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Abstract
In this study, an improved Data INterpolating Empirical Orthogonal Functions (DINEOF)

algorithm for determination of missing values in a spatio-temporal dataset is presented.

Compared with the ordinary DINEOF algorithm, the iterative reconstruction procedure until

convergence based on every fixed EOF to determine the optimal EOF mode is not neces-

sary and the convergence criterion is only reached once in the improved DINEOF algorithm.

Moreover, in the ordinary DINEOF algorithm, after optimal EOF mode determination, the ini-

tial matrix with missing data will be iteratively reconstructed based on the optimal EOF

mode until the reconstruction is convergent. However, the optimal EOF mode may be not

the best EOF for some reconstructed matrices generated in the intermediate steps. Hence,

instead of using asingle EOF to fill in the missing data, in the improved algorithm, the optimal

EOFs for reconstruction are variable (because the optimal EOFs are variable, the improved

algorithm is called VE-DINEOF algorithm in this study). To validate the accuracy of the VE-

DINEOF algorithm, a sea surface temperature (SST) data set is reconstructed by using the

DINEOF, I-DINEOF (proposed in 2015) and VE-DINEOF algorithms. Four parameters

(Pearson correlation coefficient, signal-to-noise ratio, root-mean-square error, and mean

absolute difference) are used as a measure of reconstructed accuracy. Compared with the

DINEOF and I-DINEOF algorithms, the VE-DINEOF algorithm can significantly enhance

the accuracy of reconstruction and shorten the computational time.

Introduction
Satellite-derived sea surface temperature (SST) data from infrared observations have been
widely used in oceanography due to their extensive coverage, in time and space. However,
these SST data are often influenced by the presence of clouds in the atmosphere, malfunctions
in the satellite or images noises, which can cause missing data. Additionally, the loss of data
may reach a high percentage in some periods. Undoubtedly, a complete data set is desirable or
even essential for many applications using satellite-derived data. There are currently many
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different methods, such as spline interpolation [1] and optimal interpolation (OI) [2–4], that
have been developed to deal with recovery of missing data.

In 2003, Beckers and Rixen [5] presented the Data INterpolating Empirical Orthogonal
Functions (DINEOF) algorithm which is a parameter-free technique based on an iterative EOF
decomposition to calculate missing data in satellite data sets without requiring a priori knowl-
edge about statistics of the full dataset. Recently, the researches on DINEOF algorithm mainly
contain: satellite-derived oceanographic images reconstruction for further analyses; the algo-
rithm accuracy improvement; the error analysis of DINEOF algorithm; outlier detection. [6–
18]. This study focuses on the algorithm improvement.

In the ordinary DINEOF algorithm, the original dataset is first stored in a spatio-temporal
matrix with m×n dimensions and the temporal and spatial average is removed from the data.
The first EOF mode is then calculated by using Singular Value Decomposition (SVD) tech-
nique, which is used to infer a new estimate for the missing data. This procedure is repeated
until convergence is obtained for the values given to the missing data with the first EOF mode.
Subsequently, the number of EOFs increases one by one and for each EOF mode, the whole
reconstruction will be operated again until convergence. Then by using cross-validation tech-
nique, the optimal EOF mode will be determined. Finally, the reconstruction procedure will be
performed again based on the optimal EOF mode until the convergence is reached.

In the ordinary DINEOF algorithm, due to the optimal EOF mode determination, the
reconstruction procedure will be first repeated until convergence for each EOF mode. Gener-
ally the optimal EOF is unknown before the reconstruction, so the maximum number of EOFs
is commonly predefined larger than the optimal EOF mode. Hence, it definitely takes much
computational time to determine the optimal EOF. For example, if the maximum number of
EOFs is predefined as 100, then the reconstruction will be first iteratively operated at least 100
times to obtain the optimal EOF. Then, after obtaining the optimal EOF, the whole iterative
process also needs to be performed again to acquire the final result. Therefore, the DINEOF
algorithm seems to be inefficient. On the other hand, the initial spatio-temporal matrix with
missing data is reconstructed based on the fixed optimal EOF in the ordinary DINEOF algo-
rithm, however, this optimal EOF mode may be not the best one for some reconstructed matri-
ces in the intermediate steps, which means the accuracy of reconstruction may be probably
influenced.

Therefore, an improved DINEOF algorithm is presented in this study. In the improved algo-
rithm, the optimal EOFs are variable and should be determined by using cross-validation tech-
nique based on the reconstructed matrices in the intermediate steps, hence, the improved
DINEOF algorithm is called VE-DINEOF (variable EOFs DINEOF) in this study. In addition,
the whole iteration procedure is only implemented once, which can obviously enhance the
algorithm efficiency.

Ping et al. (2015) [14] proposed an improved DINEOF algorithm (I-DINEOF) that recon-
structed the gappy spatio-temporal SST data based on local optimal EOF mode determined by
SST data of subarea. The I-DINEOF algorithm has been proved to be valid to enhance the
recovery accuracy and therefore it will be used to make a comparison with the proposed
VE-DINEOF algorithm. Compared with VE-DINEOF algorithm, the cross-validation points
are not necessary to set aside for the optimal EOF mode determination in the I-DINEOF algo-
rithm. However, similar with the ordinary DINEOF algorithm, before the local processing in
the I-DINEOF algorithm, the gappy spatio-temporal matrix requires to be reconstructed based
on every EOF mode, which means the I-DINEOF algorithm will take more time. Actually,
these two algorithms both aim to enhance the ordinary DINEOF algorithm by changeable opti-
mal EOF mode but they reach this objective in two different ways. The I-DINEOF algorithm
uses the local processing to find the local optimal EOF mode, and the VE-DINEOF algorithm
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uses the changeable and optimal EOF mode for each intermediate reconstructed matrix in the
iteration processing.

In the following, Section 2 introduces the data set. The main algorithm introduction is
described in Section 3. The validation of VE-DINEOF algorithm is discussed in Section 4. Sec-
tion 5 discusses some details of VE-DINEOF algorithm. Finally, conclusions are given in Sec-
tion 6.

Data Set
In this study, daily 4-km night-time Advanced Very High Resolution Radiometer (AVHRR)
Pathfinder Version 5.2 (PFV5.2) SST data of the northern South China Sea (NSCS) spanning
from 1 January 2011 to 31 December 2012 were used in this work. The geographic area covers
110–122°E and 19–23°N and Fig 1 provides a general view of the domain of interest with iso-
baths in meters and borders. The data are freely available from the US National Oceanographic
Data Center and GHRSST (http://pathfinder.nodc.noaa.gov). The PFV5.2 data are an updated
version of the Pathfinder Version 5.0 and 5.1 collection described in [19]. The initial size of the
SST data set is 100×290 pixels and 731 images. For PFV5.2 SST dataset, a quality level, ranging
from 0 (worst) to 7 (best), is assigned to every pixel and pixels with a quality level of 3 or less
are flagged as missing data in this paper.

The average loss of this data set is about 86%. Temporal variability of total missing data
presents an irregular distribution with minimum average missing data of about 40% to 60%
and maximum average missing data of more than 90% (Fig 2). Spatially, regions with the high-
est missing data percentage are the coastal waters of China Main Land and eastern waters of
Taiwan, with an average loss higher than 90%. In the rest of the NSCS, the average missing
data varies from 80% to 90%. Typical missing data sizes are comparative large, covering most
of the experimental area at a time.

Images containing less than 5% of existing data do not provide useful information and
might affect the final result [9]. Hence, prior to VE-DINEOF treatment, it was chosen to elimi-
nate each image holding less than 5% of the expected data. This reduced the number of
exploitable images from 731 to 408. The same elimination criterion was applied in time,
excluding thus from the study all pixels holding less than 5% of valid data through the temporal
dimension. Land points were not used in this methodology, so the final spatial size is 22770
(out of 29000) and a subset of 408 images was kept for reconstruction.

Methods

3.1 The VE-DINEOF Algorithm
Beckers and Rixen (2003) have presented the DINEOF algorithm which is a self-consistent
method for the reconstruction of missing data in oceanographic data sets. In this study, the
VE-DINEOF algorithm was applied as follows.

Fig 1. The northern South China Sea and its bathymetry (depth in meters).

doi:10.1371/journal.pone.0155928.g001
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1. The original dataset was first stored in the initial m×n matrix, where m is the number of pix-
els and n is the number of images (22770×408 in this study). This matrix contains both
existing and missing pixels. A random 3% of the valid data (67925 pixels in this study) in
the matrix were set to 0 in the initial matrix, and these values set aside (deemed as missing
data in the reconstruction process) for use in cross-validation. Then the corresponding spa-
tio-temporal mean of the initial matrix was subtracted from the initial matrix. Missing data
points were set to 0 (unbiased guess). This processed matrix was designated as X.

2. The EOF decomposition was computed by using the Singular Value Decomposition (SVD)
technique. The SVD method can be defined as Eq (1):

X ¼ USVT ð1Þ

Where U with dimension m×r contains on each of its columns one of the spatial patterns of
the EOFs; the pseudo-diagonal matrix S with dimension r×r signifies the singular values; V
with dimension n×r denotes the temporal EOFs. The value r is the rank of the matrix X,
with r�min(m,n). The singular values and the respective vectors are sorted to decreasing
order.

3. Only the most significant spatial and temporal EOFs are necessary for the reconstruction
methodology so that the truncated reconstruction Xr is the best estimate of the field, which

Fig 2. Top panel: temporal variation of missing data percentage in the NSCS. The year/month labels
show the 1st of corresponding year/month. Bottom panel: spatial variation of missing data percentage in the
NSCS.

doi:10.1371/journal.pone.0155928.g002
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can be calculated based on Eq (2):

Xr ¼ UNSNV
T
N ð2Þ

Where UN is a m×N matrix with N columns containing the first N spatial EOFs, VN is a
n×N matrix with N columns containing the first N temporal EOFs and SN a diagonal matrix
of size N×N containing the first N singular values.

4. In contrast with the ordinary DINEOF algorithm, the N value in VE-DINEOF algorithm is
changeable and needs to be determined based on every reconstructed matrix generated in
the intermediate steps by using cross-validation technique. The first SVD decomposition
was performed on X and the RMSEs for all EOFs between the original values and recon-
structed values at the cross-validation points were calculated. To save computational time
and enhance algorithm efficiency, the maximum number of EOFs was set to 300 in this
study. By finding the smallest RMSE, the optimal EOF can be determined and then the
missing data could be calculated by Eq (2) with the optimal EOF mode. Then gappy data
were reconstructed with values for the existing data were kept for original values and values
for the missing points were replaced by the reconstructed values obtained from the optimal
EOF.

5. Then, if the convergence was not reached, the number of SVD decompositions increased
one by one until the convergence was reached. After each SVD decomposition, the optimal
EOF was determined again and the matrix was reconstructed by using the updated optimal
EOF. The iteration continued to produce improved missing data until the changes observed
at the cross-validation points between one iterative cycle and the next one were insignifi-
cant. The convergence criterion was reached when the RMSE between the two iterations at
the cross-validation points became lower than a threshold value of 1.0e-3. To avoid the itera-
tive death loop and save computational time, the greatest number of SVD decompositions
was predefined as 100.

3.2 Validation of Reconstruction Accuracy
Four parameters including Pearson correlation coefficient (r), signal to noise ratio (SNR),
RMSE and mean absolute difference (MAD) were calculated to validate the accuracy of the
VE-DINEOF algorithm. These statistical parameters obtained from the original values and the
corresponding reconstructed values for the valid data can be used to evaluate the accuracy of
the reconstruction.

The RMSE and MAD are defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

ðS� IÞ2
n

s
;MAD ¼

X
jS� Ij
n

ð3Þ

Where S is original SST value, I is the reconstructed SST value and n is the number of
match-up samples. The SNR is the ratio of standard deviation of the reconstructed values and
the standard deviation of the errors (difference between original values and reconstructed val-
ues) for the valid data points.

Results
To better validate the VE-DINEOF algorithm, the I-DINEOF algorithm was also added in this
paper to make a comparison with the VE-DINEOF algorithm. In the I-DINEOF algorithm, the
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size of subarea is a significant parameter for reconstruction. On the one hand, the size should
not be too large so as to acquire the best EOF mode for the subarea; on the other hand, there
must be some existing points to determine the optimal EOF mode and some missing points to
fill in in each subarea. In this paper, the proportion of missing data in the dataset is higher than
that in Ping’s paper (2015) due to daily SST data usage, so the size of subarea was set as 25 pix-
els. The size setting is subjective to some extent and some further researches need to be done to
solve this problem. The maximum number of EOFs was set to 300, which is the same with the
VE-DINEOF algorithm.

The ordinary DINEOF, I-DINEOF and VE-DINEOF algorithms were directly performed
on PFV5.2 SST data, predefined in Section 2. SNR, r, RMSE and MAD from the reconstructed
and original values for the existing points were used as a measure of reconstructed accuracy.
Table 1 summarizes the four validation parameters of the DINEOF, I-DINEOF and VE-DI-
NEOF methods. Table 1 shows that compared with the ordinary DINEOF algorithm, the
VE-DINEOF algorithm can increase r and SNR from 0.9943 and 11.0682 to 0.9987 and
19.9641, respectively; decrease RMSE and MAD from 0.2773°Cand 0.1515°C to 0.1303°C and
0.0155°C, respectively. Therefore, these results present a significant improvement in recon-
structed accuracy with the VE-DINEOF algorithm. Moreover, the VE-DINEOF costs less
computational time than DINEOF algorithm.

Additionally, compared with I-DINEOF algorithm, the VE-DINEOF can increase r and
SNR from 0.9964 and 17.1149 to 0.9987 and 19.9641, respectively; decrease RMSE and MAD
from 0.2215°C and 0.1631°C to 0.1303°C and 0.0155°C, respectively. The reason for that is
probably the size of subarea. Ideally, one missing point can be best reconstructed by its corre-
sponding optimal EOF mode. With the increasing of the size of subarea, the number of missing
points in one subarea will become large and hence the optimal EOF mode for that subarea is a
compromise, which means the optimal EOF may be not the best one for some missing points
in that subarea. On the other hand, the size of the subarea cannot be set too small, because
there must be enough existing points to determine the local optimal EOF mode and some miss-
ing points to fill in. Therefore, if the size of subarea can be better determined, we believe the
accuracy of I-DINEOF algorithm may be boosted though probably more researches should be
done for the size setting procedure. Similar with the ordinary DINEOF algorithm, the recon-
structed matrix based on every EOF mode should be calculated first in the I-DINEOF algo-
rithm, so the efficiency of VE-DINEOF algorithm is greatly enhanced.

Even though the accuracy of I-DINEOF algorithm is lower than VE-DINEOF algorithm,
compared with the ordinary DINEOF algorithm, these two algorithms can both get better
results.

In Figs 3–6 we can see four examples of the quality of VE-DINEOF results on the PFV5.2
SST data. They show four original images, which blanks where there are no data, and their recon-
struction. Fig 3 is of 25th October, 2011 which the percentage of missing data is 62.49%; Fig 4 is
of 12th April, 2012 which the percentage is 53.46%; Fig 5 is of 30th April, 2012 which the percent-
age is 35.2%; Fig 6 is of 2nd May, 2012 which the percentage is 42.95%. As shown in Figs 3–6, no
matter what percentage of the missing data is, the VE-DINEOF algorithm can reconstruct the
gappy data and fill in all missing data with reasonable values. Every reconstruction image

Table 1. Reconstructed results using DINEOF and VE-DINEOFmethods.

r SNR RMSE (°C) MAD(°C)

DINEOF 0.9943 11.0682 0.2773 0.1515

I-DINEOF 0.9964 17.1149 0.2215 0.1631

VE-DINEOF 0.9987 19.9641 0.1303 0.0155

doi:10.1371/journal.pone.0155928.t001
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presents a complete structure of SST and meanwhile the coherence of SST in local region is
acceptable.

Discussion

5.1 Optimal EOFs Determination
For the VE-DINEOF algorithm, the optimal EOFs are changeable and need to be determined
based on the reconstructed matrices generated in the intermediate steps. As shown in Fig 7, the
optimal EOFs distribution is irregular and the mean, maximum and minimum optimal EOFs
are about 176, 299 and 12, respectively. The trend of distribution slightly increases with the
increasing iteration times. On the other hand, the iteration times in total is 37 in this study,
which means the convergence can be quickly reached so that the computational time is
shortened.

For the same spatio-temporal matrix, the optimal EOF number in the ordinary DINEOF is
74 and the corresponding RMSE at the cross-validation points is 0.5709°C. The RMSE distribu-
tion at the cross-validation points is shown in Fig 8. We can find that the optimal EOFs

Fig 4. Left panel: original gappy image for 12th April, 2012; right panel: its reconstruction image.

doi:10.1371/journal.pone.0155928.g004

Fig 3. Left panel: original gappy image for 25th October, 2011; right panel: its reconstruction image. The
dark blue points shown by arrows represent the points with less than 5% good data in the temporal dimension.

doi:10.1371/journal.pone.0155928.g003
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number is obviously lower than the average EOFs numbers in the VE-DINEOF algorithm,
which means this optimal EOF may be not the best selection for some reconstructed matrices
in the intermediate steps. On the other hand, because the optimal EOF mode determination in
the DINEOF algorithm is not necessary, the VE-DINEOF can significantly enhance the recon-
structed accuracy.

5.2 Performance on Different Percentage of Missing Data
The VE-DINEOF algorithm can perform better on reconstruction than I-DINEOF and
DINEOF algorithms as a whole, but we still want to know whether the VE-DINEOF algorithm
can get higher accuracy than those two DINEOF algorithms for different percentages of miss-
ing data. Hence, we calculated the percentage of missing data of every image and the corre-
sponding RMSE between original image and reconstructed image at the valid points.

As shown in Fig 9, the trends of RMSEs of VE-DINEOF and DINEOF algorithms are simi-
lar, but no matter what the percentages of missing data are, the RMSEs of VE-DINEOF algo-
rithm are much smaller than those of DINEOF algorithm. Compared with the DINEOF
algorithm, the average reduction of RMSE is 0.1438°C for the VE-DINEOF algorithm. So we

Fig 5. Left panel: original gappy image for 30th April, 2012; right panel: its reconstruction image.

doi:10.1371/journal.pone.0155928.g005

Fig 6. Left panel: original gappy image for 2nd May, 2012; right panel: its reconstruction image.

doi:10.1371/journal.pone.0155928.g006
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can confirm that the VE-DINEOF can get better results than DINEOF algorithm for different
percentages of missing data.

Compared with I-DINEOF algorithm, the RMSEs obtained from VE-DINEOF algorithm
are relatively small for different percentage of missing data. The trend of RMSEs of I-DINEOF
algorithm seems to be smooth, which can be probably attributed to the local processing. On
the other hand, the reconstructed accuracy of I-DINEOF will become worse than the other two
algorithms when the percentage of missing data surpasses 90%. When the percentage of miss-
ing data is large, the existing points in some subareas may be not sufficient for optimal EOF
mode determination, so the local EOF modes for reconstruction are not suitable causing the
reconstructed accuracy to decrease. In some cases, we also noticed that the I-DINEOF algo-
rithm could acquire higher RMSEs than VE-DINEOF algorithm. The size of subarea is a signif-
icant parameter in I-DINEOF algorithm and we believe if this parameter can be better
determined, the performance of I-DINEOF algorithm can be enhanced.

5.3 RMSEs at Cross-Validation Points
The convergence was defined as the RMSE between the two iterations at the cross-validation
points lower than a predefined threshold in this study. The distribution of RMSEs at the cross-
validation points with the increasing iteration times is shown in Fig 10. At the beginning of the
iterations, the RMSE increases slightly and then steeply declines. After 5 iterations, the trend

Fig 8. RMSEs obtained with cross-validation for reconstruction by using DINEOF algorithm.

doi:10.1371/journal.pone.0155928.g008

Fig 7. Optimal EOFs distribution in VE-DINEOF algorithm.

doi:10.1371/journal.pone.0155928.g007
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gradually becomes stable until the convergence is reached. Actually, as shown in Fig 7, at the
beginning of iterations, the optimal EOF modes are comparative low, which means only a
small number of EOFs are used to fill in the missing data, so, the error may become large.

5.4 Computational Time
The computational time depends on the specific runtime environments (CPU speed, memory
capacity, program code et al.), so we did not list the specific computational time of VE-DI-
NEOF and DINEOF algorithms. We can confirm that the VE-DINEOF algorithm can run
faster about 6–7 times than DINEOF algorithm under the same circumstances. In the DINEOF
algorithm, for the first EOF mode, the decomposition and reconstruction processes will be first
repeated until the convergence criterion is reached. Then the EOF mode increases one by one
and the whole iterations will be operated again, which means in this study, the whole iterations
will be operated 100 times (the greatest number of EOFs modes in DINEOF algorithm was pre-
defined as 100 in this study. Because the optimal number of EOFs is 74, we believe the predefi-
nition is reliable.). However, in the VE-DINEOF algorithm, the convergence is only supposed
to be reached once. This modification can apparently enhance the computational time even
though the greatest number of EOF modes in the VE-DINEOF algorithm (predefined as 300)
is much larger than that in the DINEOF algorithm.

Fig 10. RMSEs at cross-validation points in the intermediate steps.

doi:10.1371/journal.pone.0155928.g010

Fig 9. RMSEs obtained from VE-DINEOF, I-DINEOF and DINEOF algorithms for different percentages
of missing data.

doi:10.1371/journal.pone.0155928.g009
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On the other hand, after obtaining the optimal EOF mode in the DINEOF algorithm, the
whole reconstruction process will be operated again based on the optimal EOF. But in the
VE-DINEOF algorithm, this process is not necessary. Hence, the VE-DINEOF algorithm can
reconstruct the initial matrix more efficiently.

Conclusion
An improved DINEOF algorithm was presented in this study. In the VE-DINEOF algorithm,
the missing data are reconstructed based on changeable optimal EOF modes instead of one
fixed EOF mode and the optimal EOF modes need to be determined by using cross-validation
technique for reconstructed matrices in the intermediate steps. After reconstructing by one
optimal EOF mode, the missing data in the spatio-termporal matrix should be replaced by the
updated values, so the spatio-temporal matrix varies after each reconstruction. Theoretically,
different matrices can generate different optimal EOFs, hence, compared with reconstructing
the matrix with one fixed EOF mode, the VE-DINEOF can get a better reconstructed accuracy.

On the other hand, the computational time of VE-DINEOF algorithm in total is much
shorter than that of the ordinary DINEOF algorithm under the same circumstances. The rea-
son is mainly that in the VE-DINEOF algorithm, the reconstructed repetition by using one
fixed EOF mode until convergence is not necessary and the convergence only needs to be
reached once. Of course, if the maximum number of EOFs can be automatically determined,
we believe the efficiency of VE-DINEOF algorithm will be exponentially enhanced.

Through the experiments on AVHRR PFV5.2 SST data, the four validation parameters (r,
SNR, RMSE and MAD) of the VE-DINEOF algorithm are all better than those of the
I-DINEOF and DINEOF algorithms. In addition, the computational time is about 6–7 times
shorter than the DINEOF algorithm.
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