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Abstract

Moderate Resolution Imaging Spectroradiometer (MODIS) data forms the basis for numer-
ous land use and land cover (LULC) mapping and analysis frameworks at regional scale.
Compared to other satellite sensors, the spatial, temporal and spectral specifications of
MODIS are considered as highly suitable for LULC classifications which support many dif-
ferent aspects of social, environmental and developmental research. The LULC mapping
of this study was carried out in the context of the development of an evaluation approach
for Zimbabwe’s land reform program. Within the discourse about the success of this pro-
gram, a lack of spatially explicit methods to produce objective data, such as on the extent
of agricultural area, is apparent. We therefore assessed the suitability of moderate spatial
and high temporal resolution imagery and phenological parameters to retrieve regional fig-
ures about the extent of cropland area in former freehold tenure in a series of 13 years from
2001-2013. Time-series data was processed with TIMESAT and was stratified according
to agro-ecological potential zoning of Zimbabwe. Random Forest (RF) classifications were
used to produce annual binary crop/non crop maps which were evaluated with high spatial
resolution data from other satellite sensors. We assessed the cropland products in former
freehold tenure in terms of classification accuracy, inter-annual comparability and hetero-
geneity. Although general LULC patterns were depicted in classification results and an
overall accuracy of over 80% was achieved, user accuracies for rainfed agriculture were
limited to below 65%. We conclude that phenological analysis has to be treated with cau-
tion when rainfed agriculture and grassland in semi-humid tropical regions have to be sep-
arated based on MODIS spectral data and phenological parameters. Because
classification results significantly underestimate redistributed commercial farmland in Zim-
babwe, we argue that the method cannot be used to produce spatial information on land-
use which could be linked to tenure change. Hence capabilities of moderate resolution
data are limited to assess Zimbabwe’s land reform. To make use of the unquestionable
potential of MODIS time-series analysis, we propose an analysis of plant productivity
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which allows to link annual growth and production of vegetation to ownership after Zim-
babwe’s land reform.

Introduction

After Independence in 1980, Zimbabwe had to redress its screaming injustice in wealth and
land ownership. More than half of the country's arable land was held by less than 7,000 com-
mercial—often white—farmers, while the majority of the population was concentrated on the
other, overall less productive half [1]. The newly elected democratic government started a care-
fully arranged land reform program which aimed to redistribute commercial farmland, but it
did not meet its self-set ambitious goals [2]. As one consequence of the perception of a failed
land reform program, numerous heterogeneous groups of people started to invade commercial
farms and to disseize their owners in the year 2000 [3]. In the following period, the agricultural
sector of Zimbabwe experienced drastic changes. The consequent vivid debate about whether
or not this almost fifteen year-old Zimbabwean “fast track land reform programme” (FTLRP)
was successful, has still not come to an end [4,5]. Controversy is ongoing whether overall goals
of the program have been met or not and which goals outweigh others. A general challenge in
land reform assessments lies within the fact that redistribution processes can be evaluated with
different criteria [6,7]. Among the discussed measures, the state of national agricultural pro-
duction patterns recognizes significant attention. But up to date, spatial explicit, objective, and
country-wide datasets on the spatio-temporal development of agricultural area in Zimbabwe
are rare [8]. Throughout the discourse on the success of Zimbabwe’s land reform, a general
need of reliable, spatial data becomes apparent. A systematic literature review carried out in a
previous study reveals a significant lack of recent representative statistical and quantitative spa-
tial data in scientific publications from all research perspectives [6]. Authors themselves high-
light the absence of spatial data on relevant issues connected to the FTLRP [9] which can be
linked to untapped potential of innovative geospatial methods [6].

Remote sensing analysis offers a number of different approaches to deliver spatial, repro-
ducible data on land use and land cover (LULC) and its change. For more than three decades,
various methods of remote sensing have been developed to determine plant conditions and
vegetation characteristics. Indices such as the Normalized Difference Vegetation Index
(NDVI) relate reflectance values to vegetation cover or above ground biomass by making use
of the specific relationship between the ratio of red and near-infrared reflectance and plant sta-
tus [10]. It allows determination of the fraction of photosynthetic active radiation (FPAR) from
remote sensing data and hence to calculate information on plant cover such as the Leaf Area
Index (LAI) while taking background, atmospheric, and bidirectional effects into account [11].
NDVI and other indices have successfully been applied to gather agricultural information at
different scales [12,13]. Among these methods, time-series analysis has been used extensively
to map plant production and LULC information. Applied in different regional contexts, time-
series analysis has shown promising results in differentiation of land cover types such as crop-
land and, under specific conditions, also different crop types using measures of phenology
[14,15]. This has been successfully proven in Southern Africa and also in Zimbabwe [16]. Phe-
nology describes the seasonal plant cycle and its characteristic stages such as green-up onset,
peak of greenness, start of senescence, or length of vegetative season [17]. As different plants
have distinct phenological characteristics, they can be identified and classified according to
these temporal measures which have to be acquired throughout a phenological cycle.
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We argue that this potential of remote sensing has not been tapped sufficiently to deliver
input into the assessment of Zimbabwe's land reform. The goal of this study was to evaluate
whether time-series analysis as a method of spatio-temporal mapping is capable to determine
changes in Zimbabwe’s agricultural area which took place after the FTLRP between 2001 and
2013. It therefore aimed to fill the previously identified gap of spatial objective data within the
discourse on the success of Zimbabwe's land reform.

Recent work on time-series and FTLRP has assessed productivity within an agricultural area
extracted from external land use datasets [13,18,19]. We tested whether coarse-scale, multi-
temporal data can be used to classify LULC and its changes occurring as a consequence of the
FTLRP in Zimbabwe. If crop area could be mapped on a yearly basis with a reproducible
method, an important aspect of land reform assessment could provide meaningful objective
input to a highly politicized discourse [6]. Changes and volatility of land use in former com-
mercial farmland were to be mapped because titles and mode of agricultural production shifted
drastically in this region.

For Zimbabwe, with malnourishment being prevalent in many parts of the country [20],
spatial accurate information on agricultural production and fallow land is key. More accurate
information would not only lead to better assessments of the FTLRP, but could also indicate
areas where farmers are in need of extension services, training and financial support. This has
been formulated as central to improve nationwide productivity of redistributed farm areas
[21]. LULC information has been identified as one of the most important variables for a variety
of societal aspects in a recent Global Earth Observation System report [22].

Within the current study, emphasis was put on the ability of Moderate-Resolution Imaging
Spectroradiometer (MODIS) NDVI imagery and derived phenological parameters to map
cropland area over twelve agricultural seasons in thirteen years (2001-2013) with explicit focus
on redistributed farmland. MODIS offers several advantages for these efforts: In addition to
the robustness to cloudiness, an analysis using one methodology applied to one sensor at regu-
lar acquisition dates avoids incomparable results due to different acquisition dates or small
study areas. Existing LULC datasets for the region have been based on labor intensive Landsat
classifications; updates of cropland distribution would require the manual processing of several
cloud free scenes per year.

Our specific research questions were:

« How accurate can time-series analysis of MODIS data map Zimbabwe's redistributed agricul-
tural area?

« Can MODIS data be used to map changes and volatility of agricultural area in the time frame
2001-2013¢

o Can the generated spatial products be linked to information on land tenure to correlate infor-
mation on LULC change with information on tenure change?

Study Area

Zimbabwe, bordered by the rivers Limpopo (South) and Zambezi (North) and a mountain
range in the east, is a landlocked country in the torrid zone with a size of 390,757 km? and
about 13 million inhabitants [23]. The country's agro-ecological conditions are characterized
by contrasting climatic and soil conditions. The average rainy season lasts for about 4 months
(November—March), limiting the access to qualitative satisfactory optical remote sensing data
of high resolution. During the austral winter, stable air layers are caused by sinking masses of
stronger trade winds and hinder convection. During the rainy season, trade winds become
weaker due to low pressure areas over the land surface and lead to unstable conditions favoring
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convective currents [24]. However, droughts are regular experiences and form one of the many
obstacles of newly resettled farmers in addition to the instability of markets as a consequence
of economic recession. Generally, the fertile and climatic favorable tsetse-free highland with
highly suitable areas for crop production can be distinguished from the less productive lowland
[25]. Freehold commercial farmland was situated on these fertile areas, whereas communal
areas for indigenous people were found on less fertile land. Precipitation ranges from 400 mm
to 2,500 mm with a south-west to east gradient [26]. Elevation in the eastern mountains ranges
up to 2,500 m above sea level, while the central plateau, known as 'highveld' has an approxi-
mate height of 1,200 m above sea level. With parent material being the most important soil
building factor, soils are characterized by low nutrition values and rapid degradation [27].
They are a major limiting factor for agricultural production and natural plant growth, main
soils groups include Arenosols, Cambisols, Leptosol, Lixisols and Luvisols [28]. The vegetation of
Zimbabwe is partially comprised of grassland (Themeda, Hyperrhenia, Loudetia), thicket
(Combretum) shrub-savanna (Colophospermum), and afromontane forests (Pittosporum, Mar-
anthes). Much of the country is covered by tree-savanna (Terminalia, Burkea, Baikiaea) and
miombo woodland (Brachystegia, Julbernardia) [29,30].

Zimbabwe can be stratified into six different agro-ecological regions. They are related to cli-
matic and soil conditions and therefore indicate the suitability for rainfed agriculture [31]. To
avoid negative impact of different climatic conditions, we restricted our analysis to agro-eco-
logical region IT (AERII, see Fig 1) which is situated at the northern part of the highveld' and
highly suitable for crop production. This zone is also characterized by a heterogeneous land
tenure pattern including different types of resettlement schemes, communal areas and large
scale commercial farming, allowing a spatial correlation of land tenure and classification
results. Our study was restricted to redistributed former freehold land within AER II.

With more than 20% share, agriculture forms a major contributor to the national GDP [32].
In the past, Zimbabwe underwent a number of political and socio-economic changes in addi-
tion to the thorough land reform program: As Rhodesia from colonial style-rule by British
South Africa Company (BSAC) to self-declared independence, later from guerrilla war to offi-
cial independence and majority rule as Zimbabwe [33]. Twenty years after independence, the
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Fig 1. Agro-ecological regions of Zimbabwe.

doi:10.1371/journal.pone.0156630.g001
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country was hit by an economic recession and hyperinflation. Currently, in 2016, the economy
has partly recovered under 'the government of national unity' which followed the 'Global Politi-
cal Agreement' and was formed in 2009 by the three major parties ZANU-PF, MDC-T and
MDC-M. The dollarization and abolishment of the Zimbabwean Dollar in 2009 lead to further
stability [34].

Low Resolution Multi-Temporal Data as a Basis for LULC
Classification

The increasing demand for LULC information on regional scales is one driver of the growing
number of coarse-scale remote sensing-based classifications [35]. These datasets are often
based on multi-temporal imagery which are acquired with high repetition rates. Products of
multi-temporal imagery such as NDVT are available in continuous intervals which allow the
analysis of phenological information, since regular NDVT and reflectance values can be used to
construct curves which represent the phenological activity of the land surface. Well-established
methods to interpolate the data include the Harmonic Analysis of time-series (HANTS), Best
Index Slope Extraction (BISE), function-based curve fitting approaches or smoothing of tem-
poral signal such as the Savitzky-Golay filtering [36]. These methods generate continuous, tem-
poral time-series profiles on a per pixel basis which can be analyzed and described through a
set of specific parameters.

Classifications of multi-temporal satellite based information form the basis for a majority of
global LULC datasets. Hence, time-series can be considered as an extensively explored, applied,
validated, and improved method of remote sensing analysis. Global LULC datasets, such as
IGPB-landcover [37], MODIS [38], or GlobCov [39] are widely used in studies of different
fields, often with the assumption of accuracy and applicability for the specific research ques-
tion. However, critical reviews and efforts to assess comparability of results have shown that
global LULC datasets have to be treated with great caution, and that methods of specific data-
sets incompletely match research designs and questions [40,41]. Fritz et al. provide a detailed
comparison of global and regional land cover maps with an explicit focus on the agricultural
domain in Africa [42]. They have compared 16 national figures (including Zimbabwe) for agri-
cultural area from different datasets with FAO statistical data. Table 1 shows their results with
figures of deviation which exemplify that also MODIS, with its relatively high spatial resolu-
tion, has strong limitations for global applications.

As a consequence, datasets have to be chosen with care and criteria for selection have to be
made explicit. Also, caution has to be applied to the interpretation of LULC classes of global
datasets, because they often follow different classification schemes (Fig 2). Especially, classes

Table 1. RMSE of cropland area comparing different land cover products to national' FAO statistics
[42].

Land cover type RMSE(km?)
GLC-2000 minimum?[43] 21,064
GLC-2000 maximum 76,802
SAGE[44] 25,109
MODIS minimum[45] 27,787
MODIS maximum 36,504

' For Botswana, Burkina Faso, Central African Rep., Chad, Eritrea, Gambia, Lesotho, Mali, Mauritania,
Morocco, Namibia, Rwanda, Senegal, Somalia, Togo, Zimbabwe
2“Maximum” and “minimum” refer to in- or exclusion of mixed classes

doi:10.1371/journal.pone.0156630.t001
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Fig 2. Comparison of different LULC classifications and class definitions: (a) IGBP, 1993, (b) GlobCover, 2009(c) MODIS13Q1, 2014 (Band1).
doi:10.1371/journal.pone.0156630.g002

with mixed ground cover, for example Savannahs, are extremely inconsistent in terms of vari-
ables such as ground cover threshold. Low producer and user accuracies for these LULC types
are reported for different classification schemes [35]. A major source of inaccuracies is the fact
that global products have to stratify land surface characteristics over large areas of different lati-
tude, altitude, and climatic regimes which leads to heterogeneity and low significance of classes.

Other limitations of global products arise from sensor specifications. The Advanced Very
High Resolution Radiometer (AVHRR) data is popular for its long availability time frame and
its consistent quality. However, its spatial and spectral resolutions lead to difficulties in classifi-
cation accuracies (Fig 2a). With a ground resolution of 1x1 square kilometers, AVHRR datasets
face problems of mixed pixels. More recently, especially for smaller scale regional analysis,
imagery from MODIS is used, because it combines suitable temporal, spectral and spatial reso-
lution [11]. The sensors of Terra and Aqua have been operating since 1999 and 2002, respec-
tively [46] and show major improvements compared to previously-used systems, such as
sensitivity to crop area. Pittman et al. conclude from their global cropland mapping based on
MODIS, that crop NDVI phenology varies greatly on global scale and that regional studies
based on this sensor will lead to improved results [47].

For the discrimination of agricultural land, several studies using MODIS show promising
results on a global and regional level [38]. In Zimbabwe, nationwide production anomalies
[13], yield predictions [48] and also hard classifications of crop type were carried out success-
fully using time-series analysis [16,49]. Acknowledging this potential of multi-temporal data
and analysis, but also the limitations in contexts of specific research questions, we tested the
suitability of MODIS data for crop classifications as an FTLRP assessment tool in a clearly
defined study area with rather homogeneous climatic conditions and land tenure.
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Data and Preprocessing

Five type of spatial datasets were used for this regional cropland mapping: MODIS NDVI (1)
and RED/NIR (2) composites for a time-series analysis for the whole study period of 12 seasons
(2001-2013); Landsat scenes (3) for construction of endmembers based on supervised classifi-
cation; as well as an external LULC data set (4) providing further information as input and vali-
dation data. Additionally, we made use of Google Earth imagery (5) to verify different
calculation results.

MODIS data

To cover the entire area of Zimbabwe, we mosaiced four tiles of the MODIS product
MOD13Q1 (h20v10, h21v10, h20v11, h21v11) which we acquired through the United States
Geological Survey (USGS) reverb tool [50]. MOD13Q1 is a 16-day maximum value composite
(MVC) product of different vegetation and quality indices, and spectral bands, with an annual
sequence of 23 scenes per calendar year [51]. The NDVI layer (1), as well as RED (4) and NIR
(5) were extracted and reprojected from Sinusoidal (SR-ORG:6965) to WGS84 (EPSG:4326)
and clipped to a rectangular extent on a pixel based method to avoid spatial shifts (Fig 3). We
did not extract the quality layer (3) since we applied filtering at a later stage, a method of
removing noise in time-series [52]. For a better overview of the interannual spatio-temporal
conditions within the study area and period, and also to adjust TIMESAT calculations, an aver-
age NDVI year was produced. Therefore, we calculated the mean for each of the 23 time steps
based on the information from thirteen years. To avoid generalization, the data was not used
for data gap filling. Missing or faulty scenes were replaced with mean values from preceding
and subsequent scenes.

Landsat data

Landsat imagery was accessed through EarthExplorer and GLOVIS from USGS [53,54]. To
retrieve the reference data for MODIS LULC classifications, we chose a year with high coverage

Sources: FAO (AER), GADM (borders), USQS/(&;!,. ints, NDVI)|

Legend
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Fig 3. MODIS and Landsat tiles used in this study. Landsat tile used for the creation of agro-ecological
stratified endmembers is highlighted. The rectangular NDVI dataset represents the extent of the NDVI
dataset.

doi:10.1371/journal.pone.0156630.g003

PLOS ONE | DOI:10.1371/journal.pone.0156630 June 2,2016 7122



@’PLOS ‘ ONE

MODIS Time-Series and “Fast Track Land Reform”

of Landsat scenes (Levell) for two day-of-year (DOY) time steps, representing the rainy season
in February and the dry season in September. We downloaded all scenes regardless of cloud
cover and set a maximum deviation of 8 days from the mean DOY acquisition date of the
acquisition clusters to consider the scenes as one time step. For this year, 2005, we mosaiced all
scenes with all bands for both time steps, resulting in two almost country-wide datasets. We
used these mosaics for general orientation and extracted 5 cloud-free scenes (Fig 3) for the cre-
ation of training and validation datasets (5.1).

Auxiliary spatial data

As an additional source of information for training and validation of classifications, the
regional SADC (Southern African Development Community) LULC data set was acquired and
clipped to the national boundary from the GADM database of global administrative areas [55].
This data set was produced by different institutions and based on different data sources. For
Zimbabwe, the data was published by the local Forestry Commission, together with the Ger-
man Technical Cooperation (GTZ). Landsat Scenes were interpreted manually and resampled
to coarser scale, the production date was specified as 1997 [56]. To account for the large time
lag, the SADC LULC data set was only used for contextualizing and cross-checking of classifi-
cation results and input parameters.

Land tenure data for the region was acquired from the Foreign Agricultural Service of the
United States of America (FAS). This data classifies farm structures in communal, freehold and
state land and provides additional information on land holdings after the land reform program.
It was considered as accurate in other studies [18].

Methods

In order to derive precise information about LULC and its change in the years 2001-2013,
three consecutive methods were applied in this study. First, pre-processed MODIS imagery
was enhanced and a time-series as well as seasonal parameters (SP) were calculated and stacked
(5.1). Secondly, we constructed endmembers of LULC classes based on Landsat data which we
classified with support vector machines (SVM) and upscaled to MODIS resolution (5.3).
Finally, the endmember dataset was used to run a random forest classification (RF) on the
MODIS data stacks (5.4), the yearly results were reclassified to binary yearly datasets (rainfed/
non-rainfed).

To assess the regional applicability of these methods, we required the need of an agro-eco-
logical stratification (5.2), as well as an improvement of class separability (5.3.2). Furthermore,
the final binary results were extracted to former freehold tenure as the region of interest (5.5).
This workflow is visualized in Fig 4.

Time-series analysis

Applying the software TIMESAT on the average phenological year, parameters for the smooth-
ing algorithm were tested and used for further analysis. A phenological year is characterized by
seasonal plant activities and does not have to relate to the calendar year. TIMESAT provides
different methods to reduce noise and to smooth the temporal curve as well as the option to
derive SP [57].

A Savitzky-Golay filtering was chosen to smooth the NDVI curve of the time-series. This
method ensures a high locality by using a moving window which replaces values by new
smoothed values, derived from neighboring values [58]. Testing showed best results for a
spike-method with value 2 to calculate 11 seasonal parameters:
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doi:10.1371/journal.pone.0156630.g004

1. Start of Season (SOS), which we defined as the increase of NDVTI of the fitted function to 0.2
above the minimum. It is located on the left side of the yearly maximum.

2. End of Season (EOS), which we defined as the decrease to 0.2 above the minimum following
the peak of the function.

3. Length of Season (LOS), the time between the SOS and EOS.
4. Base Level (BAL) is the average of the minimum values left and right of the season.

5. Mid of Season (MOS) is computed as the mean of times where 80% values occur left and
right of the absolute maximum of the NDVT function.

6. Largest Data Value (LDV), the absolute highest single value in the whole season.
7. Seasonal Amplitude (SEA), which is the difference between the LDV and the BAL.

8. Increase at Beginning of Season (IBS), the calculated ratio between the first 20% and 80%
value (left) of the fitted function (in Fig 5 between SOS and IBS).

9. Decrease at End of Season (DES), the absolute between the second 80% and 20% value
(right) of the fitted function (in Fig 5 between EOS and DES).
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doi:10.1371/journal.pone.0156630.g005

10. Large Seasonal Integral (LSI), the area under the NDVTI curve between SOS and EOS.

11. Small Seasonal Integral (SSI), the area of the difference between LSI and BAL between SOS
and EOS [59].

We then created two types of composites (C; and C,) for each phenological year (PY;). C;
with a specific amount of layers consisting of NDVI composites (MVC) and seasonal Parame-
ters (SP), C, with (RED) and (NIR) added. Classifications were run on both composite types,
and accuracies were compared to evaluate whether the addition of reflectances improves classi-
fication results. Because the phenological year does not match the calendar year on the south-
ern hemisphere, we created composites according to SOS and EOS of the calculated mean year.

CPY, = (MVC,_,13 — 23 ~ MVC, 1 — 12) + SP,[SOS,, EOS,, - - - , LSI, SSI]

C,PY, = (MVC, 13 — 23 ~ MVC;1 — 12) + (RED,_, 13 — 23 ~ RED;1 — 12)
+ (NIR,_,)13 — 23 ~ NIR )1 — 12) + SP[SOS,, EOS,, - - -, LSI,, SSI}

For each C;, a random forest (RF) classification was carried out, based on a classifier trained
and verified in the reference season (2004/2005). We demonstrated the need of climatic stratifi-
cation and stratified this national time-series data set according to Zimbabwe's agro-ecological
zZones.

Agro-ecological stratification

Regional climatic conditions and resulting heterogeneous phenological characteristics form a
major limitation for the creation of universal large-area LULC datasets. As discussed above,
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Fig 6. Temporal profiles and spatial location of 750 pure grassland MODIS pixels for phenological season 2004/2005. Color codes
represent the maximum value of the NDVI profile. Maximum values follow a South-North increment, related to agro-ecological conditions.

doi:10.1371/journal.pone.0156630.g006

one restriction of global and continental classifications is the class-definition over different
agro-ecological regions which differ in temperature, rainfall, soil type and altitude. Adapted
from landscape ecology, where complexity is reduced by breaking areas into patches of similar-
ity [60,61], climatic stratification in other studies has shown to be able to improve multi-tem-
poral classification results [62]. To proof the necessity of a agro-ecological stratification, we
constructed 750 endmembers per LULC class following a North-South gradient through Zim-
babwe. The endmember construction is described in section 5.3. It became apparent, that simi-
lar classes have different seasonal NDVI profiles in different parts of the country, hence
preliminary countrywide classifications did not deliver satisfactory results. Fig 6 exemplifies
750 profiles of pure 'grassland’ pixels and relates them by color to the North-South gradient. As
a consequence of this heterogeneity, we stratified the datasets according to Zimbabwe's agro-
ecological zones, restricted the time-series analysis to region AER II and therefore used the
endmembers created from Landsat tile 170/72 only. Fig 3 shows the Landsat tiles used for the
initial creation of all endmembers for different agro-ecological zones and highlights the tile
which was used as input for the final classifications restricted to AER II.
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Endmember construction

To build a training data set of endmembers, a comprehensive classification of Landsat data for
season 2004/2005 was carried out. Endmembers are defined as pure MODIS pixels in the train-
ing seasons which show a distinctive seasonal curve, representing one LULC class ('rainfed
agriculture', 'irrigated agriculture’, 'soil', 'grassland’, 'woodland'’). From the national data set,
five Landsat Scenes (170/72-170/75, 169/72; compare Fig 3) were chosen due to their low cloud
cover and North-South extent, representing five of six agro-ecological zones across the country.
These five scenes were individually processed. To further improve the input dataset for classifi-
cation, endmembers were stratified according to agro-ecological conditions, as Fig 6 exempli-
fies its necessity, and their curve separability was improved. Finally, only endmembers of one
scene (170/72) were used since we proved that a climatic stratification was necessary and lim-
ited the classification to AER I1. For this endmember set, an additional LULC class ('sparse
rainfed’) was introduced after the temporal stratification.

Upscaling of Landsat classification. Without historical on-site knowledge, LULC classes
were assigned by interpretation of remote sensing data and the external SADC LULC classifica-
tion data set. Criteria for training areas were: 1) visual differentiation by shape, greenness and
location possible using Landsat imagery, 2) training area within the same class in LULC data
set of SADC, 3) shape and location identified in recent high resolution imagery (Bing Maps,
Google Earth). If all criteria were met, the feature was considered as a “training area” for the
SVM classification. SVM has shown to be able to deliver high accuracies in LULC classifica-
tions based on Landsat data and can be used with small training datasets [63]. For the five clas-
sified Landsat scenes, overall accuracies ranged between 75% and 85% with high class
separability. From these LULC classifications, binary images were produced, which represented
one respective class versus all other classes. The inaccuracies of classification were a result of
the low separability of grassland, shrubland, and rainfed agriculture which was to be addressed
by the multi-temporal analysis. Furthermore, scattered single pixels of different classes
occurred throughout the overall solid classifications. To account for the inseparability of classes
and scattered pixels, we chose a sampling design which produced pure MODIS pixels with
highest accuracy as endmembers. The binary images were resampled to a grid with MODIS
resolution of 250 by 250 meters, leading to a purity index for each MODIS pixel. From the
polygons with highest purity values, 150 pixels per class were selected for each Landsat tile
after they could be manually verified again with the three criteria used for the creation of train-
ing data. Fig 7 contrasts the different datasets involved in the selection of pure MODIS training
pixels (example visualized in yellow) as endmembers for time-series based classifications.

The upper left part shows an RGB composite of NIR, RED and GREEN bands, where
rainfed agriculture is identifiable by its light red color; the MODIS resolution (250x250m) is
overlayed as a white grid in all subsets. The upper right detail depicts the same area as the
reclassified SVM result. The lower left part shows an ESRI-basemap layer to allow the compari-
son with data of higher resolution. Finally, the MODIS purity grid is visualized in the lower
right part of the figure. To account for difficulties of variable waterbodies, 150 clean pixels were
selected manually from an unsupervised classification of NDVI (2004/2005).

Improvement of class separability. After the selection and verification of 150 pure pixels
per class for each of the five Landsat tiles, all 750 temporal NDVI profiles of every LULC were
plotted. Fig 8 visualizes NDVI profiles for 750 pixels of each LULC class (water 150) which
have been defined as pure pixels according to the endmember construction elaborated previ-
ously. From these plots, it becomes evident that the MODIS dataset shows huge variability of
temporal NDVI profiles within LULC classes considered as homogeneous according to differ-
ent datasets which were used to create pure pixels.
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Fig 7. Spatial visualization of endmember construction. Comparison of a pure 'rainfed' endmember
(yellow) in Landsat false color image (a), binary classification result for rainfed/other (b), ESRI-basemap (c)
and purity grid on MODIS resolution (d).

doi:10.1371/journal.pone.0156630.g007

To create distinct LULC endmembers, temporal profiles were cleaned after the agro-ecological
stratification, to generate unique classes with improved separability (Fig 9). To account for differ-
ences in the class ‘rainfed agriculture, the class was stratified again in 'dense rainfed' and 'sparse
rainfed' agriculture. This was done with references from high resolution imagery and unsuper-
vised classification which helped to differentiate the two density types of rainfed agriculture.

Supervised Random Forest classifications of time-series-data

A classfile was created from endmembers of the seven classes which were created based on
Landsat tile 170/72, and formed the basis for subsequent supervised classifications. We made
use of imageRF, the random forest (RF) classification implemented in the EnMap-Box. The
number of trees was limited to 100, reported as sufficient in other studies and tested in explor-
atory classifications [64]. The IDL based EnMap-Box provides a convenient environment for
supervised classifications such as RF or SVM and was successfully applied in different contexts
with similar research designs [65]. Fig 9 correlates mean NDVI as well as standard deviation
and a visual pixel example from ESRI-basemap data for each LULC class.

The classes soil (Fig 9a) and water bodies (Fig 9b) show a high variability of NDVI functions
although training points were reduced to the most significant. We assume that sparse vegeta-
tion for soil and aquatic plants, and siltation for water bodies contribute to the seasonal profile,
together with an overall predominant seasonal signal, a side effect of preprocessing in advance
of the MOD13QI creation. Although this exemplifies difficulties of indifferent reflectance
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doi:10.1371/journal.pone.0156630.g008

values, it is considered as negligible because differences to the agricultural classes of interest are
significant. Studies have proven that RF classification is a suitable method for LULC classifica-
tion and are capable to separate indifferent classes [66,67].

Extraction to freehold tenure

The results of the RF classification of climatically stratified time-series were reclassified to
binary datasets for each agricultural season to produce datasets of rainfed/non-rainfed area.
Because the aim of the research was to test whether MODIS time-series data was able to depict
changes in an area of former freehold tenure, we clipped the yearly binary rainfed/non-rainfed
datasets to former commercial farms where information on current land tenure was available
through the FAS tenure dataset. For this climatically, temporally, and tenure-based stratified
classification result, we conducted an accuracy assessment and were therefore able to put focus
explicitly on the research question.

Results and Discussion

The goal of this study was to accurately map the annual extent of rainfed agricultural area
between 2001 and 2013 in former commercial farmlands in one specific agro-ecological region
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Table 2. Accuracy report for NDVI+SP, 2004/2005.

rainfed
rainfed 95
other 3
#pixels 98
PA 96,94%

other #pixels UA
55 150 63,33%
147 150 98,00%
202 300
72,77% OA = 80,67%

PA = Producer Accuracy, UA = User Accuracy, OA = Overall Accuracy

doi:10.1371/journal.pone.0156630.t002

Table 3. Accuracy report for NDVI+SP,+NIR+RED, 2004/2005.

rainfed
rainfed 92
other 14
#pixels 106
PA 86,79%

other #pixels UA
58 150 61,33%
136 150 90,67%
194 300
70,10% OA =76,00%

PA = Producer Accuracy, UA = User Accuracy, OA = Overall Accuracy

doi:10.1371/journal.pone.0156630.t003

in Zimbabwe using MODIS time-series. Our results show spatio-temporal improvements com-
pared to existing regional LULC datasets which, in most cases, are out of date. The additional
spectral information (NIR, RED) did not improve RF classification results, as reported by other
authors [68]. In order to evaluate the suitability of RF classifications to map rainfed agriculture,
reclassified results (rainfed/non-rainfed) were assessed in an error matrix (Tables 2 and 3).
Through stratified sampling, 150 pixels for each of the two classes (rainfed/non-rainfed)
were selected and compared to historical Google Earth data for the seasons (2004/2005) and
(2007/2008) respectively. If more than approximately 75% of the pixel area correlated to the
classification result, the pixel was considered as accurate. Google Earth has been used as a veri-
fication in other accuracy assessments and provides a convenient method to overcome data
unavailability, especially for remote areas on the African continent [69]. Furthermore, it serves
as the crucial information independent to the training data. Garcia-Mora et al. emphasize this
necessity together with the importance of systematic accuracy assessment with clear protocol.
In their review of MODIS based classifications, they conclude that this is often not carried out
properly or optimistically biased [70]. Through the selection of the verification dataset, the
conservative pixel value of 75% and the grouped report for two classes, we avoid such an opti-
mistic bias. Overall accuracies (OA) for the mapping of rainfed agriculture based on MODIS
time-series in the season 2004/2005 ranged from 76% to 80%. Producer accuracies (PA) were
high but user accuracies (UA) for 'rainfed' were limited to below 65%. Accuracies for other sea-
sons were within this range. Fig 10a) and 10c) contrast the classification result based on NDVI
data for season 2004/2005 with recent ESRI-basemap imagery (Fig 10b). The upper row of
maps show AER II clipped to former freehold tenure, the lower row of maps depicts a detail
overlayed with commercial farm boundaries. Here, we observe the underestimation of agricul-
tural fields which links to the low user accuracies of the class rainfed agriculture. This is a criti-
cal error because it limits the spatially-explicit assessment of land reform effects. Changes in
cropping patterns are likely to not be recognized by the classification approach, especially
because they appear at the edges of LULC patches. This is demonstrated in Fig 10c) which
summarizes classification results of all twelve consecutive seasons from 2001-2013 and there-
fore identifies areas which are continuously classified as 'rainfed agriculture' and areas which
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doi:10.1371/journal.pone.0156630.g010

are considered as 'other’ throughout. In-between these stable land use patches, areas were not
continuously classified as one land use type. This might either be related to a sensitive classifier,
or a systematic error resulting from low separability of sparse rainfed agriculture. But with
class accuracies below 65%, the volatility cannot be considered to be a consequence of changes
in land ownership in former freehold tenure area. Inconsistent land use classification occurs
only at the edges of stable areas and does not depict agricultural patches. This temporal stack
might be used to improve general land use classifications, but it does not allow a linkage of
cropping pattern and land tenure.

Although time-series as a method has proven to be able to depict general LULC patterns
over time, and change models as well as trajectories have been applied successfully in the region
[71], our evaluation demonstrates the limitations of the method. The difficulties of correctly
mapping rainfed area, are related to shortcomings which have been formulated by other
authors [35,71-73]. Spatially-accurate crop mapping remains a bottleneck in multi-temporal
analysis, although we have produced higher accuracies than studies in different contexts [62].

We identified two major limitations of multi-temporal analysis of MODIS NDVI data to
map commercial farmland structures in Zimbabwe: 1) Spatial resolution of imagery and 2) het-
erogeneity of spatiotemporal profiles. Alongside successful studies, which also have character-
ized Zimbabwean smallholder farming structures of sizes below MODIS resolution [16],

PLOS ONE | DOI:10.1371/journal.pone.0156630 June 2,2016 17/22



@’PLOS ‘ ONE

MODIS Time-Series and “Fast Track Land Reform”

authors report high inaccuracies for detection of smaller LULC patches such as heterogeneous,
sparse cropland in other study areas [62,73]. Low user accuracies, combined with high pro-
ducer accuracies such as in this analysis, can be sufficient for general LULC classifications with
several classes. For the spatial explicit mapping of one specific land-use class and its spatial cor-
relation with land tenure, they are not adequate. Our accuracy assessment was designed to test
the ability of regional time-series analysis to map crop area in former freehold tenure, because
its sparse and heterogeneous patterns differ from rainfed agriculture in communal areas. The
communal form of land use is characterized by dense fields with distinct reflectance values and
is therefore clearly recognized in classifications and has received attention in other studies
[74,75]. With the difficulties to map sparse commercial farm structures, we conclude that
coarse-scale spatio-temporal analysis is not suitable to generate well-founded knowledge of
change patterns for cultivated areas as a consequence of tenure change. Also regional assess-
ments of spatio-temporal land reform effects should therefore be carried out on smaller scale
with high resolution imagery, which was applied somewhat successfully [76,77]. Current
approaches in Zimbabwe which aim to map the abandonment of dams as part of an intact irri-
gation system are another possible solution.

Overall, we experienced shortcomings of regional assessment based MODIS data which we
identified for global land-cover mapping earlier. Our plots of NDVI functions of training pix-
els, on a country-wide basis (Fig 8), as well as the stratified sample within the AER IT (Fig 9),
demonstrate the difficulties to assign classes with distinct and homogeneous temporal profiles.
Even after agro-ecological and temporal stratification, which limited training pixels to a small
and very distinct number, the plotted standard deviations demonstrate that unique classes can-
not be defined based on temporal profiles. This has also been formulated for large scale, global
and continental classifications [72,78,79].

Because MODIS multi-temporal data is not able to accurately classify sparse former com-
mercial farmland on a spatial resolution which allows a correlation with land tenure data, we
propose a different approach: Vegetation productivity and trend analysis. Both can be deter-
mined based on NDVI time-series and are methods which determine relative parameters
instead of a hard classification into different LULC classes. They therefore avoid inseparability
of classes and sub-pixel heterogeneity which we identified as the major limitations of medium-
resolution, high temporal imagery. Productivity and trend analysis have been used extensively
in the context of agricultural mapping, also in Zimbabwe [48,75,80]. In South Africa, these
methods have also been applied to assess the effect of unequal land tenure and population den-
sity [74]. A synergistic research design of a productivity trend analysis and our agro-ecological
and tenure-based stratification would allow to assess the condition of redistributed commercial
farmland in Zimbabwe.

Conclusion

Spatial datasets on agricultural land are crucial in order to understand the intensively debated
process of the FTLRP of Zimbabwe as well as its consequences. The overall research question
of this methodological assessment was whether multi-temporal LULC classification is able to
produce spatially accurate maps of rainfed cropping area to determine changes in agricultural
production as a consequence of redistribution of farmland in Zimbabwe. To answer this ques-
tion, MODIS NDVT and spectral data was smoothed with a Savitzky-Golay filtering approach,
temporally and climatically stratified and limited to former freehold tenure. Endmembers were
created by an upscaling approach of Landsat classification. Random forest classifications of
time-series based on the stratified endmembers showed higher accuracies than existing global
and regional LULC products and similar studies. General distribution of LULC classes were
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depicted using the RF classifier. However, the classification results cannot be used in the con-
text of an assessment of land reform in Zimbabwe. Because commercial farms form fragmented
agricultural landscapes, they cannot be accurately depicted by MODIS time-series and are
often underestimated and confused with grassland.

Our research with a focus on coupling of land tenure and land use has revealed major short-
comings of regional classification approaches and MODIS MOD13Q1 NDVI data. 1) regional
classifications stretch over climatic gradients which leads to large differences in the phenologi-
cal cycle of one land-cover class making the creation of homogeneous classes impossible. Even
within similar agro-ecological conditions, a high variability of temporal NDVI profiles persists
within classes. 2) spatial heterogeneity, combined with the resolution of MODIS and class
inseparability, leads to inter-annual inaccuracies of time-series based land-cover classification
decisions. Classification results aggregated over several seasons show a high variability at land-
use patches highlighting the likeliness of wrong allocation. 3) These shortcomings weaken
mapping of land-cover change based on multi-temporal classifications, and highlight the
necessity of detailed information on the ground. Given the fact that land-use, especially
changes of cropping patterns, are frequent products of immediate socio-economic decisions,
the volatile multitemporal products do not allow to draw conclusions whether and when a
change of land use has occurred over the course of several years. As a consequence, the infor-
mation of moderate-resolution is not able to be linked to possible socio-economic drivers of
land-cover change such as ownership or management change due to a land reform program.
However, long sequences of several continuous classifications could provide useful input to
land use classification by providing information of probability and confidence.

As time-series analysis as a valuable and approved method has difficulties to detect LULC
types and change in an area of interest for a FTLRP assessment, we propose to use this method-
ology for a vegetation trend and productivity analysis among different land tenure types. It
should be tested whether MODIS data is capable to differentiate productivity trends in redis-
tributed farmland and therefore be able to allow a comparative assessment of the impact of
farmland redistribution and the role of land tenure.
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