 650 (37–11353; p< 0.0001).

Correlation analysis. Rank correlations (Spearman’s rho) were observed between the
HFrEF score factors and age reaching a rho value of ρ = 0.295 (95% CI 0.223–0.364;
p< 0.0001) and LVEF reaching a rho value of ρ = -0.359 (95% CI -0.425 to -0.288;
p< 0.0001).

Classification of individuals with preclinical LVDD
HFrEF103 was based on urinary peptide biomarkers relevant for HFrEF and thus primarily
systolic dysfunction. This included individuals with preclinical LVSD (NYHA class I). To eval-
uate if HFrEF103 would also classify individuals with preclinical LVDD as diseased, HFrEF103
was utilized to assess urinary proteome profiles of 176 individuals with preclinical LVDD [6].
If HFrEF103 would classify individuals with LVSD as diseased but not–or at least only to a very
limited degree–individuals with LVDD/DLVD, this would suggest considerable differences in
pathological mechanisms. The resulting sensitivity in individuals with preclinical LVDD was
indeed low and reached only 12.5% (Table 4).

Discussion
This is a pilot study using CE-MS-based urinary proteomic analysis in HFrEF patients with
limited concomitant impairment of kidney function. Major findings include the identification
of peptide biomarkers associated with HFrEF and their value for SVM-modelling of the HFrEF
disease classifier HFrEF103. This classifier allowed discrimination between HFrEF patients and
individuals with LVSD as well as individuals without heart failure with very high sensitivity
and specificity, regardless of the aetiology of HFrEF. This opens the possibility of early diagno-
sis of HFrEF even before the disease progresses to an overt symptomatic stage. Moreover, the
observed limited sensitivity in preclinical LVDD opens the possibility of differential heart fail-
ure diagnosis.

Table 4. Contingency table of HFrEF103 results in the validation cohort and preclinical LVDD
evaluation.

Control HFrEF Total LVDD

HFrEF classifier positive 39 88 127 22

HFrEF classifier negative 513 6 519 154

Totals 552 94 646 176

Classification results of proteome peptide profiles of the validation cohort of 94 HFrEF patients and 552

control individuals without HFrEF as well as the set of 176 LVDD patients by the classifier HFrEF103.

HFrEF, Heart failure with reduced ejection fraction.

doi:10.1371/journal.pone.0157167.t004
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The remarkable performance of the classifier probably reflects extensive depiction of molec-
ular phenotypic alterations associated with HFrEF. Peptides of fibrillar type I and III collagens
were found to be predominantly represented among the identified biomarkers. These collagens
are important components of the myocardial extracellular matrix (ECM) [36]. The major com-
ponent is type I collagen (85% of ECM proteins) which provides cardiac rigidity and deter-
mines stiffness [37] while type III collagen (10%) contributes to elasticity [38]. Sustained
fibrotic remodelling of the ventricular ECM is part of the molecular pathology of heart failure.
Excess deposition of interstitial fibrous tissue, collagen cross-linking increasing resistance to
degradation, and altered activities of proteinases involved in ECM turnover and collagen syn-
thesis contribute to remodelling [39,40]. Endomyocardial inflammation propagates those pro-
cesses [41]. Different combinations of these processes may cause the observed specific patterns
of positive and negative differential excretion of peptidic fibrillar collagen fragments. On the
functional level, ECM remodelling contributes to perturbed cardiac mechanics together with
altered left ventricular chamber geometry and volume [42,43]. While some of the ECM remod-
elling processes may be characteristic for HFrEF, others appear to be of more common nature
as indicated by the peptide biomarker patterns for HFrEF, preclinical LVDD and CKD. These
patterns include both, unique as well as common type I and III collagen fragments. Interest-
ingly, the urinary peptide biomarker patterns for HFrEF and preclinical LVDD [33] have only
4 type I collagen fragments in common (Table 3) indicating pronounced differences in ECM
remodelling. The fact that the patterns for HFrEF and CKD [34] share 20 fragments of type I
and III collagen may be due to the accompanying renal disease as a frequent comorbidity in
HFrEF. However, while significant, their relevance for the discriminatory power of HFrEF103
still appears to be rather limited.

In addition to the peptidic collagen fragments, the biomarker pattern includes a peptidic
fragment of alpha-1-antitrypsin (AAT), which showed a positive differential excretion
(Table 3). Levels of AAT have indeed already been shown to increase progressively across
NYHA classes and associate with B-type natriuretic peptide (BNP) [44]. This was suggested to
be a compensatory mechanism for the loss of antiprotease activity due to oxidative stress.

Fig 1. Receiver operating characteristic (ROC) curve for the HFrEF score factors of the validation
proteome profile set (N = 646) based on HFrEF103 (solid line) and HFrEF79 (dotted line).

doi:10.1371/journal.pone.0157167.g001
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In conclusion, in this pilot study HFrEF-related urinary peptide biomarkers identified by
CE-MS-based UPA could be utilized to establish a classifier that discriminates between HFrEF
patients and controls as well as LVDD patients.

However, there are certain limitations to our study which need consideration. Patients and
controls originated from different centres and we did not have a fully independent external val-
idation cohort to assess a potential centre bias. However, the vast majority of patients as well as
controls included in the present study were Caucasians from central Europe. Another issue is
that peptides were measured in urine only. Therefore we could not determine their source of
origin nor could it be established if the changes seen in HFrEF patients are only due to direct
cardiac alterations and not also due to non-cardiac organ dysfunction secondary to heart fail-
ure. Renal dysfunctions, which are often associated with heart failure [12,13,44] are especially
relevant in this context. Therefore HFrEF patients and control individuals included for bio-
marker discovery have been stratified for mostly no to only mild impairments of kidney func-
tion (CKD stage 2) and matched for eGFR to avoid a kidney function bias. Finally, not all
identified polypeptides were sequenced.

In spite of these limitations the results are of scientific interest depicting the potential diag-
nostic power of a multi-biomarker approach mirroring various HFrEF-associated pathological
alterations. Large-scale evaluation and validation is needed to assess the full potential value of
the UPA-based classifier.

Supporting Information
S1 Table. MS data of HFrEF patients.
(TXT)

S2 Table. MS data of LVDD patients.
(TXT)

S3 Table. MS data of Control individuals.
(TXT)
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