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Abstract
At rest, healthy human brain activity is characterized by large electroencephalography

(EEG) fluctuations in the 8-13 Hz range, commonly referred to as the alpha band. Although

it is well known that EEG alpha activity varies across individuals, few studies have investi-

gated how this may be related to underlying morphological variations in brain structure.

Specifically, it is generally believed that the lateral geniculate nucleus (LGN) and its efferent

fibres (optic radiation, OR) play a key role in alpha activity, yet it is unclear whether their

shape or size variations contribute to its inter-subject variability. Given the widespread use

of EEG alpha in basic and clinical research, addressing this is important, though difficult

given the problems associated with reliably segmenting the LGN and OR. For this, we

employed a multi-modal approach and combined diffusion magnetic resonance imaging

(dMRI), functional magnetic resonance imaging (fMRI) and EEG in 20 healthy subjects to

measure structure and function, respectively. For the former, we developed a new, semi-

automated approach for segmenting the OR and LGN, from which we extracted several

structural metrics such as volume, position and diffusivity. Although these measures corre-

sponded well with known morphology based on previous post-mortem studies, we nonethe-

less found that their inter-subject variability was not significantly correlated to alpha power

or peak frequency (p >0.05). Our results therefore suggest that alpha variability may be

mediated by an alternative structural source and our proposed methodology may in general

help in better understanding the influence of anatomy on function such as measured by

EEG or fMRI.
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Introduction
The relationship between structure and function has long been debated. Is a bigger brain more
active? Is the shape of certain structures important? The advent of medical imaging, in particu-
lar magnetic resonance imaging (MRI) and even more diffusion (dMRI), has substantially
transformed the way researchers address these questions. Structure and function cannot be
separated from one another, and we can now investigate the relation between the way the brain
is divided into substructures (segregation) and the way these areas communicate with one
another (integration) [1].

Technical advances in the field of MRI and dMRI have enabled researchers to investigate
how voxel-scale metrics—such as gray (GM) and white (WM) matter density, fractional anisot-
ropy (FA), mean, radial or axial diffusivity and axonal density—are related to behavioral mea-
sures. In healthy subjects, for example, this has been addressed by comparing how such
structural variations in the same age-group are related to memory, visual or motor skills [2–4].
However, few studies have analyzed the effect of more macro-structural information such as
size, shape or position of WM and GM structures in healthy subjects (for a complete review,
see Kanai and Rees [5]). Indeed, this topic is often addressed in healthy aging [6] or in patients
with neurological disorders, where changes in shape may be more obvious, for example due to
malformations. Here, we consider structural and functional variations across healthy subjects.

A particularly interesting case of functional variability is that derived from human electro-
encephalography (EEG) recordings. The alpha rhythm, the most prominent EEG rhythm, was
first defined by Berger (1930) as EEG oscillations between 8 and 13 Hz, visible from the occipi-
tal cortex when the subject is awake with eyes closed and attenuated with eyes opening. In gen-
eral, EEG alpha variability has been shown to be stronger across subjects (inter-subject
variability) compared to repeated measures in the same subject (intra-subject variability) [7].
Yet, despite decades of research, questions regarding their raison d’être and origin are still
debated. There have been multiple studies investigating alpha variability in healthy subjects
with non-anatomical factors, such as cognitive behaviour, IQ, age and genetics (see Bazanova
and Vernon [7] for a review) but, again, few have analyzed the effect of anatomical factors,
such as the morphology of GM andWM components in the brain (size, shape, position, etc.).

Structures especially worth investigating are the thalamus, in particular the visual thalamus,
and the associated white matter tracts, i.e. the optic tract (OT) and the optic radiation (OR),
connecting the retina and visual cortex to the lateral geniculate nucleus (LGN) of the thalamus.
Indeed, early microelectrode recordings in animal models showed that neural activity in the
LGN is related to cortical alpha activity [8]. Later work in humans showed that spontaneous
fluctuations in alpha power are correlated to thalamic blood oxygen level dependent (BOLD)
functional MRI (fMRI) [9] and glucose metabolism derived Positron Emission Tomography
(PET) (see Liu et al. [10] for a review). Also, knowing that the anatomy of the thalamus and its
nuclei influence other phenomenon or diseases, many of which are related to vision (amblyopy,
albinism, etc. [11, 12]), it is therefore plausible that such structural variations affect alpha
waves, also vision-related. Andrews et al. [13] showed that, although the visual cortex, optic
tract and LGN volumes are correlated together and vary between subjects by 100-200%, they
are however independent from brain size, which varies by 18%. In terms of the LGN fiber path-
ways (OR and OT), it has been suggested that it could also influence alpha activity. On the one
hand, increasing myelination increases the speed and efficacy of signal conduction, which
could in turn promote neural synchrony at its cortical targets, thus influencing EEG measure-
ments at the scalp [14]. On the other hand, variations in OR/OT volume might result in strong
volume-conduction effects due to anisotropy [15], while fiber length and/or density could also
affect scalp EEG measurements [16]. Yet, little work has analyzed the effect of thalamic
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structures on EEG alpha waves, which is surprising considering that most of the EEG rhythms
generation models using the thalamus use such anatomical parameters [17], and considering
that it has been proposed that effect of thalamic and OR variation should be considered [17,
18]. Nunez et al. [19] initially proposed that peak alpha frequency would be related to head
size, though this result was recently challenged by Valdés-Hernándes et al. [17], who suggested
that FA in sections of thalamic-related fibers was a better alpha correlate. However, given the
well-known limitations of the tensor model (from which FA is measured) when quantifying
WM, it is unclear whether such results hold when using reconstruction methods that are less
sensitive to this limitation, such as High Angular Resolution Diffusion Imaging (HARDI) [20].
To our knowledge, only one study has analyzed the effect of thalamic GM/WMmorphology
on EEG: Hindriks et al. [21] used DTI connection strength and biophysical models to analyze
the importance of the OR. However, connection strength uses the number of streamlines pro-
duced by tractography, which might not always accurately describe WM tracks [22]. Also, they
could not analyze the effect of the LGN, a satisfactory segmentation of the LGN being difficult
to obtain. We believe HARDI-based tractography probabilistic tracking handles the uncer-
tainty in the principal directions extracted from the fiber orientation distribution functions
(fODFs) and allows for bundle reconstruction with a higher spatial extent or volumetric cover-
age. Therefore, in the current study, we combine EEG, fMRI and HARDI-based dMRI to
improve quantification of the OR and segmentation of the LGN and to investigate whether
structural inter-subject variations in the LGN and its efferent fibers (OR) explain alpha vari-
ability in healthy humans.

Background
Segmentation of the thalamus. The thalamus represents a mixture of white and gray mat-

ter, and thus has proven difficult to subdivide from structural images derived from T1 or
T2-weighted MR sequences [36, 37], although specific techniques have been proposed [38–43].
Thalamic atlases exist, but, given the inter-subject variability of the thalamus and its nuclei
[13], this may lead to inaccuracies. Diffusion MRI (dMRI) on the other hand may allow more
precision in thalamic segmentation. The founding axiom of the thalamic nuclei segmentation
algorithms based on dMRI is that different nuclei have different functions, and thus, different
connections to specific parts of the brain. As a result, one could determine a nucleus by cluster-
ing the voxels belonging to an associated fiber [44, 45]. Indeed, several studies have used the
diffusion tensor (DT) of each voxel to distinguish nuclei from one another without necessarily
computing their fibers with tractography [44, 46–51], though this approach has drawbacks.
There is the problem that DT precision is limited in areas with a high density of gray matter or
in crossing fiber regions, such as the thalamus [24]. HARDI could help, but such algorithms
have be shown to be less stable as they deal with more information [52]. Also, these clustering
techniques make it difficult labelling nuclei automatically and often require visual expertise.

It then seems more promising to use tractography because we have more knowledge about
the expected features of the fibers, such as their starting and ending points or their shape. The
first articles proposing tractography for the segmentation of the thalamus used the structural
connectivity to specific regions of the cortex [36, 45, 53–57], labeling the voxels with the name
of the associated cortical region. However, first, instead of a thalamus segmentation problem,
we then have to face a cortex segmentation one. Also, assessing the quality of the tractography
is arduous, though some streamline probability scores have been proposed [32]. That problem
will be even more important as HARDI probabilistic tracking becomes more popular, giving
more precise streamlines, but along with more false positives [36, 58]. Also, these probabilistic
metrics need an additional supervised thresholding step to ensure a valid segmentation. We

Semi-Automatic Segmentation of Optic Radiations and LGN, and Their Relationship to EEG AlphaWaves

PLOS ONE | DOI:10.1371/journal.pone.0156436 July 6, 2016 3 / 21



therefore use the structural connectivity through one well known fiber, the OR, to segment the
LGN.

Segmentation of the optic radiation. The OR has been studied intensively (see Table 1),
mainly because of the high risk of vision loss after damages to the OR during temporal lobe epi-
lepsy surgery or tumor resections. The OR originates from the LGN and leads to the occipital
lobe after looping anteriorly from the LGN into the temporal lobe, around the temporal horn
of the lateral ventricle (Meyer’s loop). It is generally believed that the bulk of the OR leads to
the calcarine fissure (in the primary visual cortex, V1), though it has been shown recently that
it may reach V2 and V3 as well [59].

OR tractography often depends on a roughly defined LGN from a priori information, a
region of interest based on the fractional anisotropy (FA) or on the principal diffusion direc-
tion (PDD) of the DT, or manually segmented (see Table 1). However, for this study, we have
two objectives: the analysis of the OR and the analysis of the LGN. We are looking for the
opposite of what has been published: we want to obtain the LGN from a good segmentation of

Table 1. Litterature review, after 2005.

Year Author DTI
Tracking?

Need LGN? Other seeding ROIs Inclusion ROIS Exclusions ROIs

2016 This
study

HARDI, P Anterior
thalamus

From FreeSurfer,
modified

Visual cortex AR, superior ROI, CLH, comparison to a template

2015 [23] HARDI, P ✓ OC, V1 – Fornix

2015 [24] HARDI, P Whole
thalamus

From FreeSurfer,
modified

Visual cortex Low tracking density voxels, CSF, CLH, ipsilateral
GM regions other than seed and target masks

2014 [25] ✓, D ✓ M, from RGB – ROI at the pons and CST

2014 [26] ✓, SP ✓ (6 different
segmentations)

SS (3 different
segmentations)

–

2014 [27], 1 HARDI, D – TL and OL OL and LGN (posterior
thalamus)

AR, CST and other ROIs if needed

2014 [27], 2 HARDI, P – Whole brain LGN from a first rapid OR
tracking and OL

AR and fibers with low connectivity score

2011 [28], 1 MT, P WM near
LGN

M, from FA+PD – AR and fibers with low connectivity score

2011 [28], 2 MT, P ✓ From OT V1, M –

2011 [29], 1 ✓, D ✓ V1 AR

2011 [29], 2 ✓, D ✓ RELIRE? – –

2009 [30] ✓, D ✓ M, from FA V1 and OL –

2009 [31] MT, P WM near
LGN

M, from FA+PD – AR

2008 [32] ✓, P ✓ From OT V1 Fibers with low connectivity score

2007 [33] ✓, P – Whole Brain OL and LGN, M –

2007 [34] ✓, P – Whole Brain OL and SS, M 2 ROIs beside Meyer’s loop, M

2006 [35] ✓, D ✓ M, from b0 OL, Green on RGB –

PD = principal direction of the tensor, RGB = colored FA

DTI = diffusion tensor imaging, MT = multi-tensor, HARDI = high angular resolution diffusion imaging

P = probabilistic, D = deterministic, SP = streamline probabilistic

OT = optic tracks, OC = optic chiasm, OL = occipital lobe TL = temporal lobe, SS = sagittal stratum, CST = cortico-spinal tract, AR = anterior ROI,

CLH = contra-lateral hemisphere

M = manually

doi:10.1371/journal.pone.0156436.t001
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the OR using tractography. We develop a nearly-automated fiber analysis tool that we believe
gives reliable results, based on fiber comparison to a template.

With new information on the size and shape of the thalamus, the optic radiation and the
associated nuclei, the LGN, we address the question of the influence of structure on EEG alpha
waves. We show that our semi-automatic method using probabilistic tracking allows obtaining
good optic radiations. We also show that in this case, structure alone is not sufficient to explain
variability in the alpha power or frequency.

Methods

Subjects
Twenty-three healthy subjects were recruited for the study (12 males). All subjects were native
French speakers with no psychiatric or neurological symptoms. The study was approved
according to the guidelines of the Internal Review Board of the Centre Hospitalier Universitaire
de Sherbrooke (CHUS) and all participants provided written consent. Data from two subjects
was discarded due to excessive movement during MR acquisition. Another subject showed no
EEG alpha peak, and was also excluded.

Data acquisition
MR Imaging data were acquired using a 1.5 T SIEMENS Magnetom (Vision). Noise-reduction
headphones and head cushions were used to minimize artifacts. Each session started with an
anatomical T1-weighted 1mm isotropic MPRAGE (TR/TE 1860/3.54 msec) acquisition, fol-
lowed by a fMRI protocol and finally, with a dMRI acquisition. Functional MRI datasets were
collected using a standard echo-planar imaging (EPI) sequence: 35 axial image slices, 64 x 64
matrix, TR/TE 2730/40 msec, voxel size 3.438 x 3.438 x 4.2mm. Data were acquired in a box-
car format, with subjects alternating between baseline and task conditions via short auditory
cues. Subjects performed alternating epochs of 30 sec rest, eyes closed, and 20 sec eyes open,
repeated 5 times and ending with a rest epoch, resulting in a total scan time of 4 min and 40
sec. Diffusion MRI datasets were acquired using a single-shot echo-planar (EPI) spin echo
sequence of 12 minutes (TR/TE = 11700/98 ms), with b-value of 1000 s/mm2, 64 uniform
directions, matrix size of 128x128, 2mm isotropic spatial resolution. To reduce susceptibility
distortions, GRAPPA parallel imaging was employed with an acceleration factor of 2.

EEG data were acquired on the same day, for each subject, using a 64-channel EEG system
(Brain Products) with sampling rate of 500Hz, according to the 10-20 system, in an eyes
closed-eyes open (EC-EO) task guided by an auditory cue (30 seconds EC, 20 seconds EO, for a
total recording time of 5 minutes).

Data preprocessing
All preprocessing and processing steps are reflected in Fig 1.

T1-weighted images. T1 images were denoised using non-local means (NLM) [60] (Dipy,
[61]) and skull-stripped using FSL [62]. T1-weighted images were registered to the upsampled
b0 (1x1x1 mm); linear registrations were first performed with FSL FLIRT [63], followed by
non-linear registration with ANTS [64]. Non-linear registration was useful even though it is an
intra-subject registration to compensate for dMRI deformations.

Diffusion-weighted images. Diffusion images were denoised using NLM with Rician dis-
tribution adaptation [65] available in Dipy. Datasets were upsampled to 1mm isotropic resolu-
tion with trilinear interpolation. The b0 image was extracted using AFNI [66] and skulled-
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stripped using FSL [67]. Tensors, fractional anisotropy (FA) map and fODFs were computed
using Dipy.

Functional images. The description of all fMRI analysis can be found in [68]: We pro-
cessed the data using slice timing and motion correction, band-pass temporal filtering (0.008
to 0.1 hz) and detrending. The spatial smoothing was replaced by NLM denoising (Dipy). The
activation maps were generated by computing the Pearson correlation coefficient between the
hemodynamic response function (HRF) convolved stimulus box-car and the voxel time-series.
The activation were then converted to z-scores and thresholded at the 96th percentile (equiva-
lent to a z-score of*2.5). We then registered the activation maps to the T1-weighted image
using the same procedure as described previously (FLIRT+ANTS).

EEG data. EEG preprocessing was performed using EEGLAB [69]. EEG signals were high-
passed filtered at 0.5 Hz. ICA was computed, and bad components were identified as follows.
First, the z-score of the power spectral density (PSD) between 5 and 18 Hz was computed. If no
point in the alpha band (8-13 Hz) had a z-score higher than 1 (i.e. the component has no alpha
peak), the component was removed. Second, the z-score of the weights of the component on
each electrode in the mixing matrix was computed. If a component had a z-score higher than
4, it was removed. Thresholds 1 and 4 were chosen after visual analysis of the data. Further
details can be found in [70]. For three subjects, one or two channels were interpolated (due to
excessive noise) prior to ICA decomposition. Data was rereferenced to an average reference.

Data processing
Brain structures. The size of each brain was measured as proposed by FSL-FAST (http://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST). Thalamic masks and occipital lobe masks were obtained
using FSL FIRST [71] and FreeSurfer (http://freesurfer.net/), respectively. Thalamic masks
were further modified by constraining them to voxels whose FA was in the range [0.1, 0.5] in
order to remove parts of the cortico-spinal tract (CST) that were incorrectly included in the
original segmentation, as proposed by Mang et al. [56].

Tracking. Tracking was performed separately for the left and right thalami. Seedpoints
were placed in the posterior voxels of the thalamus, found automatically as the 3/4 posterior
portion between the most anterior point and the most posterior point. Both deterministic and
probabilistic tracking were performed with streamtrack fromMRtrix [72], with default values,
on a FA> 0.1 mask, giving 50n unidirectional tracks where n is the number of voxels in the

Fig 1. Analysis pipeline describing dMRI, fMRI and EEG analysis.

doi:10.1371/journal.pone.0156436.g001
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seeding region, excluding tracks crossing the anterior part of the thalamus. In most of the arti-
cles working on the segmentation of the OR, DT deterministic is used (see Table 1). However,
the use of HARDI probabilistic tracking has proven useful, allowing reconstructing a larger
extent of the OR, namely a longer Meyer’s loop [27]. Tracking results were then filtered, keep-
ing only streamlines touching the whole occipital lobe mask. Streamlines reaching the opposite
hemisphere or the anterior part of the brain were discarded with exclusion boxes.

OR and splenium templates. We observed that the tracking results included part of the
splenium of the corpus callosum (SCC). To correct for this, we manually created templates for
each bundle—the OR and the SCC—by visual inspection of subject 1’s tractography result.
Subject 1 was chosen randomly because his tractogram was standard, i.e average quality not no
apparent erroneous results. Here, we kept tracks that broadly resembled either the OR and
SCC (see Fig 2, on the left) such that they could be quickly identified in the remaining subjects.
The bundles were subsampled using QuickBundles, a clustering algorithm from Dipy, to keep
only a few representative streamlines, acting as the templates, as indicated in Fig 3.

OR segmentation and metrics. The OR bundle of each subject was automatically seg-
mented by comparing each streamline of the subject’s tracking result to the OR and SCC tem-
plates. Templates were first registered to the diffusion space of that subject by a linear
registration. The registration matrix was defined by FLIRT, using a mask combining the two
thalami and the occipital lobe. We chose this mask because it was only important to have the
posterior part of the brain aligned with the subject’s space, since it contains the OR. The com-
parison between the streamlines and the templates was performed with the Mean Direct-
Flipped (MDF) metric from Dipy. If MDF(streamline, OR) was smaller than MDF(streamline,
SCC), the track was kept. Otherwise, it was removed (see Fig 3).

Mean FA and apparent fiber density (AFD) were measured [73, 74], as well as distances
between the anterior tip of the temporal horn and the anterior tip of Meyer’s loop in ICBM
space (TH-ML distances). TH was selected visually (y = 86) and ML was defined as the most
anterior (y) point with at least 5 streamlines. This criteria was added to avoid remaining spuri-
ous tracks. Streamline count was computed at each step of the process (initial tracking, after fil-
tering the streamlines reaching the occipital lobe only, after deletion of the SCC). However, to
characterize the final OR, streamline count was not used used to quantify the OR since this
measure is known to be easily biased [75, 76]. Rather, we computed the mean cross-sectional
area (CSA), which is a more robust tract-based metric as it takes into consideration the shape
(size, length) of the fiber bundle. This technique is already used in histology [13] and is becom-
ing popular with tractography [77]. We selected 18 equally spaced plans perpendicular to the
bundle (sections). We discarded the three first ones since they were too close to the thalamus
(see Fig 4). For each section, the CSA was defined as the number of voxels in that plane where
passed at least 5 streamlines. The mean CSA was computed for sections 4-15, as well as the
minimum CSA, acting as a measure of the stem of the OR. Statistics on the three last sections
(16-18), where the OR bundle significantly spreads out, were computed separately to measure
the spanning of the OR in the occipital lobe: the maximum and the mean CSA were computed.
If a voxel was included in more than one plane, it was counted only once, in the plane closest to
the occipital cortex. Voxel count was prefered to other measures such as radius to prevent arti-
ficially increased CSAs in spanning areas (ex. planes 13 and 14 in Fig 4).

LGN segmentation. For each subject, the number of OR streamlines in each voxel was
transformed into a density map with MRtrix. Voxels outside the thalamus in the OR density
map of each subject were set to zero, and the z-scores of the non-zero voxels were calculated.
We defined the LGN of each hemisphere as the voxels with z-score higher than 4. This thresh-
old was chosen to obtain LGN sizes corresponding to the sizes presented in the literature
(115mm3 on the left and 131mm3 on the right [13]). The sizes with threshold 4 or with other
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thresholds were highly correlated, and thus, the threshold value does not influence the final
correlations with EEG alpha metrics. LGNs were also registered on ICBM452 standard space
[78]. An occurrence map (in percentage of subjects) was obtained in the ICBM space with, for
each voxel’s value, the number of subjects whose LGN touched this voxel.

EEG metrics. EO and EC windows were separated, and the PSD was computed for each
window separately. PSD estimates were then averaged separately for the EO and EC conditions.

Fig 2. Templates of OR (green) and splenium (red). The difference between deterministic + DTI tracking (paler) and HARDI + probabilistic
(darker) was major, mainly in the Meyer’s loop. Probabilistic template was used.

doi:10.1371/journal.pone.0156436.g002
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Data were averaged over all P, PO and O electrodes. EC maximum and average power in the
alpha band (8-13 Hz) over these electrodes was measured, and same in the spectrum obtained
by subtracting the EO spectrum from the EC spectrum, such as was done by Posthuma et al.
[79]. The peak frequency, or alpha peak (Pα), was defined as the frequency of the maximum
EC power. The same results were measured for the left occipital electrodes and for the right
occipital electrodes separately.

fMRI metrics. The activation map of the eyes open-closed task was obtained by comput-
ing the mean across each subject’s activation map and thresholding it for z-scores 2.5 and
higher.

Results

Thalami masks
The thalami mask had a mean size of 9450 mm3 ± 1158 in the left hemisphere and 9110 mm3

± 1044 in the right, representing 81.4% and 85.1% of the mask given by FSL, respectively (see
Fig 5).

Tractography, templates and OR segmentation
Tracking results showed a large Meyer’s loop and a wide spanning of streamlines in the occipi-
tal lobe (see Figs 2 and 6). Number of streamlines touching the occipital area represented, in
the left and right hemisphere, 3.3% ± 0.9 and 2.4% ± 0.7 of the initial tracking. The final num-
ber of streamlines in the OR (SCC deleted) then represented 70% ± 13 and 48% ± 17 of the
occipital-touching ones. Results were similar with deterministic tracking. Cross-sectional areas
(CSAs) are reported in Table 2 and represented in Fig 4. Although the fiber count indicated a
much bigger left OR than right (2.7 times bigger, p< 0.1e−6), the mean CSA was more similar

Fig 3. Templates (on the left) and fiber comparison with MDF (on the right). Each streamline of the subject
(white) is kept if it resembles the OR template (green), rejected otherwise (cases were it resembles the
splenium template (red)).

doi:10.1371/journal.pone.0156436.g003
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(left was approximately 1.3 times larger than right, p = 0.02). Also, left and right OR CSAs were
correlated (p< 0.0005), while fiber count was not (p = 0.7). The average FA and AFD within
the OR are shown in Table 3. TH-ML distances were of −6 ± 3 mm on the left and −4 ± 3 mm
on the right (negative results are anterior to the tip of the temporal horn). TH-ML distance
with DTI and deterministic tracking were, respectively, of −2 ± 4 mm and 2 ± 5 mm.

LGN segmentation
LGN sizes obtained from the thresholded density map (see Fig 7) were of 116 ± 18mm3 on the
left, and 100 ± 26mm3 on the right. The position of the centroid of the LGN (the point with the
strongest density, i.e. the most streamlines), varied very little across subjects, as shown in
Table 4.

Fig 4. Superior view of the OR. Cross section areas (CSAs) were defined as the number of voxels where
passed at least 5 streamlines in each section. Mean and minimumCSA of sections 4-15, and mean and
maximumCSA of sections 16-18 were measured.

doi:10.1371/journal.pone.0156436.g004
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EEG alpha waves measurements
Visual inspection confirmed that no subject presented a peak outside the 8-13 Hz range. All of
these measures were also similar across hemispheres, as shown in Table 5 (p>0.05 in all
cases).

Relation with fMRI results
To assess the quality of our LGN position, we visually compared the occurence maps of the OR
in the ICBM space with the maps of the mean fMRI activation of all subjects. Thalamic voxels
with highest occurence score were localized near the fMRI activation sites, as shown in Fig 8.

Link between structure and EEG alpha waves
Overall, we computed 68 Pearson correlations and associated p-values between EEG alpha and
dMRI measures in each hemisphere (see Table 6). All scatter plots were visually inspected to
ensure that these results were not driven by outliers, and the smallest p-value was 0.06.

Fig 5. Thalamusmaskmodification. Blue: thalamic masks as defined by FSL. Green: voxels where FA 2 [0.1, 0.5]. Background: the FA map.

doi:10.1371/journal.pone.0156436.g005
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Discussion
The main goal of this study was to investigate the relationship between structure and function
in the brain by considering the influence of thalamus and optic radiation (OR) morphology on
EEG alpha waves. To do so, we developed a novel approach for quantifying subject-to-subject
variations in different measures of thalamic and OR structures with a nearly-automated fiber
analysis tool. The selection of the ROIs to perform the tractography is automatic. The sorting
of the OR streamlines uses templates that can be defined by a non-expert. The comparison of
the streamlines to the templates is automatic and does not need thresholds. Our method
allowed us to obtain precise OR to isolate the LGN in multiple subjects, proving its efficiency.
Nevertheless, no significant correlation with EEG was observed.

Fig 6. Three subject’s final OR, axial view.

doi:10.1371/journal.pone.0156436.g006

Table 2. Cross-sectional areas (in number of voxels).

Left hemisphere Right hemisphere

Planes 4-14 15-18 4-14 5-18

Min 179 ± 39 – 130 ± 35 –

Min 247 ± 56 357 ± 106 191 ± 55 207 ± 68

doi:10.1371/journal.pone.0156436.t002

Table 3. FA and AFD under the OR.

Left hemisphere Right hemisphere

FA 0.38 ± 0,02 0.39 ± 0,03

AFD 0.77 ± 0.03 0.77 ± 0.04

doi:10.1371/journal.pone.0156436.t003
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Structure
Optic radiation. The OR is a well-studied fiber bundle. In humans, it is known to emerge

from the LGN, to display a relatively large loop that partially extends into the anterior temporal
lobe (Meyer’s loop), and to end as the inferior sagittal stratum in the visual cortex. Although it
is made of one single sheet, it is constituted of three parts, each of them having a different cur-
vature [26].

Fig 7. Effect of the thresholding on the ORs. In the thalamus: in blue, the final OR, voxels crossed by at least 5 fibers and in red, with a threshold on the z-
score of 4. In the optic radiation: density map, in number of streamlines. On the left: z = 64. On the right: z = 69.

doi:10.1371/journal.pone.0156436.g007

Table 4. Position of the strongest density point, in ICBM space.

Left hemisphere Right hemisphere

x 95 ± 3 56 ± 1

y 86 ± 1 84 ± 2

z 73 ± 5 68 ± 4

doi:10.1371/journal.pone.0156436.t004

Table 5. EEG results.

Left hemisphere Right hemisphere Posterior

Alpha peak frequency (Hz) 10.4 ± 0.8 10.6 ± 0.9 10.5 ± 0.8

Mean EC power (μV/Hz) 16.8 ± 6.0 18.4 ± 6.2 18.7 ± 5.9

Mean alpha power (EC-EO) (μV/Hz) 16.3 ± 5.2 16.8 ± 4.8 17.5 ± 4.7

doi:10.1371/journal.pone.0156436.t005
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Our reconstructed tracts also follow this pattern (Fig 6). To ensure recovery of the whole
OR, we used few anatomical priors, placing a large ROI for the seeding points (3/4 of the thala-
mus, with no condition on the initial direction), and using the whole occipital cortex as target
region for the streamlines. Probabilistic tracking allowed the streamlines to successfully follow
the OR, even in the highly curved sections, without additional ROI. The fact that the occipital-
touching streamlines represented only around 2-3% of the initial streamlines highlights the dif-
ficulty in recovering the OR with tractography. This number would be smaller with whole
brain tractography, and an extremely large number of initial seeds would be needed before
obtaining a satisfactory OR. For this reason, tracking from the thalamus allows better results,
though it may include half of the splenium if the initial thalamus segmentation is overly con-
servative. Our fiber comparison to a template allowed differentiating the OR bundle from the
SCC.

Distances between the anterior tip of Meyer’s loop and the anterior tip of the temporal horn
were comparable to other literature reports. Indeed, in Ebeling and Reulen [80], TH-ML dis-
tances in cadavers were of -5 mm in average, which is similar to our results. Few in vivo studies
have reproduced this [27, 81]. It might be due to the use of probabilistic tracking, as discussed
by Lilja et al. [27], but also to the use of HARDI instead of DTI. Indeed, these distances with
our DTI and deterministic tracking were smaller (i.e. the Meyer’s loops were less anterior).
Also, as reported by others [23, 25, 27], left Meyer’s loop (ML) was more anterior, as revealed
with the TH-ML measure, and left OR was bigger, in the streamlines count, but also, to a
smaller degree, in the average cross-sectional area (CSA). Our methodology permits different
measures, in addition to the cross-sections (e.g. circumference), though this is outside the main

Fig 8. Validation of LGN segmentation. (left) The red/yellow overlay represents fMRI activity during the EC-EO task.
Note the widespread activation in the visual cortex and more focal bilateral activation in the thalamus (LGN). (right) An
enhanced view shows that our reconstructed streamlines converge nicely onto the fMRI activation sites (outline in white).

doi:10.1371/journal.pone.0156436.g008
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scope of our study and remains an active field of research for bundle-based and tract-based
metrics. In summary, our OR reconstruction exhibits properties that closely resemble its
known anatomy despite the fact that the diffusion images were acquired at relatively low field
strength (1.5T). Increasing the spatial resolution is unlikely to affect our results as we purposely
focused on more macroscopic measures of tractography.

Density maps and LGN. Our track density maps appeared to peak near the LGN, which
was then confirmed using fMRI (Fig 8). The peak density location was very stable across sub-
jects (see Fig 6), suggesting that our approach can not only accurately localize the LGN, but
also that these 3D coordinates may be included as an anatomical reference in a standardized
space, such as the ICBM.

However, it should be noted that the nearby pulvinar, whose main projections mainly target
visual areas V3 to V5, also show connections the V1 and V2 [82]. It is therefore possible that
some of our reconstructed fibers may also arise from the pulvinar and it is perhaps more accu-
rate to label our purported LGN area as “visual thalamus”. We are currently working toward a
more accurate segmentation of the LGN and pulvinar.

We should also note that LGN size depends most probably on the initial thalamus size, in
itself a research subject [37, 83].

Table 6. p-values for all combinations between EEG data and structural data. Smallest value was 0.06.

Max power (EC-EO) Alpha peak Max power (EC)

L R L R L L

Thalamus

Size 0.76 0.43 0.66 0.34 0.91 1.00

Size (as % of the brain) 0.51 0.34 0.45 0.27 0.93 0.67

Size (left minus right) 0.63 0.19 0.75

Streamlines

Number 0.49 0.23 0.74 0.06 0.77 0.40

Number (left minus right) 0.35 0.11 0.51

Most anterior y point 0.29 0.42 0.45 0.15 0.15 0.65

Average length 0.35 0.50 0.92 0.21 0.66 0.77

Cross-sections

Average area 0.38 0.30 0.16 0.27 0.90 0.26

Average area (as % of the brain) 0.36 0.36 0.18 0.29 0.84 0.30

Average (left minus right) 0.94 0.86 0.32

Min 0.68 0.43 0.13 0.26 0.80 0.32

Max 0.45 0.95 0.53 0.09 0.42 0.68

FA and AFD

FA 0.96 0.64 0.63 0.98 0.88 0.93

AFD 0.60 0.47 0.52 0.28 0.46 0.11

LGN

Initial size 0.96 0.16 0.80 0.35 0.61 0.12

Initial size (as % of the thalamus size) 0.71 0.19 0.68 0.25 0.98 0.14

Size (with threshold on z-score) 0.73 0.98 0.49 0.34 0.86 0.27

Idem (as % of the thalamus size) 0.91 0.97 0.40 0.35 0.55 0.43

Idem (left minus right) 0.50 0.45 0.35

Meyer’s loop

Distance tip of the temporal horn to tip of Meyer’s loop 0.29 0.42 0.45 0.15 0.15 0.65

doi:10.1371/journal.pone.0156436.t006
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Function
For all subjects, the peak alpha frequency was, as expected [7], situated between 8 and 13 Hz,
and all subjects showed a robust change in power during EO-EC in occipital/parietal elec-
trodes, revealing a good control of the signal to noise ratio. For our analysis, we used the maxi-
mum alpha power. For the average power, it has been suggested that a subject-driven band
instead of the usual 8-13 Hz is more appropriate [7]. However, the use of average power was
unnecessary here because it was highly correlated to the maximum and brought no additional
information on the EEG variability across subjects.

Structure vs function
No significant correlation was found, for any pair of metrics between structural metrics and
EEG metrics (all p-values> 0.05), suggesting that OR and LGN structures have little influence
on EEG alpha inter-individual variability. This idea is further supported by the fact that OR
segmentation results showed lateralization, but not EEG. The reason behind this dissociation is
unclear. On the one hand, our results are in contrast to those reported by Hernandez, who
showed a significant correlation between tensor-derived FA of the posterior and superior
corona radiata, probably associated to interactions between thalamus and cortex and in the
posterior commissural fibers of the Corpus Callosum (splenium), and alpha peak frequency
[17]. However, as stated in the introduction, such FA metrics are strongly biased by fibre cross-
ings, which might explain our lack of correlation when using HARDI-based reconstructions.
Other studies using voxel based morphology (VBM) have also reported low correlations
(r = 0.1—0.3) between WM volume and alpha power [6, 84, 85], which is more in line with our
findings, though it should be noted that VBM- and dMRI-derived measures of WM are based
on very different phenomena. More work in how these two modalities are related could help in
reconciling these discrepancies. For instance, it possible that certain microstructural properties
of the LGN/OR/OT, such as myelin content [86], are better correlated to EEG than the WM
metrics identified in the current study.

In summary, we here report on a novel approach for identifying the visual thalamus as well
as its efferent fibre tracts. This method could be easily extended for accurately segmenting
other thalamic nuclei and fiber bundles in different cortical areas, using templates in bundle
atlases, for improving our understanding of structure-function relationships in humans.
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