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Abstract
A newly emerged H7N9 influenza virus poses high risk to human beings. However, the patho-

genic mechanism of the virus remains unclear. The temporal response of primary human

alveolar adenocarcinoma epithelial cells (A549) infected with H7N9 influenza virus and H1N1

influenza A virus (H1N1, pdm09) were evaluated using the proteomics approaches (2D-DIGE

combined with MALDI-TOF-MS/MS) at 24, 48 and 72 hours post of the infection (hpi). There

were 11, 12 and 33 proteins with significant different expressions (P<0.05) at 24, 48 and

72hpi, especially F-actin-capping protein subunit alpha-1 (CAPZA1), Ornithine aminotransfer-

ase (OAT), Poly(rC)-binding protein 1 (PCBP1), Eukaryotic translation initiation factor 5A-1

(EIF5A) and Platelet-activating factor acetylhydrolaseIb subunit beta (PAFAH1B2) were vali-

dated by western-blot analysis. The functional analysis revealed that the differential proteins

in A549 cells involved in regulating cytopathic effect. Among them, the down-regulation of

CAPZA1, OAT, PCBP1, EIF5A are related to the death of cells infected by H7N9 influenza

virus. This is the first time show that the down-regulation of PAFAH1B2 is related to the later

clinical symptoms of patients infected by H7N9 influenza virus. These findings may improve

our understanding of pathogenic mechanism of H7N9 influenza virus in proteomics.

Introduction
Since March 2013, A novel H7N9 influenza virus first crossed the species barrier and infected
humans in East China, causing disease with unusually high morbidity and mortality. It is a
reassortant virus which consists of the gene fragments from earlier H7N9, H7N3 and H9N2
viruses [1–3]. Human infection can be caused by the direct contact with the poultry infected
with H7N9, since most of infected persons have ever exposed to the live poultry [4]. The
patients had common symptoms during the early stage and later suffered from severe clinical
outcomes including severe pneumonia, acute respiratory distress syndrome (ARDS), multi-
organ dysfunction and encephalopathy [1,5–7].
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In recent years, many new discoveries have been made concerning H7N9 infection. Sakai
et al [8] demonstrated that recently emerged H7N9 as well as seasonal IAVs mainly used the
specific protease TMPRSS2 for HA cleavage in vivo. Viruses H5N1, H7N7, and H7N9 were
pathogenic in mice, Morrison et al [9] found that this pathogenicity was correlated with
increased transcription of cytokine response genes and decreased transcription of lipid metab-
olism and coagulation signaling genes. To the best of our knowledge, few proteome analyses
have been reported comparing the differences in the cellular host response between H7N9 and
H1N1pdm09 viruses at the proteomic level, especially in the whole process of infection. It is
clear that the pandemic of the H1N1pdm09 is relatively mild. Unlike the H1N1pdm09, the
H7N9 influenza virus has never been extensively circulated among the humans, so the lacking
of preexisting immunity presents the human population at high risk [10,11]. Noteworthily, our
previous studies [12] and available data [13–15] suggested that the H1N1 infection induced
less of a response. There was no obvious protein profile changes of cells including A549 cells
infected with H1N1 virus. In addition, A549 cells are widely used for the investigation of influ-
enza A virus replication in vitro or in other proteome studies. The avian influenza virus gener-
ally prefer α-2,3 sialic acid receptors. The H7N9 virus can invade the lower respiratory tract of
human beings because the virus retain strong affinity for the α-2,3 sialic acid receptors present
in the lower respiratory tract of human [16,17]. Notably, the virus titre in lung tissues was
about tenfold higher than that in tracheal tissues [11]. Therefore, We selected H1N1
pdm09-infected A549 cells as the control group in this study. The fluorescent two dimensional
difference gel electrophoresis (2D-DIGE) and MALDI-TOF–MS/MS were applied to investi-
gate the difference in host proteome after infection with the two influenza virus strains and
explored the underlying pathogenic mechanism of H7N9 infection in mammals.

Materials and Methods

Ethics statement
All procedures performed in studies were in accordance with the ethical standards of the insti-
tutional and/or national research committee and with the Helsinki declaration and were
approved by the Medical Ethics Committee of Shenzhen Center for Disease Control and Pre-
vention (SZCDC), Shenzhen, P. R. China.

Reagents
A549 cell line, H7N9 and H1N1pdm09 influenza virus were obtained from Shenzhen Center
for Disease Control and Prevention (SZCDC). All the reagents for DIGE were purchased from
GE Healthcare (Pittsburgh, PA, USA). DL-Dithiothreitol (DTT), Iodoacetamide (IAA),
CHAPS were purchased from Sigma–Aldrich (Louis, MO, USA). The antibodies against
CAPZA1, OAT, PCBP1, EIF5A, PAFAH1B2 were purchased from Abcam (Cambridge, MA,
USA). The antibody against β-action was purchased from Santa Cruz (Santa Cruz, CA, USA).
The secondary antibodies of goat anti-mouse and goat anti-rabbit were purchased from
Thermo Fisher (Rockford, IL, USA). The restriction enzyme (BamH I and Not I) were pur-
chased from NEB(USA).

Lipofectamine2000 and pcDNA3.1/Neo(+) were purchased from Invitrogen (Carlsbad, CA,
USA).

Cell culture and virus infection
A549 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
10% fetal bovine serum (FBS) and incubated at 37°C under 5% CO2. To ensure most of the
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cells were able to grow adhering to the wall at 72hpi, a multiplicity of infection (MOI) of 0.001
was used [18]. Cells were infected with H7N9 or H1N1pdm09 influenza virus in independent
biological triplicates and the cell culture supernatants including 0.25μg/mL of trypsin. All
experiments with H7N9 influenza virus were performed in enhanced biosafety level 3 (BSL3)
containment laboratories at SZCDC.

Protein extraction, quantification and labeling
At set time points post-infection (24, 48, and 72h), medium was aspirated, cells were washed
three times by PBS and then lysed on ice with lysis buffer (7M urea, 2M thiourea, 30mM Tris-
Hcl PH 8.8, 4% w/v CHAPS) for 30min. All the cells were then scraped into a 1.5mL eppendorf
centrifuge tube and sonicated for 30s, centrifuged at 14,000×g for 60 min at 4°C. Purification
and quantification of the proteins were performed strictly according to the instruction of 2-D
Clean-Up Kit and 2-D Quant Kit (GE healthcare).

The biological replicates at set time points were labeled and reversely labeled by 200pmol
Cy3 and Cy5 fluorescence dyes from CyDye DIGE Fluor Minimal Labeling Kit (GE health-
care), respectively. A total of 25ug of all individual samples were pooled as internal standard
and labeled by 200pmol Cy2 dye. The labeling reaction was carried out on ice in darkness for
30 min and then quenched with 1uL of 10 mM lysine for 10 min. For each gel, Cy2-, Cy3-, and
Cy5-labeled proteins (25ug each) were combined and an equal volume of 2×sample buffer (7M
urea, 2M thiourea, 4% w/v CHAPS, 2% w/v DTT, 2% v/v IPG buffer pH 3–11) was added, then
brought the total volume of the sample to 450uL with rehydration buffer (8M urea, 2% w/v
CHAPS, 0.5% v/v IPG buffer pH 3–11, 0.5% w/v DTT, 0.002% w/v bromophenol blue.

2-D electrophoresis
Isoelectric focusing (IEF) was carried out using the Ettan IPGphor focusing apparatus (GE
Healthcare) and the extracted proteins were loaded onto 24cm, 3-11NL immobilized pH gradi-
ent (IPG) strips (GE healthcare). The IEF procedure was as follows: 50V 18h, 300V 2h, 500V
2h, 1000V 2h, gradient 8000V 8h, 8000V 8h. After IEF, the IPG strips were incubated in equili-
bration buffer (6M urea, 75mM Tris–Hcl PH 8.8, 29.3% v/v glycerol, 2% w/v SDS, 0.002% w/v
bromophenol blue) supplemented with 1% w/v DTT for 15min. This step was repeated using
the same buffer with 2.5% w/v IAA in place of 1% DTT. The strips were then put on the top of
12.5% SDS-PAGE gels with 1W per gel for 1h and 11W per gel for about 6h at 15°C.

Gel image acquisition and analysis
After 2-D electrophoresis, the gel images for analysis were obtained by using the Typhoon
TRIO Imager (GE Healthcare) and were processed in DeCyder 6.5 differential analysis software
(GE Healthcare). To assess the biological variation, three individual infection experiments
were carried out at three time points and three gel replicates were used for inter-gel matching
performed with the Biological Variation Analysis (BVA) software module. These proteins were
found to be different expressed between H7N9- and H1N1pdm09-infected A549 cells using a
Student’s t-test. Protein spots with significant differences in abundance (H7N9/H1N1 over
1.5-folds, P<0.05) were selected for mass spectrometry.

Protein identification by in-gel-digestion and MALDI-TOF–MS/MS
Interested protein spots from the Coomassie-stained gels were manually excised. The gel sam-
ples were placed in a 1.5mL eppendorf centrifuge tube and washed twice with 500uL ddH2O.
The gel pieces were destained and dehydrated, and then digested using sequencing-grade
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trypsin (Promega, Madison, WI, USA) overnight at 37°C. The resulting peptides were then
analyzed by an Ultrafle Xtreme MALDI-TOF/TOF Mass Spectrometer (Bruker Daltonics Inc,
Billerica, MA, USA). The peptide mass fingerprint (PMF) combined MS/MS data were submit-
ted to MASCOT version 2.2 (Matrix Science, Boston, MA, USA) for identification according to
the SwissProt database. The parameters were set as follows: Homo sapiens, trypsin cleavage,
missed cleavage, carbamidomethylation as a fixed modification, methionine oxidation as a var-
iable modification, peptide mass tolerance set at 100ppm, and fragment tolerance set at 0.5Da.
Proteins matching more than two peptides and protein scores> 30 were considered statisti-
cally significant (P<0.05).

Bioinformatics analysis
Protein ontology classification was performed with PANTHER classification system (http://
www.pantherdb.org/) by importing into the accession of the proteins. The differentially
expressed proteins at 24, 48, 72hpi were grouped according to their protein classes.

The String software (http://string-db.org/) was utilized to perform a protein-protein interac-
tion network for the differentially expressed proteins at 24, 48, 72hpi by searching the String
database and the protein-protein interaction network database.

Western blot analysis
The proteins from A549 cells infected with H7N9 and H1N1pdm09 influenza virus at 24,
48, 72hpi as well as time-matched mock-infected cells were extracted and quantified using a
BCA assay (Thermo Fisher Scientific). Total proteins were separated by one-dimensional
SDS-PAGE and transferred to PVDF membranes. Membranes were blocked with 5% (w/v)
nonfat dry milk in TBST and subsequently incubated overnight at 4°C with the correspond-
ing primary antibodies anti-β-action (1:1000), anti-CAPZA1 (1:10000), anti-OAT (1:1000),
anti-PCBP1 (1:1000), anti-EIF5A (1:5000), anti-PAFAH1B2 (1:1000). After three washes
with TBST, membranes were incubated for 90 min at room temperature with horseradish
peroxidase labeled secondary antibodies (1:5000). Membranes were then washed thor-
oughly with TBST, scanned using Image Quant LAS4000 (GE healthcare), and analyzed
quantitatively.

The expression of PAFAH1B2 in H7N9 infection
The Genbank accession number of PAFAH1B2 is CR456736 and the cDNA (690bp) was syn-
thesized artificially. The PCR primers (sense:5’-GCGGGATCCAT GAGCCAAGGAGACT
CAAACCCA-3’;antisense:5’-GCGGCGGCCGCTTAAGCA ATGGTGGTTTGTTTCTCC-3’)
based on this fragment were synthesized. We created the PAFAH1B2 cDNA by PCR amplifica-
tion with primers containing a 5’BamHI restriction site and a 3’NotI restriction site for sub-
cloning into pcDNA3.1/Neo(+) via BamH I and Not I, which created the final vector,
pcDNA3.1/Neo-PAFAH1B2. The sequences of all clones were verified by sequence analysis
[19–20].

Lipofectamine2000 was employed for the transient transfections of the recombinant eukary-
otic expressing plasmids pcDNA3.1/Neo-PAFAH1B2 in A549 cells. At 24 hours post of trans-
fection, the A549 cells with recombinant plasmid were infected by H7N9 influenza virus and
observed the levels of PAFAH1B2 at 24,48 and 72hpi by western blot analysis. Besides, the lev-
els of PAFAH1B2 in primary A549 cells and cells with recombinant plasmid were also analyzed
by western blot.
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Results

2-D DIGE screening and identification of differentially expressed
proteins
DIGE analysis (Fig 1) the differentially expressed spots (Students t-test P<0.05). The signifi-
cantly up- or down-regulated proteins by at least 1.5-folds were subject to the further analysis
by MALDI-TOF–MS/MS identification unambiguously. A total of 11,12,33 protein spots were
found to be differentially expressed in A549 cells infected with H7N9 and H1N1pdm09 influ-
enza virus at 24, 48, 72hpi, respectively (Tables 1, 2 and 3), especially F-actin-capping protein
subunit alpha-1 (CAPZA1), Ornithine aminotransferase (OAT), Poly(rC)-binding protein 1
(PCBP1), Eukaryotic translation initiation factor 5A-1 (EIF5A) and Platelet-activating factor
acetylhydrolaseIb subunit beta (PAFAH1B2). The data showed that the up- or downregulated
of these five proteins were associated with the time of infection by the two strains.

Fig 1. 2D- DIGE images and differentially expressed proteins of H7N9- and H1N1pdm09-infected A549
cells. The 2D- DIGE images of A549 cells infected with H7N9 and H1N1pdm09 influenza virus at 24 (A), 48
(B) and 72 (C) hpi. 2D- DIGE analysis of the differentially expressed spots between H7N9- and
H1N1pdm09-infected A549 cells at 24 (a), 48 (b) and 72(c) hpi.

doi:10.1371/journal.pone.0156017.g001
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Protein classes and protein interaction network diagram
The differentially expressed proteins in A549 cells infected with the two strains at 24, 48, 72hpi
were imported into the PANTHER database. The PANTHER classification system revealed
that the proteins could be classified into groups according to their protein classes. Most of the
differential proteins at 24hpi belonged to nucleic acid binding (27.3%), cytoskeletal protein
(27.3%), transferase (9.1%), lyase (9.1%), calcium-binding protein (9.1%), enzyme modulator
(9.1%) and oxidoreductase (9.1%). More classes of the differential proteins (receptor, structural
protein, transporter, chaperone, isomerase, hydrolase, extracellular matrix protein) were
expressed in A549 cells in the later phase of infection (Fig 2).

The protein interaction network diagram was constructed for the differentially expressed
proteins in A549 cells infected with the two virus strains at 24, 48, 72hpi. As shown in (Fig 3),
the protein interaction network diagram became more and more complicated during the time
of infection. The proteins CAPZA1, PCBP1, and EIF5A were located in the central area of the

Table 1. Identification of differentially expressed proteins in A549 cells infected with H7N9 and H1N1pdm09 influenza virus at 24hpi.

Spots No. Names Accession Score MW(kDa)/PI AV.ratio (H7N9/H1N1) P value(T-test)

*1 Ornithine aminotransferase OAT_HUMAN 185 48846/6.6 -2.04 0.00054

2 Cofilin-1 COF1_HUMAN 273 18719/9.1 1.72 0.00055

3 Serine-threonine kinase receptor-associated protein STRAP_HUMAN 248 38756/4.8 -2.14 0.0021

4 Annexin A7 ANXA7_HUMAN 118 52991/5.4 -1.56 0.0038

*5 F-actin-capping protein subunit alpha-1 CAZA1_HUMAN 98 33073/5.4 -2.3 0.0042

6 Retinal dehydrogenase 1 AL1A1_HUMAN 165 55454/6.3 1.64 0.0081

7 Eukaryotic translation initiation factor 1A IF1AX_HUMAN 244 16564/4.9 -2.13 0.011

8 Tubulin beta-2A chain TBB2A_HUMAN 346 50274/4.6 -1.6 0.018

*9 Poly(rC)-binding protein 1 PCBP1_HUMAN 56 37987/6.8 -2.13 0.021

10 EF-hand domain-containing protein D2 EFHD2_HUMAN 381 26795/5.0 -1.75 0.022

11 Alpha-enolase ENOA_HUMAN 145 47481/7.7 1.63 0.041

* Indicating that the differential proteins were validated by western blot analysis.

doi:10.1371/journal.pone.0156017.t001

Table 2. Identification of differentially expressed proteins in A549 cells infected with H7N9 and H1N1pdm09 influenza virus at 48hpi.

Spots
No.

Names Accession Score MW(kDa)/
PI

AV.ratio (H7N9/
H1N1)

P value(T-
test)

*1 Poly(rC)-binding protein 1 PCBP1_HUMAN 237 37987/6.8 -1.82 0.00026

2 Heterogeneous nuclear ribonucleoprotein A1 ROA1_HUMAN 378 38837/9.6 -1.57 0.0018

3 U6 snRNA-associated Sm-like protein LSm2 LSM2_HUMAN 97 10942/6.1 1.73 0.0018

4 Actin, cytoplasmic 1 ACTB_HUMAN 349 42052/5.2 -1.72 0.0041

5 Vimentin VIME_HUMAN 362 53676/4.9 -2.6 0.0047

*6 Ornithine aminotransferase OAT_HUMAN 244 48846/6.6 -2.09 0.0048

7 Pyruvate kinase isozymes M1/M2 KPYM_HUMAN 171 58470/9.0 -2.31 0.0049

*8 F-actin-capping protein subunit alpha-1 CAZA1_HUMAN 33 33073/5.4 -3.26 0.0082

9 UV excision repair protein RAD23 homolog B RD23B_HUMAN 65 43202/4.6 -4.33 0.0098

10 Heat shock cognate 71 kDa protein HSP7C_HUMAN 183 71082/5.2 -2 0.01

*11 Eukaryotic translation initiation factor 5A-1 IF5A1_HUMAN 45 17049/4.9 -4.5 0.011

12 Pyruvate dehydrogenase E1 component subunit
alpha

ODPA_HUMAN 83 43952/9.3 -2.64 0.012

* Indicating that the differential proteins were validated by western blot analysis.

doi:10.1371/journal.pone.0156017.t002
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network. However, OAT and PAFAH1B2 were not included in the network, they also played a
crucial role in the process of H7N9 infection.

Validation of the differentially expressed proteins by western-blot
analysis
In order to validate the data obtained from 2-D DIGE and MALDI-TOF–MS/MS, we per-
formed western blots. In 3 independent western blot analyses (P<0.05), as shown in (Fig 4),
compared with the H1N1pdm09 infection, the down- or up-regulated proteins of CAPZA1
(33KDa), OAT (49KDa), PCBP1 (37KDa), EIF5A (18KDa), PAFAH1B2 (26KDa) in H7N9

Table 3. Identification of differentially expressed proteins in A549 cells infected with H7N9 and H1N1pdm09 influenza virus at 72hpi.

Spots
No.

Names Accession Score MW(kDa)/
PI

AV.ratio (H7N9/
H1N1)

P value(T-
test)

1 Heat shock 70 kDa protein 1A/1B HSP71_HUMAN 277 70294/5.4 2.45 2.00E-05

2 Heterogeneous nuclear ribonucleoprotein D-like HNRDL_HUMAN 56 46580/10 -2.57 3.60E-05

*3 Platelet-activating factor acetylhydrolase Ib subunit
beta

PA1B2_HUMAN 138 25724/5.5 -15.52 9.80E-05

4 Prelamin-A/C LMNA_HUMAN 150 74380/6.6 2.26 0.00014

*5 F-actin-capping protein subunit alpha-1 CAZA1_HUMAN 192 33073/5.4 -4.27 0.00027

6 Heterogeneous nuclear ribonucleoprotein H HNRH1_HUMAN 392 49484/5.9 1.66 0.00028

*7 Ornithine aminotransferase OAT_HUMAN 38 48846/6.6 -2.95 0.00029

8 Peptidyl-prolyl cis-trans isomerase B PPIB_HUMAN 50 23785/9.9 -8.39 0.00065

9 Cofilin-1 COF1_HUMAN 213 18719/9.1 -1.6 0.0008

10 Transgelin-2 TAGL2_HUMAN 46 22548/9.3 1.97 0.0018

11 Transcription elongation factor B polypeptide 1 ELOC_HUMAN 71 12636/4.6 -3.53 0.0027

12 Ezrin EZRI_HUMAN 107 69484/5.9 1.59 0.0028

13 Macrophage-capping protein CAPG_HUMAN 155 38760/5.8 1.53 0.0031

14 Proteasome subunit alpha type-1 PSA1_HUMAN 230 29822/6.2 1.52 0.0044

15 Thioredoxin domain-containing protein 5 TXND5_HUMAN 38 48283/5.6 -2.25 0.0058

16 U6 snRNA-associated Sm-like protein LSm2 LSM2_HUMAN 119 10942/6.1 1.93 0.0058

*17 Eukaryotic translation initiation factor 5A-1 IF5A1_HUMAN 112 17049/4.9 -5.96 0.0072

*18 Poly(rC)-binding protein 1 PCBP1_HUMAN 72 37987/6.8 1.72 0.0078

19 Nucleophosmin NPM_HUMAN 208 32726/4.5 -3.33 0.0083

20 ATP synthase subunit alpha ATPA_HUMAN 122 59828/9.6 -2.61 0.0087

21 Aconitate hydratase, mitochondrial ACON_HUMAN 333 86113/7.9 -3.57 0.0088

22 Alpha-enolase ENOA_HUMAN 160 47481/7.7 1.97 0.009

23 Myosin light polypeptide 6 MYL6_HUMAN 120 17090/4.4 -3.29 0.0092

24 Gelsolin GELS_HUMAN 164 86043/5.9 1.6 0.013

25 Flavin reductase (NADPH) BLVRB_HUMAN 41 22219/7.9 1.5 0.014

26 Phosphatidylethanolamine-binding protein 1 PEBP1_HUMAN 209 21158/7.8 1.58 0.016

27 Actin, aortic smooth muscle ACTA_HUMAN 51 42381/5.1 2.25 0.019

28 Superoxide dismutase [Mn] SODM_HUMAN 119 24878/9.1 4.23 0.019

29 Microfibrillar-associated protein 1 MFAP1_HUMAN 65 51927/4.8 -2.19 0.021

30 Protein NDRG1 NDRG1_HUMAN 172 43264/5.4 1.69 0.021

31 TAR DNA-binding protein 43 TADBP_HUMAN 56 45053/5.8 1.61 0.023

32 Retinal dehydrogenase 1 AL1A1_HUMAN 95 55454/6.3 -8.89 0.029

33 Vasodilator-stimulated phosphoprotein VASP_HUMAN 114 39976/9.7 1.68 0.036

* Indicating that the differential proteins were validated by western blot analysis.

doi:10.1371/journal.pone.0156017.t003
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infection were consistent with the 2-D DIGE results. Furthermore, the expression of these five
proteins were not affected in the cells infected by H1N1pdm09 virus compared with the time-
matched mock infection cells.

Validate the expression of PAFAH1B2 in H7N9 infection by western-blot
analysis
The A549 cells with over-expressing PAFAH1B2 were constructed successfully, as shown in
(Fig 5A, 5B, 5D, 5E, 5G and 5H).The levels of PAFAH1B2 in A549 cells with recombinant plas-
mid were about twice than the primary A549 cells. We also observed that the levels of
PAFAH1B2 in H7N9-infected A549 cells with recombinant plasmid were not down-regulated
obviously until 72hpi compared with the non-infected A549 cells with recombinant plasmid
(Fig 5B, 5C, 5E, 5F, 5H and 5I). The results further prove that the H7N9 virus seriously affect
the synthesis of PAFAH1B2 in A549 cells in the later phase of infection.

Fig 2. Functional classifications of the identified proteins according to their protein classes of 24h
(A), 48h (B) and 72h (C) by PANTHER.

doi:10.1371/journal.pone.0156017.g002
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Discussion
Our proteomic analysis revealed that the intracellular proteins were differentially translated in
H7N9- and H1N1pdm09-infected A549 cells at 24, 48, 72hpi.The prominent response was
marked by the change in abundance of CAPZA1, OAT, PCBP1, EIF5A and PAFAH1B2.

F-actin capping protein (CapZ) is an αβ heterodimer that binds and ‘‘caps” the barbed end
of actin filaments in a reversible and calcium-independent manner to limit growth of the actin
filament at this end. It is a key regulator of action polymerization in a wide variety of tissues
and organisms [21–23]. Therefore, a down-regulation of CapZ in vivo would allow the actin fil-
aments to keep growing and result in the accumulation of actin filaments, which could alter
regulation of a number of actin-binding activities as well as interfering with directed cell move-
ment, cell polarity and signaling events. It would cause the cells to break apart and undergo
lysis ultimately [24,25]. In comparison to H1N1pdm09-infected A549 cells, the expression of
CAPZA1 (CapZ-a1), one of a subunit isoforms of CapZ [23], was down-regulated in H7N9-in-
fected A549 cells at 24, 48 and 72hpi, which indicated that the H7N9 virus could seriously
affect the synthesis of CAPZA1 in A549 cells.

Fig 3. The protein interaction network diagrams of 24h(A), 48h(B)and 72h(C)were analyzed by String
software. Colored lines denote interactions.

doi:10.1371/journal.pone.0156017.g003
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Ornithine-δ-aminotransferase (OAT) is a nuclear encoded, pyridoxal-5'-phosphate (PLP)-
dependent enzyme, found in the mitochondrial matrix of most human tissues [26,27]. It
involves in the synthesis of glutamate from ornithine, and further synthesizes proline and glu-
tamine, as well as regulating the levels of ornithine in the cells [28–30]. The formation of these
products from ornithine is of great physiological importance for diverse functions, such as
growth, development, and response to a wide range of signaling molecules [31]. Wang et al
[32] found that OAT has played a crucial role in regulating mitotic cell division. The decrease
of OAT could block cell division and lead to cell death. Compared with the H1N1pdm09 infec-
tion, the down-regulation of OAT in H7N9-infected A549 cells at 24, 48 and 72hpi maybe
block cell division and cause cell death.

Poly(rC)-binding protein 1 (PCBP1) is a member of the hnRNP family, which contains
three K-Homology (KH) domains and two nuclear localization signals [33,34]. It is a RNA-

Fig 4. Results of western blot analysis. The differentially expressed proteins of CAPZA1 (A), OAT (B),
PCBP1 (C), EIF5A (D), PAFAH1B2 (E) in H7N9- and H1N1pdm09-infected A549 cells at 24, 48 and 72hpi as
well as time-matched mock-infected cells were confirmed by western blot analysis.

doi:10.1371/journal.pone.0156017.g004

Fig 5. The expression of PAFAH1B2 in H7N9 infection. The a, d and g were the relative levels of
PAFAH1B2 in primary A549 cells. The b, e and h were the relative levels of PAFAH1B2 in A549 cells with
recombinant plasmid. The c, f and i were the relative levels of PAFAH1B2 in A549 cells with recombinant
plasmid infected by H7N9 virus at 24,48 and 72hpi. The date are shown the relative levels of PAFAH1B2 with
SD (n = 3,*p<0.05).

doi:10.1371/journal.pone.0156017.g005
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binding and DNA-binding protein, as well as regulating transcriptional and translational pro-
cesses [35]. It also involves in messenger RNA (mRNA) shuttling between the cytoplasm and
nucleus, mRNA stability, protein-protein interactions and so on [36]. Huo et al [37] found that
five pathways were recognized as being significantly impacted by the overexpression of exoge-
nous PCBP1, including the translation factors pathway, hypertrophy model pathway, cell cycle
pathway, integrin-mediated cell adhesion pathway and apoptosis mechanism pathway. Fur-
thermore, they found that PCBP1 was a positive regulator for the cell cycle and anti-apoptosis.
We observed that the levels of PCBP1 in H7N9-infected A549 cells were down-regulated at
24h and 48h as compared to the H1N1pdm09 infection, which inhibited cell cycle and induced
apoptosis.

Eukaryotic translation initiation factor 5A (EIF5A), a nucleocytoplasmic shuttle protein, is
the only protein containing hypusine [Ne-(4-amino-2-hydroxybutyl)lysine], which is essential
for EIF5A function [38]. The protein is relate to eukaryotic translation [39], cell viability [40]
and cell proliferation [41]. Maier et al [42] identified EIF5A as a critical regulator of the inflam-
matory response. Notably, EIF5A is a major factor that controls the balance between cell prolif-
eration and death. Moreover, the depletion of EIF5A would exert strong antiproliferative
effects in mammalian cells, leading to the inhibition of cell proliferation by arresting the cell
cycle at the G1/S boundary [43,44]. In the present study, we found that EIF5A was prominently
down-regulated at 48h and 72h in H7N9-infected A549 cells.

Platelet-activating factor acetylhydrolaze (PAFAH) can inactivate the potent pro-inflamma-
tory phospholipid platelet-activating factor (PAF) by removing the acetyl group at its sn-2
position. This family of enzymes is comprised of one secreted (plasma) and at least four intra-
cellular isozymes (isoforms Ia, Ib, II, erythrocyte form) [45,46]. Isoform Ib is a G-protein-like
complex with two catalytic subunits (α1 and α2) and a regulatory β subunit, which inactivates
PAF during its formation, and thus controls the secretion of active PAF and also acts by inhib-
iting intracellular functions of PAF [47–49]. The PAF mediates an array of biological processes
(fertilization, fetal development, blood pressure). It also appears to be involved in pathological
processes (inflammation, allergies, neural disorders, asthma, and chronic obstructive pulmo-
nary disease) that affects the cardiovascular, cerebral, respiratory, gastrointestinal systems. It is
worth noting that the PAF can stimulate the host to produce inflammatory cytokines, induce
platelet aggregation and vascular permeability [45,50].

Our study showed platelet-activating factor acetylhydrolaseIb subunit beta (PAFAH1B2)to
be significantly down-regulated at 72h in H7N9-infected A549 cells. The level of PAF would be
up-regulated, which was related to the later clinical symptoms of patients infected with H7N9
virus, such as pneumonia, ARDS, encephalopathy and so on. Moreover, the increase of PAF
induces large amounts of platelets to aggregation which can produce a wide range of micro
thrombus in the host. It maybe the reason that the patients infected with H7N9 virus exhibit
thrombocytopenia and coagulopathy [5]. In addition, the up-regulation of PAF is also consis-
tent with previous findings showing that acute-phase serum samples from H7N9-infected
patients contain elevated levels of inflammatory cytokines and induce vascular permeability
[6,9,11].

We utilized proteomic approaches to identify differential expressions of cellular proteins in
A549 cells infected with H7N9 and H1N1pdm09 influenza virus at 24, 48, 72hpi. It suggests
that these differentially expressed proteins are involved in the pathogenic mechanisms of
H7N9 infection at the cellular level. A study by Simon et al [15] infected A549 human cells
with seasonal H1N1 (sH1N1), H1N1pdm09, or H7N9 and HPAI H5N1 strains(MOI of 10) to
measure proteomic host responses to these different strains at the early stage of 1, 3, and 6hpi.
However, their study showed that PCBP1 and EIF5A were up-regulated in A549 cells infected
by the H7N9 virus and were not affected in the cells infected by H1N1pdm09 virus at 6hpi.
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These may be the cells’ stress response at the early stage of H7N9 infection in order to keep cell
viability and anti-apoptosis. Morrison et al[9] considered that the depression of coagulation
factor transcription in the lungs of mice infected with H7N9 virus was the reason of infection-
induced vascular permeability and coagulopathy. While the decreasing of PAFAH1B2 in
H7N9 infection maybe another reason of infection-induced vascular permeability and coagulo-
pathy in our study. We first find that the expression of PAFAH1B2 is down-regulated signifi-
cantly in H7N9 infection, which may provide a new therapeutic direction for the patients
infected by H7N9 influenza virus. We will carry out further research to elucidate the mecha-
nisms of PAFAH1B2 in H7N9 infection.
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