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Abstract

Brevibacillus laterosporus is a spore-forming bacterium that causes a secondary infection in
beehives following European Foulbrood disease. To better understand the contributions of
Brevibacillus bacteriophages to the evolution of their hosts, five novel phages (Jenst, Osiris,
Powder, SecTim467, and Sundance) were isolated and characterized. When compared
with the five Brevibacillus phages currently in NCBI, these phages were assigned to clusters
based on whole genome and proteome synteny. Powder and Osiris, both myoviruses, were
assigned to the previously described Jimmer-like cluster. SecTim467 and Jenst, both sipho-
viruses, formed a novel phage cluster. Sundance, a siphovirus, was assigned as a singleton
phage along with the previously isolated singleton, Emery. In addition to characterizing the
basic relationships between these phages, several genomic features were observed. A
motif repeated throughout phages Jenst and SecTim467 was frequently upstream of genes
predicted to function in DNA replication, nucleotide metabolism, and transcription, suggest-
ing transcriptional co-regulation. In addition, paralogous gene pairs that encode a putative
transcriptional regulator were identified in four Brevibacillus phages. These paralogs likely
evolved to bind different DNA sequences due to variation at amino acid residues predicted
to bind specific nucleotides. Finally, a putative transposable element was identified in Sec-
Tim467 and Sundance that carries genes homologous to those found in Brevibacillus chro-
mosomes. Remnants of this transposable element were also identified in phage Jenst.
These discoveries provide a greater understanding of the diversity of phages, their behav-
ior, and their evolutionary relationships to one another and to their host. In addition, they
provide a foundation with which further Brevibacillus phages can be compared.
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Introduction

Due to their ability to transfer genetic material or to lyse and kill their hosts, the study of bacte-
riophages is critical to understanding the evolution of their host bacteria [1]. This evolution-
driving genetic exchange is known as horizontal gene transfer (HGT) and can also operate con-
versely where phages acquire genetic fragments from their bacterial host [2]. Phages are also
capable of sharing genes with other closely or distantly-related phages through HGT, leading
to “genetic shuffling” of phage genetic components [3]. These gene transfer events frequently
occur through recombination pathways or the use of transposable elements marked by inverted
repeats in the DNA [4]. An additional source of evolutionary change in phages is through sin-
gle-nucleotide mutagenesis events leading to differing protein activities, such as differential
binding patterns of transcription factors or altered enzymatic activity. Thus, it is no surprise
that the fast evolutionary rate of phages, propelled in part by HGT, as well as the sheer abun-
dance of phages, has been shown to play a vital role in the evolution of many pathogenic bacte-
rial strains [5], and is likely a driving force in the evolution of Brevibacillus laterosporus.

Brevibacillus laterosporus (BL) is one of several secondary invaders often associated with
Melissococcus plutonius infection, the causative agent of European foulbrood in honeybees [6].
Like Paenibacillus larvae (PL), the causative agent of American Foulbrood, B. laterosporus
belongs to the bacterial family Paenibacillaceae [7], forms endospores, and is commonly found
in beehives [8]. While P. larvae has only been found in beehives, B. laterosporus has been iso-
lated from the gut of healthy adult honeybees and is found in a multitude of other sources
[8,9]. Understanding the diversity within natural isolates of various beehive bacteria and their
interplay with one another, as well as with their respective phages, can be key in understanding
beehive health (including whether the concerted infection of both B. laterosporus and P. larvae
or M. plutonius has a symbiotic relationship) and may enhance the efforts to prevent further
devastation from beehive disease.

In addition to causing secondary infection in honeybees, B. laterosporus has several proper-
ties that are potentially useful in biocontrol applications. First, it has shown strong insecticidal
activity via gut liquefaction [10,11] and is toxic to mosquitoes that carry dangerous human dis-
eases [12,13]. Because it is also active against many fly larvae, B. laterosporus can be added to
animal feed to control fly populations that reproduce in animal feces [11]. However, no insecti-
cidal properties have been reported in honeybees [9,14]. Second, it has broad-spectrum antimi-
crobial activity [8] through peptides that inhibit growth of Gram-positive and Gram-negative
bacteria, as well as fungi [15], and these peptides are resistant to heat, proteases, and pH
changes. Third, B. laterosporus can metabolize many waste compounds and may be useful in
bioremediation [8]. Understanding the nature and evolution of B. laterosporus and its phages
is, therefore, advantageous in an effort to harness these potential biocontrol properties of this
bacterium.

Five Brevibacillus phages were previously isolated and characterized [16]. All five were myo-
viruses and were grouped into one cluster (containing phages Jimmerl, Jimmer2, Abouo, and
Davies) and one singleton (Emery) based upon whole genome and proteome analysis. Herein
we report the isolation and characterization of five novel B. laterosporus phages: Powder, Osi-
ris, Jenst, SecTim467, and Sundance. Jenst, SecTim467, and Sundance are the first siphoviruses
to be isolated that infect Brevibacillus bacteria. These new phages add an additional cluster and
an additional singleton, expanding previously limited Brevibacillus phage relationships to a
current total of two clusters and two singletons based on genome synteny. Genomic compari-
sons of the ten Brevibacillus phages reveals interesting motif features likely involved in tran-
scriptional control, conserved and repeated proteins of interest, and a putative transposable
region present in several of these phages. In addition, several proteins were identified that
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could contribute to the pathogenicity of Brevibacillus, including a bacterial pili regulatory pro-
tein; a PAAR repeat protein, which may aid in secretion and killing of target cells [17]; both the
stage V sporulation proteins K and T, which allow for normal sporulation of the host to occur;
and many others.

Materials and Methods

Brevibacillus isolation, culture and plating

B. laterosporus field isolates BL2 or BL6, previously described as PL2 and PL6 [16,18], or BL14
were used for phage isolation in this study. BL14 was isolated in the same manner as previous
field isolates, but from a diseased larva displaying classical symptoms of American Foulbrood.
Briefly, samples of honey, beehive material, and bee larvae were processed for intended P. lar-
vae isolation by isolating spores [19] and incubating on PLA plates at 37°C [20]. Gram-positive
isolates that were catalase-negative [21] were further streaked and purified on LB (Lennox)
agar. Broth cultures of all isolates that were used for plaque assays and host range studies were
inoculated in LB Lennox broth and incubated while shaking (200 rpm) at 37°C overnight. Bac-
terial lawns were plated by mixing 500 uL of overnight culture with 4.5 mL of 0.8% LB top
agar.

Phage infection of Brevibacillus bacteria

Brevibacillus bacteria were tested for phage susceptibility by using a plaque assay as well as a
spot test assay. For the plaque assay, phage lysate was incubated at room temperature with

500 pL of an overnight culture of bacteria for 30 minutes, plated in 0.8% LB top agar, and incu-
bated overnight at 37°C. For the spot test assay, 500 pL of an overnight culture of bacteria was
plated in 0.8% top agar. After the top agar hardened, 3 uL of phage lysate was placed on the top
agar. The plates were incubated overnight at 37°C with the agar side facing up.

Isolation of Brevibacillus phages

Brevibacillus phages were isolated from bee debris collected near beehives. Bee debris was
crushed using a micro pestle and added to a flask containing LB broth along with a culture of
B. laterosporus field isolates BL2, BL6, or BL14. The bee debris and bacteria were incubated
overnight at 37°C. The mixture was spun in a centrifuge (8,000 rpm for 10 minutes) and the
supernatant was passed through a 0.22 um Nalgene SFCA filter (Thermo Scientific). Depend-
ing on initial phage titer, 5-50 pL of the supernatant was incubated at room temperature with
500 uL of BL bacteria for 30-60 minutes, mixed with LB top agar, plated on LB agar, and incu-
bated at 37°C overnight. Plaques were sampled using a sterile pipette tip and the process of pla-
que purification was repeated at least three times to isolate each phage.

Transmission Electron microscopy

Samples were prepared for transmission electron microscopy as previously described [16] and
imaged at the BYU Microscopy Center.

DNA extraction, sequencing, assembly, and annotation

Phage DNA was extracted using the Phage DNA Isolation Kit (Norgen Biotek Corporation).
DNA was extracted according to the manufacturer’s instructions, except 5-10 times the lysate
amount was used with the appropriate reagents scaled up proportionally. Phage DNA was
sequenced using 454 sequencing technology and sequencing reads were assembled using New-
bler 2.9 (454 Life Sciences, Roche), Consed [22], and Gepard [23]. Phage genomes were
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screened for direct terminal repeats using PAUSE (https://cpt.tamu.edu/computer-resources/
pause) and were annotated using DNA Master [24] and other programs described previously
[18,25].

Identification of phage host range

The spot test assay described above was used to verify host susceptibility to each of the phages.
Brevibacillus phage lysates obtained as described above were used to infect field isolates BL2,
BL6, BL14, and two additional B. laterosporus strains (40A1 (KF597228) [26] and 40A9
(KF597235) [27]) obtained from the Bacillus Genetic Stock Center (www.bgsc.org), or BGSC.

Phylogenomic analysis of phage genes and genomes

Dotplots were prepared using Gepard [23] and phage clusters were defined based on approxi-
mately 50% or greater genome synteny as previously described [3,28,29]. Phamerator [30] was
used to analyze and prepare full-genome comparison maps using a representative member of
each cluster. Full-genome accession numbers used in preparing dotplots and in conducting
other genomic analyses for this study are:

Brevibacillus phages Abouo (B. laterosporus) [KC595517], Davies (B. laterosporus)
[NC_022980], Emery (B. laterosporus) [KC595516], Jenst (B. laterosporus) [KT'151955],
Jimmerl (B. laterosporus) [KC595515], Jimmer2 (B. laterosporus) [KC595514], Osiris (B.
laterosporus) [KT151956], Powder (B. laterosporus) [KT151958], SecTim467 (B. lateros-
porus) [KT151957], Sundance (B. laterosporus) [KT151959].

Kalign [31-35] was used to calculate average nucleotide identity (ANI) of phage genomes.
Proteomic analysis of each of the phage clusters was performed using CoreGenes [36-38] with
the BLASTP score threshold set at 75.

Sequences of closest phage relatives for phylogenetic comparisons were found from
BLASTP [39-41] searches using the amino acid sequence of each of the phages’ terminase
large subunit or terminase large subunit-like protein that was at least 25% identical to the target
Brevibacillus phage terminase large subunit or terminase large subunit-like protein. Sequences
for phylogenetic analysis were first aligned using MUSCLE [42]. Neighbor-joining phyloge-
netic trees were prepared by MEGAG6 [43] with bootstrapping set to 500. Any branches with a
bootstrapping value less than 50% were collapsed. No out-group was included as phage termi-
nases are highly susceptible to horizontal gene transfer [44]. The accession numbers for the ter-
minase large subunit or terminase large subunit-like proteins used in this study are:

Bacillus phage SPP1 (B. subtilis) [NP_690654]; Brevibacillus phages Abouo (B. laterosporus)
[AGR47449], Davies (B. laterosporus) [YP_008858637], Emery (B. laterosporus)
[AGR47349], Jenst (B. laterosporus) [ALA07151], Jimmerl (B. laterosporus) [AGR47249],
Jimmer?2 (B. laterosporus) [AGR47149], Osiris (B. laterosporus) [ALA07344], Powder (B.
laterosporus) [ALA48012], SecTim467 (B. laterosporus) [ALA07521], Sundance (B. lateros-
porus) [ALA47835]; Clostridium phages c-st (C. botulinum) [YP_398598], D-1873 (C. botu-
linum) [EES90358]; Lactococcus phages phil47 (L. lactis subsp. cremoris DPC6860)
[YP_009007060], 949 (L. lactis strain ML8) [YP_004306307]; Microcystis phages Ma-
LMMO1 (M. aeruginosa) [YP_851132], MaMV-DC (M. aeruginosa) [AGR48682]; Pseudo-
monas phage PaBG (P. aeruginosa PAO1) [YP_008433440]; Staphylococcus phages PH15
(S. epidermidis) [YP_950664]; Streptomyces phage Jay2Jay (S. lividans JI1326) [ATW02598];
Synechoccus phage S-CBS4 (Synechococcus sp. CB0101) [YP_005098309]; Thermus phages
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phiOH2 (T. thermophilus) [YP_008240332], phiYS40 (T. thermophilus) [YP_874075], TMA
(T. thermophilus HB27) [YP_004782268]; Treponema bacterial strain Treponema phagede-
nis F0421 [EFW38857].

Motif Identification and Analysis

MEME [45] was used to scan phage genomes for statistically significant motifs (P-value < le-
3, Q-value < 0.05). FIMO [46] was used to scan the phage and bacterial genomes and deter-
mine the presence and exact positions of each iteration of the motif. DNA Master [24] and
Phamerator [30] were then used to determine the genes neighboring discovered motifs in each
of the phage genomes.

Identification of conserved domains

Conserved domains for all Brevibacillus phages were found using the NCBI Conserved Domain
Database [47-50] with the acceptable return threshold set at E-value < le-3.

Structural prediction of proteins encoded by paralogous genes

Phamerator was used to group similar proteins into protein families called “phams” [30] using
parameters identical to those used by Merrill et al. [16]. Protein families containing multiple
homologs from the same phage were then identified. Clustal Omega [51] was used to compare
the amino acid sequences of the paralogous proteins. CD-Search [47-50] was used to find pro-
teins with similar conserved domains. Brevibacillus phage conserved domains were compared
to the c2 repressor of Salmonella phage P22 (S. enterica serovar typhimurium) [1ADR_A,
2R1J_L, 3JXB_C] [52]. HHPred [53] and RaptorX [54-57] were used to predict tertiary struc-
ture and binding sites. These predicted structures were then superimposed using STRAP [58]
and compared using NCBI’s Cn3D [59].

Transposon Region

Phamerator [30] was used to analyze the differentiating features between Jenst and SecTim467.
The Palindrome command of EMBOSS [60] was used to verify the presence of inverted repeats
surrounding the transposable region. A dotplot comparing the homologous region in Breviba-
cillus laterosporus LMG 15441 [NZ_CP007806] to the putative transposon region in Sec-
Tim467 was prepared using Gepard [23]. Using the default parameters of HHPred [53],
homologous proteins within the putative transposable region were discovered. Protein folding
predictions were then accessed from the RCSB Protein Data Bank [61] based on hits from
HHPred using an acceptable threshold of E-value < 1e-12. GC content of the putative transpo-
son region located between the inverted repeats was calculated using the online GC content cal-
culator at endmemo.com (http://www.endmemo.com/bio/gc.php).

Results and Discussion

Five Novel Brevibacillus phages belong to the families Myoviridae and
Siphoviridae

In total, five new Brevibacillus phages were recently isolated from bee debris or bee larvae col-
lected along northern Utah using field isolates BL2, BL6, and BL14 (Table 1) and these phages
were later sequenced. Phages Powder and Sundance were co-isolated and not separated prior
to electron microscopy or sequencing. These genomes assembled completely as two separate
contigs. Following isolation, and in order to confirm their identity as B. laterosporus phages,
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Table 1. Brevibacillus phages isolated in this study.

Phage Sample Sampletype GenBank Fold Genome ORFs tRNAs GC Host Host Host Host Host

Name location Accession coverage length (bp) (%) 40A1 40A9 BL2 BL6 BL14

Powder Eden, UT Beedebris  KT151958 73.528 52,992 103 0 38.1 + + + > +

Osiris Salt Lake Bee larva KT151956 351.6 52,955 103 0 38.1 + > +
City, UT

Jenst SaltLake Beedebris  KT151955 87.3 126,341 178 6 42.9 + + = + =
City, UT

SecTim467 Orem, UT Bee debris KT151957 122.9 130,482 183 6 42.7 + + + + +

Sundance  Eden, UT Beedebris  KT151959 20.425 134,270 194 0 35.5 + + + > +

“Fold coverage” is the average depth of sequencing coverage for each of these phages. “ORFs” is the number of open reading frames annotated.
Isolation host is underlined and describes the strain used to initially isolate the phage, while all listed phages contained in the table additionally infected
both of the BGSC strains used in this study. + indicates that the phage listed was capable of infecting the given strain for host range studies, whereas—
indicates an inability of the phage being able to infect the given strain. An underlined + indicates the original isolation host.

doi:10.1371/journal.pone.0156838.1001

these phages were used to infect two well-characterized B. laterosporus strains from BGSC (B.
laterosporus strains 40A1 and 40A9). All of the five novel Brevibacillus phages isolated were
capable of infecting the BGSC strains used, namely B. laterosporus 40A1 and 40A9, confirming
that these phages infect hosts belonging to the Brevibacillus genus. Along with being able to
infect these BGSC strains and their isolation strain (indicated by an underlined + in Table 1),
Powder and Sundance were also able to infect BL2, SecTim467 was able to infect BL6, and Osi-
ris and SecTim467 were able to infect BL14.

Transmission electron micrographs of the five new phages indicate they are either myo-
viruses or siphoviruses (Fig 1). The structure of Powder and Osiris suggest they are myoviruses,
as were all five of the previously characterized Brevibacillus phages [16]. Jenst, SecTim467, and
Sundance are the first siphoviruses to be reported that infect Brevibacillus bacteria. Measure-
ments of the capsid and tail structures of these phages are listed in Table 2. As expected, phages
of the same cluster share the same morphology as all members of the Jimmer-like cluster are
myoviruses [16] and all members of the Jenst-like cluster are siphoviruses (updated and new
Brevibacillus phage clusters are discussed below). Note that there are myovirus tail particles in
the Sundance image due to co-isolation with Powder.

Phylogenomics of Brevibacillus phages

In order to determine the relationships of these five novel phages to the pre-existing field of
Brevibacillus phages, all ten fully sequenced Brevibacillus phages were genomically compared.

Fig 1. Transmission electron microscopy of five novel B. laterosporus phages identifies two myoviruses and three siphoviruses. (A) Brevibacillus
phage Powder. (B) Brevibacillus phage Osiris. (C) Brevibacillus phage Jenst. (D) Brevibacillus phage SecTim467. (E) Brevibacillus phage Sundance.
Samples were prepared for transmission electron microscopy as previously described by Merrill et al. [16].

doi:10.1371/journal.pone.0156838.g001
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Table 2. Structural measurements of Brevibacillus phages from transmission electron micrograph images.

Phage Capsid height
Name (nm)

Powder 65.7+1.7
Osiris 64.0+4.0
Jenst 86.8 £ 6.1

SecTim467 96.8+5.8
Sundance 96.4+£4.0

Capsid width Tail length Tail width Contracted sheath Contracted sheath Morphology
(nm) (nm) (nm) length (nm) width (nm)

63.9+5.3 120.3+7.9 79+12 52+ 11.2 239+5.0 Myovirus
63.7 +3.7 114.8+5.8 72+0.8 492 +37 209+1.4 Myovirus
86.9+8.3 286.2+22.5 11.7+2.0 N/A N/A Siphovirus
879+5.8 414.6 £23.9 136+25 N/A N/A Siphovirus
94.4+47 403.7 + 36.8 13.0+1.97 N/A N/A Siphovirus

Measurements reported are average lengths of three or more instances of the structures in nanometers with standard deviations as determined in ImageJ
[62]. Jenst, SecTim467, and Sundance are siphoviruses and do not possess sheaths, thus no measurements were available for these structural
characteristics and these cells are marked “N/A”.

doi:10.1371/journal.pone.0156838.1002

Phages are often grouped into clusters based on genome synteny over at least 50% of the phage
genome [3,28,29]. Based on >50% genome synteny, as seen by whole-genome dotplot analysis
(Fig 2) and confirmed by Kalign [31-35] average nucleotide identity (ANI) analysis, Brevibacil-
lus phages were grouped into two clusters and two singletons. Osiris and Powder belonged to
the previously defined Jimmer-like cluster including Jimmerl, Jimmer2, Davies, and Abouo,
while a novel Jenst-like cluster emerged including Jenst and SecTim467. Sundance and Emery
were designated as singletons. It should be noted that ANI values within these assigned clusters
is >75% and intercluster ANT is <55% indicating broad nucleotide relationships among the
ten B. laterosporus phages and their respective clusters (Table 3). Fig 3 provides a genomic map
of a representative member from each cluster, as well as both singletons, produced using Pha-
merator [30]. These maps reveal extremely low or no nucleotide (marked by the lack of purple,
red, or green lines between genomes) and protein (marked by the lack of similarly colored
boxes) similarity between the phage clusters. These relationships allude to either the divergent
evolution of very distinct clusters of Brevibacillus phages, as has been reported for the Mycobac-
teriophages, Enterobacterioaceae phages, and Bacillus phages [3,28,63], or that there are a mul-
titude of unknown Brevibacillus phages that will merge these gaps in the future. It should also
be noted that Kalign ANI values of Jenst and SecTim467 showed them to be ~100% identical,
but SecTim467 is 4,141 bps longer than Jenst. The entire genome of Jenst is 100% similar to the
equivalent sequence in SecTim467. A predicted transposable region found in SecTim467
explains the difference of 4,141 total bps and break in sequence similarity in SecTim467 as
compared to Jenst (visible on the dotplot in Fig 2) and is discussed further below.

These cluster assignments agree with whole proteome analysis of these phages using Core-
Genes [36-38]. Coregenes analysis revealed high levels of proteome conservation within the
Jimmer-like cluster, as well as between Jenst and SecTim467 (Table 4), further confirming the
clusters previously determined by nucleotide synteny. Related phages are reported to have at
least 40% of their proteomes conserved [64,65], making the CoreGenes-determined proteomic
clusters defined by these values consistent with the cluster assignments previously proposed in
this study where intercluster values are greater than 65% and intracluster are less than 13%.

As phylogenetic analyses of the terminase large subunit protein sequences of phages have
been used to group phages [66], analysis of the terminases of the Brevibacillus phages was used
to further confirm whole genome cluster assignments in this study (Fig 4). By this terminase
analysis, the Jimmer-like cluster phages were most similar to one another, and more similar to
Staphylococcus phage PH15, Bacillus phage SPP1, and Thermus phage phiOH?2 than to other
Brevibacillus phages. Similarly, phages Jenst and SecTim467 were more closely related to one
another and to Streptomyces phage Jay2Jay, as well as Thermus phages TMA and phiYS40,
than to other Brevibacillus phages. The terminases from singleton Brevibacillus phages Emery
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Fig 2. Whole-genome nucleotide dotplot analysis of Brevibacillus phages reveals four distinct clusters. Gepard [23] nucleotide
dotplot reveals four distinct phage clusters: the Jimmer-like cluster, the Jenst-like cluster, and the Emery and Sundance singletons.
Diagonal lines indicate genome similarity. Vertical and horizontal lines were added to indicate phage genome boundaries and clusters of
related phages are highlighted in different colors. Single dots present are a result of smaller DNA fragments aligning with that of other
phages and do not represent sufficient similarity to elicit placing a phage into a particular cluster. Analysis window with the word size of 10
base pairs was used.

doi:10.1371/journal.pone.0156838.g002

and Sundance were also more closely related to other phages from other hosts than to Breviba-
cillus phages. Emery’s terminase is more closely related to a terminase found in the bacterium
Treponema phagedenis, while the Sundance terminase is more closely related to Lactococcus
phages phiL47 and phage 949 as well as Clostridium phages c-st and D-1873. While confirming
the Brevibacillus phage cluster relationships presented in this paper, the terminase phylogenetic
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Table 3. Average Nucleotide Identity of Brevibacillus laterosporus phages suggests four clusters of related phages.

Phage Jimmer1 Jimmer2 Powder Davies Osiris Abouo Jenst SecTim467 Emery Sundance
Name
Jimmer1 100% _ _ _ _ _
Jimmer2 99.83% 100% i i ) _
Powder 96.36% 96.53% 100% B _ _
Davies 77.50% 77.57% 82.05% 100% _ _
Osiris 95.59% 95.76% 99.26% 81.81% 100% _
Abouo 76.26% 76.33% 78.89% 93.35% 78.63% 100%
Jenst 42.92% 42.96% 43.14% 40.96% 43.24% 40.44% 100%
SecTim467 43.02% 43.06% 43.23% 41.04% 43.32% 40.54% 100% 100%
Emery 45.47% 45.49% 45.64% 44.47% 45.58% 41.53% 39.77% 39.64% 100%
Sundance 52.07% 52.12% 53.28% 47.62% 53.59% 46.56% 43.96% 44.03% 39.26% 100%

Average nucleotide identity was determined by Kalign [31-35]. Clusters of related phages are noted with bold, italics, and underlining. Jenst and
SecTim467 were reported as having 100% nucleotide identity by Kalign, however SecTim467 contains an additional 4,141 bps. This table is reporting the
126,341 bps that are analogous between these two phages. Values underlined or bolded denote comparisons being made within the same cluster.

Singletons are italicized.

doi:10.1371/journal.pone.0156838.t003

trees of these phages exhibit genetic shuffling as is often observed in phage genetics, as the rep-
resentative phages for each of the phage clusters defined in this paper are more closely related
to an unrelated phage than to any of the other Brevibacillus phage clusters.

Evidence suggesting that eight of the ten Brevibacillus phages may be
temperate phages

Determining whether a phage is temperate or lytic is often complicated by sub-optimal labora-
tory conditions for formation of lysogens or by difficulty identifying an integrase in the phage
genome. Genomic searches for homology between the putative major capsid proteins of phages
and genes within bacterial genomes can be used as a guide to determine whether a phage is
temperate or lytic, as long as the reservoir of published sequences from the bacterial host is suf-
ficiently large enough. BLASTP [39-41] analysis was therefore used to provide evidence of the
lifestyle of the ten Brevibacillus phages. All of the phages in the Jimmer-like cluster (Jimmerl
[YP_009226318.1], Jimmer2 [AGR47154], Powder [ALA48018.1], Davies [YP_008858642.1],
Osiris [YP_009215022] and Abouo [YP_009220064.1] were used as probes) have MCP
BLASTP matches of 96% or greater similarity with E-values of 0 to proteins encoded by a B.
laterosporus chromosome. In support of these phages being temperate, phages from the Jim-
mer-like cluster were previously shown to form stable lysogens [16]. While the remaining four
phages did not have any experimentally confirmed MCPs and all putative MCPs (such as Jenst
gp 26 and SecTim467 gp26) did not have high (~75% or greater identity) BLASTP matches to
MCPs in bacterial genomes, both Emery and Sundance appeared to encode putative integrases,
suggesting they may be temperate. The Emery integrase [AGR47348.1] call was based on a
BLASTP match to an integrase encoded in a P. elgii chromosome with 69% similarity, E-value
9e-100, and the Sundance integrase [YP_009194207.1] call was based on a match to an inte-
grase encoded in a P. elgii chromosome with 75% similarity, E-value 3e-123. However, no sta-
ble lysogens were formed from a lysate containing Emery [16]. Thus, based on BLASTP MCP
analysis, as well as the presence of a putative integrase gene in some of the phage genomes, at
least eight of the ten Brevibacillus phages (the Jimmer-like cluster phages as well as Emery and
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Fig 3. Whole-genome comparison maps show diversity between Brevibacillus phage clusters. A Phamerator [30] whole genome comparison map
was prepared using a representative member of each cluster. Boxes on top of the genome ruler indicate genes that are expressed in the forward direction
while those below the ruler are expressed in the reverse direction. Gene products are numbered. Colored boxes correspond to encoded proteins that belong
to a particular pham (family of homologous proteins) found in any of the ten Brevibacillus phages, while white boxes denote an orpham (an ORF not
belonging to a pham). Purple, red, or green lines between genomes illustrate regions of nucleotide similarity. Emery gps 4-5 represents a frameshift event by
ribosomal slippage. Functions annotated were compiled from both BLAST and CDD searches. Abbreviations used include: MGEBNA (mannosyl-
glycoprotein endo-beta-N-acetylglucosamidase); XRE (XRE family transcriptional regulator); TR (Trascriptional regulator); ssDNA binding (single-stranded
DNA binding); DNA rep (DNA replication); RecU (recombinase RecU); SSp DNA meth (Site-specific DNA methylase); RNA pol sigma 24 (RNA polymerase
sigma 24); MD hydrolase (Metal-dependent hydrolase); DNA pol Ill G/T (DNA polymerase Il subunit gamma/tau); Regulator of CC (Regulator of
chromosome condensation family); NALAAC (N-acetylmuramoyl-L-alanine amidase CwlA); SpoOE (Sporulation protein SpoOE OR SpoOE-like sporulation
regulator family); DNA pol Ill (DNA polymerase Il1); RNA pol sigma (RNA polymerase sigma factor); FtsK (Cell division protein FtsK); DNA pol | (DNA
polymerase |); NALA amidase (N-acetylmuramoyl-L-alanine amidase); XRE (XRE family transcriptional regulator); Gene reg B (Accessory gene regulator B
family); DNA-directed DNA pol A (DNA-directed DNA polymerase, family A); RNA pol sigma (RNA polymerase sigma factor); V spor K, ATPase (stage V
sporulation protein K, ATPase AAA); Ac-di syn (cobyrinic acid ac-diamide synthase); XerD (site specific recombinase XerD); Reg s, luxR (bacterial regulatory
s, luxR family); BN DNA binding (Bacterial nucleoid DNA-binding); Exc ABC (Excinuclease ABC); CJE RusA (Crossover junction endodeoxyribonuclease
RusA); Asp-tRNA amidotrans B (Aspartyl-tRNA amidotransferase subunit B); ssDNA-sp exonuclease (Single-stranded DNA-specific exonuclease).

doi:10.1371/journal.pone.0156838.9003

Sundance) may be temperate. Further work is necessary to test a variety of infection conditions
that may facilitate lysogen formation and verify their lifestyles.

Motif analysis reveals putative transcriptional units

Motif analysis has been used to identify temporally co-transcribed units in phage genomes
[68,69], leading to a greater understanding of the phage lifestyle. In an effort to predict tran-
scriptional control methods of these novel phages, MEME [45] searches were performed and
revealed a significant motif conserved in both SecTim467 and Jenst, but not found in Osiris,
Powder, and Sundance. FIMO [46] identified this motif 20 times in SecTim467 (Fig 5) and 19
times in Jenst. BLASTN [39-41] searches were performed to determine if this motif was pres-
ent in other phages and identified its prevalence in the recently characterized and otherwise
unrelated Bacillus phage Basilisk [5]. By identifying the genes neighboring this motif in
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Table 4. Whole proteomic analysis supports Brevibacillus phage cluster assignments.

Phage
Name

Jimmer1
Jimmer2
Powder

Davies
Osiris
Abouo

Jenst
SecTim467

Emery

Sundance

Jimmer1

103 (100%)

103 (100%)

Jimmer2

103 (100%)

97 97
(9417%)  (94.17%)
65 65
(69.15%)  (69.15%)
96 (93.2%) 96 (93.2%)
62 62
(65.96%)  (65.96%)
7(3.93%) 7 (3.93%)
7(3.93%) 7 (3.93%)
10 (9.8%) 10 (9.8%)
4(2.06%) 4 (2.06%)

Powder Davies Osiris Abouo Jenst SecTim467 Emery Sundance
103 (100%)
69 (73.4%) 94 (100%)
102 69 103 (100%)
(99.03%) (66.99%)
64 (68.09%) 85 64 94
(90.43%) (68.09%) (100%)
6 (3.37%) 4 (2.25%) 6(3.37%) 5(2.81%) 178 (100%)
6 (3.28%) 4 (2.19%) 6(3.28%) 6 (3.28%) 178 183 (100%)
(97.3%)
8 (7.84%) 11 8(7.84%) 9(8.82%) 7 (6.86%) 8 (7.84%) 102
(10.78%) (100%)
4 (2.06%) 5 (2.58%) 4 (2.06%) 4 (2.06%) 23 25 4 (2.06%) 194
(11.86%) (12.89%) (100%)

Proteomic synteny as determined using Coregenes [36—38]. Clusters of related phages are noted with bold, italics, and underlining. Results are based on
a BLASTP score threshold of 75. Coregenes values of >40% have been previously used to identify related phages [64,65]. Values underlined or bolded
denote comparisons being made within the same cluster. Singletons are italicized.

doi:10.1371/journal.pone.0156838.t004

SecTim467, we hypothesized that the motif may act as a transcriptional regulator binding site
as it is commonly located upstream of genes and the distance between the highly conserved
portions of the motif structurally resembles a promoter binding site. In support of the use of
this motif in transcriptional regulation, the genes downstream of this motif predominantly
encode putative transcription and replication machinery (Fig 5), suggesting they may be co-tran-
scribed for efficient replication of the phage genome. Brevibacillus laterosporus LMG 15441 was
scanned for instances of this discovered motif without result, suggesting the phages might encode
their own sigma factor or transcriptional regulator. In support of this idea, several putative genes
in both Jenst and SecTim467 are homologous to sigma factors (Jenst: gp74 [YP_009199135.1],
gp80 [YP_009199141.1], gp140 [YP_009199201.1]; SecTim467: gp79 [ALA07424.1], gp85
[ALA07429.1], gp145 [ALA07470.1]). It is therefore likely that this phage motif may be used to
recruit sigma factors involved in transcribing middle or late expression phage genes as has been
observed in B. subtilis phage SPO1 [70-72]. However, further study of this motif is required to
determine whether or not it is in fact a promoter site, or whether it is acting in another manner.

Conserved proteins, including putative virulence factors, conserved in
Brevibacillus phages

In order to assess putative functions for the Brevibacillus phage proteins, as well as a possible
role for these proteins in the evolution of these phages and their host, all conserved domains
present within the ten Brevibacillus phage genomes were analyzed using Phamerator [30] and
the NCBI Conserved Domain Database [47-50] (S1 Table). Several conserved domains corre-
sponding to host functions as well as possible pathogenicity factors were present in these
phages, suggesting that they may be contributing to the pathogenicity of their host. These
include: the bacterial pili regulatory protein (Jimmerl gp65 [YP_009226375.1], Jimmer2 gp65
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Fig 4. Terminase phylogenetic analysis supports four clusters of Brevibacillus phages with close
relationships to phages from other hosts. Terminase phylogeny for Brevibacillus phages alongside other similar
phage terminases based on at least 25% amino acid sequence shared identity. No outgroup was used as phage
terminases are highly susceptible to horizontal gene transfer. Scale represents 0.1 amino acid substitutions per site.
The phylogenetic tree was aligned using MUSCLE [67] and prepared using neighbor-joining trees in MEGAG [43] with
bootstrapping set to 500. Any branches with a bootstrapping value less than 50% were collapsed. Clusters of related
phages are highlighted in different colors: the Jimmer-like cluster in green, the Jenst-like cluster in red, and the Emery
and Sundance singletons in yellow and blue, respectively.

doi:10.1371/journal.pone.0156838.g004

[AGR47199.1]), which aids host attachment to its target cell [73]; the plasmid segregation pro-
tein ParM (Jenst gp6 [YP_009199067.1], SecTim467 gp6 [ALA07508.1]) and the plasmid parti-
tion protein ParA (Sundance gp7 [YP_009194057.1]), which allow for proper allocation of
plasmid in dividing bacteria [74-76]; a PAAR repeat protein (Sundance gp40 [YP_009194090.1]),
which may aid in secretion and killing of target cells [17]; both of the stage V sporulation proteins
K (Emery gp95 [AGR47420.1]) and T (Emery gp72 [AGR47438.2]), which allow for normal spor-
ulation of the host to occur [77,78]; along with several others (Table 5). The possession of these
virulence factors by these phages may indicate the spread of pathogenicity genes from host to host
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Distance Gene Locus
Site Coordinates DNA Sequence Gene product function from motif Tag number
(bp)
1 4937-4993 ACCCCTCTACTATTTATGGTCGTTCTATGTGCTTCTTGAGTTGCGATAGAATATCAC N/A N/A N/A
2 8704-8760  ACTCTCTCACTATCTATGGTCGATGTATGGTGTAAAAAAGGTGCGGGTACGTACAAA N/A N/A N/A
3 6808868144  AAGCTGATTCTATCTATGATCAATTATACGAGAAAAAGAGAGACAAAAACAAAATAA DNA Binding Protein 0 69
4 7294172997  TATCCCTCATTTTTTATGGTCGAACTAACATATTGATAAGTTGCACCTGCTGTGGTA Thioredoxin 740 76
Thioredoxin 919 75
DNA polymerase Il 1211 74
5 7458974645  TTCCTTACACTATCTATGGTCGGAGCATGGTGAACTAGAGTTGCGTGAGCAAMATAA VA p°";:’c‘i:':se sigma 631 79
6  76539-76595 = TCCTTCTCACTGTTGATGGTCGTTGTATGGGAGTGAAGAGTTGCGACAAAGAAAAAA De‘:‘:g::;‘:‘t’ji; :‘S‘e’"o' 28 83
Transglycosylase 817 82
DNA-binding protein 1525 81
7 77687-77743  TGTCTCTCAAGATTTATGGTGGAGTTATGTCTGAAGATAGTTGCGAAAAACAAAAAG  TNA pozrg“r::f;; subunit 18 85
8  80695-80751  CCTCCGACACTCTTTATGGTCGGTTCATGGCTGACGATAGTTGCTTATGAAAAAGAG N/A N/A N/A
Ribonucleotide-
9  82646-82702  TGCCTTACACTATCTATGGTGGAGTTATCTATTAAAATAGTTGCGAAAAATAAAAAA  diphosphate reductase 2602 86
subunit alpha
10 8708887144  AGCCTTACACTTTTTATGGTCGCTGTTTCTATTGGGATAGTTGCGGCGTCTCTGCGG Recombinase RecA 675 103
11 9105391109  ACCTCCCTACTCTTTATGGTCGAACCATGTCATTGATTAGTTGTGGTCAGCGTTTCA RNA ligase 391 112
12 9688696942  CTCCTTACGCTCTTTATGGTCGCTCCATGTGCTTCTTGAGTTGCGGTACAGAGCACC DNA ligase 575 123
13 98153-98209  TGCCTTACACTATCTATGGTGGAGTTATCTATTAAAATAGTTGCGAAAAATAAAAAG deoxyribi;ilc]eoti ase 673 126
14  101190-101246 TGCTTTACACTATCTATGGTCGATGTATGGTGTAAAAAAGTGGCAAAAGAAAAAGAA N/A N/A N/A
15  106309-106365  GACCTCTCAATCTTTATGGTCGAGCCATACCATTAATTAGTTGCGCCAATAAAGCTG DNA polymerase | 961 143
Endonuclease 2574 142
DNA polymerase | 3741 141
DNA polymerase | 4271 140
16 107066-107122  TGCCTTCTACTATTTGTGGTCGTTCTATCTAATAGAAAAGGTGCGAAGCTTTCTATC 322’;22?5:::;?:_"2’;1 35 145
17 109700-109756  ACCTACTCACTGTTGATGGTCGTTGTATGGGAGTGAAGAGTTGCGAAGTAGTCGCCT DNA helicase 18 148
DNA primase 1494 146
18 112802-112858  CACTCCCTACTCTTTCTGGTCGCGCCAAGTATGTACAAAGTTGCGAGAAAAGATAGT  DNA replication protein 1057 151
Thymidylate synthase ThyX 1832 150
19  115914-115970  GTCTTTTCACTATATATGGTGGAGATGTCTTACGATAAAGTTGCAACGTCAGTCGTT RtcB protein 19 159
20 118909-118965  TGTCTCTCAAGATTTATGGTCGTTCCATGTATGTAATAAGTTGCTCAGTTACAGAAT RNA helicase 833 161

-

il

(
A

-
-

Fig 5. Brevibacillus phage SecTim467 genes harboring upstream conserved motifs are primarily involved in nucleotide
metabolism/replication. FIMO [46] was used to locate the conserved motif in the genome of SecTim467. This chart also shows
that these motifs are located in inter-gene gaps upstream of DNA metabolism and RNA transcription genes. “N/A” indicates the
gene downstream of the motif at that location had an unknown function. The motif is displayed at the bottom, with the bases of the
highly conserved portions of the motif highlighted throughout the figure in red. In many cases, several genes appear immediately
downstream of the conserved motif in what may be an operon. In these cases, more than one gene function is reported. Two of the
discovered motif sequences are present in the reverse complement of the given coordinates and are denoted by their coordinate
numbers colored in red. The word graph at the bottom of the figure is a proportional representation of instances of different
nucleotides at each position in the motif that contribute to the overall consensus sequence.

doi:10.1371/journal.pone.0156838.g005

with the phage acting as a vector via HGT between host and phage and/or vice versa [2], or that
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Table 5. Conserved Domain search identifies several host virulence factors present in Brevibacillus phages.

Gene product of the following phage:

Putative Function Jimmer1 Jimmer2 Powder Davies Osiris Abouo Jenst SecTim467 Emery Sundance
Sialic acid mutarotase gp45 gp45 gp47 gp47

Bacterial pili protein gp65 gp65

Plasmid segregation protein ParM gp6 gp6

Plasmid partition protein ParA gp7
PhoH gp15
PAAR repeat gp40
Cell wall hydrolase gp132
Stage V sporulation protein K gp95

Stage V sporulation protein T gp72

doi:10.1371/journal.pone.0156838.1005

these genes may represent a “Trojan Horse” mechanism for host entry where the host recognizes
the foreign DNA as advantageous and begins replication of the viral DNA.

Multiple copies of a helix-turn-helix DNA binding protein are found in four
Brevibacillus phages

Repeated genes often offer an evolutionary edge to their host, through either increasing the
protein expression or the ability to evolve related but novel functions [79-82]. The Brevibacil-
lus phages were analyzed for multiple gene copies within a single genome. Of particular interest
from the list of conserved domains were two homologous putative helix-turn-helix transcrip-
tional regulators found in phages of the Jimmer cluster (Jimmerl, Jimmer2, Osiris, and
Powder). Abouo and Davies contained only one copy of the gene coding for this protein.
These proteins formed two groups based on 60% or greater amino acid similarity. Group 1
consisted of Jimmer] gp53 [YP_009226363.1], Jimmer2 gp53 [AGR47190.2], Abouo gp49
[YP_009220106.1], Osiris gp55 [YP_009215069.1], and Powder gp55 [ALA48065.1], while
Group 2 consisted of Jimmerl gp57 [YP_009226367.1], Jimmer2 gp57 [AGR47193.1], Davies
gp51 [YP_008858686.1], Osiris gp59 [YP_009215073.1], and Powder gp59 [ALA48069.1].
Based on RaptorX [54-57] protein folding predictions, all protein sequences folded very simi-
larly and predicted nucleic acid binding residues of these proteins varied in a group-specific
manner (Fig 6). The variation of the nucleic acid pocket (or binding site) interactions between
groups suggested that these transcription factors have evolved to bind different sequences for
the two different groups, although Abouo and Davies differed somewhat from the group con-
sensus (Table 6). This conserved protein showed some structural similarity (24-28% based on
Clustal Omega alignment [51]) to the c2 repressor of Salmonella phage P22 [52,83-85] where

— Osiris gp55 PDEETLSQLVGVYKVSLDWLVGKISSST-KETKEFTSDTEQIQNILDSLPSDKRKYFLEQISITIAAGIRAMEKDGKDNK
% Jimmerl gp53 PDIETLSQLVGVYKVSLDWLVGKISSST-KETKEFTSDTEQIQNILDSLPSDKRKYFLEQISIIAAGIRAMEKDGKDNK
S Jimmer2 gp53 Q. E YERB PDIETLSQLVGVYKVSLDWLVGKISSST-KETKEFTSDTEQIQNILDSLPSDKRKYFLEQISIIAAGIRAMEKDGKDNK
O Powder gp55 MSSLGSRLKQA R Y PDTETLSQLVGVYKVSLDWLVGKISSST-KETKEFTSDTEQIQNILDSLPSDKRKYFLEQISIIAAGIRAMEKDGKDNK

Abouo gp49 MSSLGKRLKQA N YERD PDIEVLSKLASIYEVSVDWLTGMIDDPSPKDFNPYAKEIERFKVILDSLPRDKHEYLLEQISIFAAGIRVMEKERKDEK
N Osiris gp59 MSKLGDRLKEA \ MENC PDEETLRTLANLYEVSVDWLVGNICDSDIQDSTSYAEETERFKTILASLPRNKHKHFLEQISIFAAGIIAVEKKYNGDK
% Jimmerl gp57 MSKLGDRL! N YENC PDIETLRTLANLYEVSVDWLVGNICDSDIQDSTSYAEETERFKTILASLPRNKHKHFLEQISIFAAGIIAVEKKYNGDK
8 Jimmer2 gp57 R PDEETLRTLANLYEVSVDWLVGNICDSDIQDSTSYAEETERFKTILASLPRNKHKHFLEQISIFAAGIIAVEKKYNGDK
v Powder gp59 PDEETLRTLANLYEVSVDWLVGNICDSDIQDSTSYAEETERFKTILASLPRNKHKHFLEQISIFAAGIIAVEKKYNGDK

Davies gp51 PDEETLRTLANLYEVSVDWLVGNICDSDIQDSTSYAEEIKKFKTILASLPRNKHKHFLEQISIFAAGIIAVEKIHNGD-

Fig 6. Multiple sequence alignment of Osiris gp55, Osiris gp59, and related homologs from B. laterosporus phages indicates high conservation.
Two groups (Osiris gp55 and Osiris gp59), based on homology of related proteins, can be seen. The Brevibacillus phage name is followed by the gene
product number and then the amino acid sequence of that gene product. Group numbers are provided to the left of the phage names. RaptorX [54-57]
predictions for DNA binding residues are colored. Green residues differ in a group-specific manner while red residues are conserved between both groups.

doi:10.1371/journal.pone.0156838.9006
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Table 6. DNA binding pocket comparison of Osiris gp55, Osiris gp59, and related homologous proteins from B. laterosporus phages.

Phage Name

Group 1 Consensus
Osiris gp55

Jimmer1 gp53
Jimmer2 gp53
Powder gp55

Abouo gp49

Group 2 Consensus
Osiris gp59

Jimmer1 gp57
Jimmer2 gp57
Powder gp59

Davies gp51

Pocket 1 Pocket 2 Pocket 3 Pocket 4
T T A T
T T A T
T T A T
T T A T
T T A T
A T T T
T T T T
T T T T
T T T T
T T T T
T T T T
T T T A

Display of the predicted nucleotide each pocket will bind to reveals overall conservation between each group with the exception of pocket 3, which shows
independent evolution as Group 1 is predicted to bind adenine (except in Abouo gp49) while Group 2 is predicted to bind thymidine. Pocket binding
predictions were performed by RaptorX [54—-57]

doi:10.1371/journal.pone.0156838.t006

the N-terminus of both structures showed consistent alignment (Fig 7). However, RaptorX was
unable to predict tertiary structure of the C-terminus for any of the proteins within this protein
family.

Protein binding pockets, binding residues, or ligand-binding sites are cavities created by a
protein’s secondary structure conformation. These pockets differentially bind different ligands,
such as DNA, based on their conformation. The binding specificities of these sites can change
based on single-base mutations in the gene coding for a given protein. By comparing these two
groups of highly related proteins within the phages and the divergence of particular binding
pockets, these distinct, yet related, phages appear to have independently evolved. While these
paralogous genes most likely bind to slightly different DNA sequences, similarities between
phage P22’s c2 repressor and the proteins in this protein family indicate that they still likely
function similarly. As has been postulated in models for novel protein evolution, a duplicated
gene would be able to accumulate random mutations, and if this series of mutations were to
provide a novel, advantageous function, it could then be favored by selection [80]. Such pro-
teins are referred to as Ohnologous proteins [86]. It is possible then that these phages are effec-
tually beginning to modify and test these genes, providing a glimpse through the window of
evolution.

Transposable Region

Common instigators of evolution are transposable elements [87,88]. Phamerator analyses iden-
tified a unique region differentiating Jenst from SecTim467. A similar region was also identified
in the unrelated phage Sundance. We hypothesize that a putative transposable element found
in this region was the cause of this differentiation. The presence of this region in one phage and
its absence in another does not appear to be due to a sequencing error. In Jenst, the 1000 bp
regions immediately upstream and downstream of the transposon region had a minimum fold
coverage of 73 and 71, respectively. In SecTim467, this region had a minimum sequencing fold
coverage of 102, with minimum sequencing fold coverages of 125 and 112 of the 1000 bp
regions immediately upstream and downstream of the transposon region, respectively. While
Sundance also contained genes from this transposable element, they are found in reverse order
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N Terminus

Fig 7. Osiris gp55 superimposed on the phage P22 c2 repressor shows similar N-terminal structure and suggests possible homodimerization
prior to interaction with DNA. The predicted RaptorX [54-57] structure for Osiris gp55 superimposed using STRAP [58] on the phage P22 c2 repressor
protein published by Watkins et al. [52,85] reveals high structural homology. The DNA binding domain as predicted by RaptorX [54—57] in Osiris gp55 is
near the N-terminus, similar to the c2 repressor in phage P22. RaptorX was unable to accurately predict tertiary structure near the gp55 C-terminus.

doi:10.1371/journal.pone.0156838.g007

(Fig 8A). This could either be an instance of segmental flipping due to internal recombination,
or the genome of Sundance may be reversed in order. However, it is difficult to determine
which of these cases occurred, as, aside from the transposon region, there are only two other
small regions of nucleotide homology between these three genomes that did not facilitate sure
indication of genome orientation.

BLASTP [39-41] hits from this region of SecTim467 also revealed homology to proteins
from B. laterosporus (gp67 [ALA07413.1] has a homolog to a predicted uncharacterized pro-
tein that is 73% similar [WP_003345619.1], gp69 [ALA07415.1] has a homolog to a predicted
DNA-binding protein that is 89% similar [WP_003345620.1], gp70 [ALA07575.1] has a homo-
log that is 96% similar to B. laterosporus SpoOE [WP_003345621.1], and gp71 [ALA07416.1]
has a homolog that is 81% similar to a putative transcriptional regulator [WP_003345622.1]).
Homology between SecTim467 and B. laterosporus was also seen by nucleotide dotplot (Fig
8B). While no conserved domain for a transposase gene was found within this region, a protein
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Fig 8. A Putative transposable region found in Brevibacillus phages shares homology with B.
laterosporus. (A) Phamerator [30] genome map comparing transposable regions of Jenst (top), SecTim467
(middle), and Sundance (bottom). Colored boxes correspond to genes that belong to a particular pham
(family of homologous proteins), while white boxes denote an orpham (an ORF not belonging to a pham).
Purple, red, or green shading illustrates regions of nucleotide similarity. Boxes on top of the genome ruler
indicate genes that are expressed in the forward direction while those below the ruler are expressed in the
reverse direction. Red dots indicate location of an inverted repeat. Ruler numbers are in kb (1,000 bases). (B)
Gepard [23] dotplot showing alignment of the putative transposable region of SecTim467 with the sequence
of the B. laterosporus genome portion where nucleotide homology is present. Numbers show relative
nucleotide positions on the genomes. A red dot indicates the location of an inverted repeat.

doi:10.1371/journal.pone.0156838.g008

homologous to IstB, which may function as a transposase [89,90], was identified elsewhere in
the genomes of Jenst (gp146 [YP_009199207.1]) and SecTim467 (gpl151 [ALA07476.1]). Pal-
lindrome [60] showed the presence of inverted repeats flanking either side of the putative
transposon region in all three phages, which may be involved in transposase insertion and exci-
sion from the genomes (S1 Fig) [91]. The similarity in the locations of these inverted repeats in
both Jenst and SecTim467, as marked by the red dots in Fig 8A, can be accounted for due to their
overall genomic similarities, excluding the putative transposon region itself. The putative transpo-
son region was flanked by conserved inverted repeats designated as bps 65,982-65,997. . .66,014—-
66,029 to 66,273-66,282. . .66,319-66,328 in Jenst and bps 65,982-65,997. . .66,014-66,029 to
70,414-70,423. . .70,460-70,469 in SecTim467 (marked as red dots in Fig 8A and also shown in
S1 Fig). Only one of the inverted repeats (presented in S1 Fig) is shared between Sundance and
the other two phages, and the second is found in the middle of the transposon region in
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Sundance, making it difficult to define the ends of the putative transposon in this phage. While it
appears that this region, or fragments thereof, is also present in the host based on BLAST hits of
the transposon region, it is difficult to determine whether SecTim467 or B. laterosporus was the
first to acquire the transposon region since this region shows a different GC content when com-
pared to either chromosome. GC content between SecTim467’s putative transposon and the
region of greatest homology in B. laterosporus LMG 15441 is 34.75% versus 33.42%, respectively.
However, the SecTim467 chromosome is 42.71% GC and the host whole genome contains
41.09% GC, indicating that this transposon region was more recently acquired by both Sec-
Tim467 and its host in comparison to the rest of their genomes [92].

Further evidence for the excision of this region from Jenst is derived from the remnant of a
single gene (Jenst gp67 contrasted to SecTim467 gp71). Although a significant portion of the
gene coding for gp67 in Jenst appears to be missing, the DNA binding domain was preserved
and may be functional. HHPred [53] protein-folding predictions accessed from the RCSB Pro-
tein Data Bank showed that only slight differences existed in the predicted protein folding
structure arising from this conserved region. Jenst gp67 matched to the crystal structure of
phage P22’s c2 repressor [2R1] [85]] with a probability of 99.6% and an E-value of 4.9e-15 and
SecTim467 gp71 matched to Bacillus thuringiensis PIcR/PapR7 complex [3U3W [93]] with a
probability of 100% and an E-value of 2.8e-29.

It is difficult to determine whether Jenst or SecTim467 was the progenitor as the GC content
of these two phages flanked by the inverted repeats is very similar [92], with the average GC
content for the transposon region being 36.89% in Jenst, and 37.19% in SecTim467, compared
to 42.89% and 42.71% for the whole phage genomes, respectively.

Conclusions

Herein we have reported the isolation and characterization of five novel Brevibacillus phages
and their comparison to the five previously reported Brevibacillus phages. The detailed analysis
of these ten phages lays the foundation for future work concerning the Brevibacillus phages, as
well as related phages, and aids in understanding and affirming the dynamics of phage-host
co-evolution. The genomic comparison and clustering of these phages, along with the identifi-
cation of putative transcriptional units and proteins, may aid in understanding these phages’
lifecycles. In addition, the identification of host-related proteins and a putative transposon
region found in both the phage and host underscore intricate relationships between phages
and the evolution of their host.

Whole genome nucleotide dotplot and ANTI analysis of all ten Brevibacillus phages identified
two phage clusters and two singleton phages—a proportional one cluster, one singleton
increase from the previously reported one cluster and one singleton [16]. Powder and Osiris
were grouped into the previously defined Jimmer-like cluster, a novel cluster containing Jenst
and SecTim467 was formed, Emery remained a singleton, and the novel singleton phage, Sun-
dance, was discovered (see Fig 2). These clusters were supported by whole proteome analysis
(Table 4) and phylogenetic analysis of a single protein (the large terminase, Fig 4). The classifi-
cation of these clusters elucidates interesting characteristics where cluster members are very
similar to one another while there is a marked dissimilarity between clusters as evidenced by
whole genome maps (see Fig 3). What further contrasts these inter-cluster relationships is that
many gene products appear to be more similar to phages from distantly related hosts rather
than to a Brevibacillus phage from another cluster. This trend has been previously reported for
the Enterobacteriaceae phages and may be due to a small sampling size compared to the large
reservoir of phages and their hosts, or due to the ability of phages to acquire new hosts [3]. For
example, it is possible that phages may provide an advantage within a distinct ecological niche
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depending on their genomic content, but as all known Brevibacillus phages have been isolated
from samples gathered in Utah (and only ten have been fully sequenced thus far), this will
remain unclear until more phages are isolated from more locations. However, it is likely that
distinct evolutionary lines will still be seen between many clusters even as a large phage reser-
voir is sequenced, since different clusters may contain phages of very different lifestyles (for
example, myoviruses versus siphoviruses). The addition of these five Brevibacillus phages, rep-
resenting two new phage ‘cluster types’, thus provides greater opportunity for use in phage
therapy as therapies are more likely effective when they contain phages from different clusters,
providing diversity in the different strains they are able to infect. Such therapies may prove to
be useful in the treatment of European Foulbrood or other infections where BL is a docu-
mented secondary invader [6].

Genomic analysis of these phages revealed a shared promoter-like motif in the Jenst-like
cluster, which was located upstream of ORFs whose encoded proteins may predominately
function in DNA metabolism (see Fig 5). Thus, these phages may be regulating DNA metabo-
lism proteins for coordinated expression [68,69]. Interestingly, this motif was also found in
Basilisk, an unrelated Bacillus phage. Further studies are necessary to characterize this motif,
including analyzing the expression of the genes downstream of this motif to see if they are
coordinated and measuring the infection time to expression of these genes [69,94].

An analysis of the proteomic content of the Brevibacillus phages revealed that, in addition
to structural proteins, several proteins that may be important for host virulence or the evolu-
tion of transcriptional regulation were present. Putative virulence factors identified in the anal-
ysis of Brevibacillus phage genomes (Table 5) included genes that may affect host pili
expression which have been implicated in phage adsorption [95,96] and secretion mechanisms
shown to coordinate bacterial colonization of certain cell types [97]. These putative genes sup-
port a role for Brevibacillus phages in the evolution of pathogenic strains and a potential “Tro-
jan Horse” host entry mechanism employed by the phages that should be studied further. The
presence of these genes highlights the need for further phage isolation and analysis in order to
determine the contribution of Brevibacillus phages to the pathogenicity of their hosts.

Along with virulence factors, several copies of a helix-turn-helix transcriptional regulator
were identified in phages within the Jimmer-like cluster. The independent evolution of paralo-
gous genes was analyzed by comparing these proteins (Jimmerl gp53 and gp57, Jimmer2 gp53
and gp57, Osiris gp55 and gp59, and Powder gp55 and gp59). This helix-turn-helix transcrip-
tional regulator has homology to the classic P22 c2 repressor and may thus be involved in the
regulation of the lysogenic state [83,84]. These proteins were placed into two groups of closer
homologs, and the amino acid substitutions identified in these different groups were predicted
to confer differential nucleotide binding (Fig 6, Table 6). Since gene duplication and subse-
quent differentiation and selection appears to be a robust method for the evolution of new
genes [79-81], these repeated genes offer a window into the evolution of phages and proteins
in general. The study of these genes may also provide key insights into the lifecycles of these
phages.

Finally, the presence of a putative transposon in both SecTim467 and Sundance, but which
was either removed from SecTim467 to create Jenst or added to Jenst to create SecTim467, pro-
vides a novel mechanism of driving gene exchange and evolution between these phages and
their host, expanding the base of understanding of how these entities have evolved over time
(see Fig 8). While the insertion or deletion of a transposable unit is a common evolutionary
mechanism [87,88], to our knowledge, this is the first recorded instance of the deletion of a
transposon unit being the sole instigator of an evolutionary divergence between two phages.
Additionally, by locating a region in the Brevibacillus bacterial chromosome that is homolo-
gous to this transposable region, the phages’ ability to access the bacterial gene pool is
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underscored. Future investigation of the functions of the hypothetical proteins in the putative
transposable region could prove fortuitous in understanding whether or not this region con-
tributes to host pathogenicity and function.

Supporting Information

S1 Fig. Inverted repeats flank either side of the transposable regions found in Jenst, Sec-
Tim467, and Sundance. Pallindrome [60] was used to verify the presence of inverted repeats
surrounding the transposable regions of Jenst, SecTim467, and Sundance. Each column con-
tains the inverted repeats present in and around the transposon region for each of the phages
and each row contains the predicted hairpin binding of the nucleotide sequence.

(TIF)

S1 Table. Analysis of conserved proteins encoded by the ten Brevibacillus phages.
(XLSX)
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